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Abstract     
The Web contains an abundance of useful semi-
structured information about real world objects, 
and our empirical study shows that strong 
sequence characteristics exist for Web 
information about objects of the same type 
across different Web sites. Conditional Random 
Fields (CRFs) are the state of the art approaches 
taking the sequence characteristics to do better 
labeling. However, as the information on a Web 
page is two-dimensionally laid out, previous 
linear-chain CRFs have their limitations for Web 
information extraction. To better incorporate the 
two-dimensional neighborhood interactions, this 
paper presents a two-dimensional CRF model to 
automatically extract object information from the 
Web. We empirically compare the proposed 
model with existing linear-chain CRF models for 
product information extraction, and the results 
show the effectiveness of our model. 

1.  Introduction 

While the Web is traditionally used for hypertext publish-
ing and accessing, there are actually various kinds of 
objects embedded in static Web pages and dynamic Web 
pages generated from online Web databases. There is a 
great opportunity for us to extract and integrate all the 
related Web information about the same object together as 
an information unit, which is called a Web object (Nie et 
al., 2005). Typical Web objects are products, people, 
papers, organizations, etc. Commonly, objects of the same 
type obey the same structure or schema. We can imagine 
that once these objects are extracted and integrated from 
the Web, some large databases can be constructed to 
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Figure 1. An object block with 6 elements (contained in 
the red rectangle) in a Web page 

perform further knowledge discovery and data manage-
ment tasks. This paper studies how to extend the existing 
information extraction techniques to automatically extract 
object information from Web pages. 

The information about an object in a Web page is usually 
grouped together as an object block, as shown in Figure 1. 
Using existing Web page segmentation (Cai et al., 2004) 
and data record extraction  technologies (Liu et al., 2003; 
Zhai & Liu, 2005),  we can automatically detect these 
object blocks, which are further segmented into atomic 
extraction entities called object elements. Each object 
element provides (partial) information about a single 
attribute of the Web object. For example, for the object 
block in Figure 1, the object elements provide information 
about the following attributes of a product object: Name, 
Image, Description, and Price. Given an object block with 
a set of elements, the Web object extraction task is to 
assign an attribute name to each object element. 

Our empirical study shows that strong sequence charac-
teristics exist for Web objects of the same type across 
different Web sites (see Section 5.1 for detailed 
discussion). Condition Random Fields (CRFs) (Lafferty et 
al., 2001) are the state of the art approaches in 
information extraction taking advantage of the sequence 
characteristics to do better labeling, compared with 
HMMs (Leek, 1997; Freitag & McCallum, 1999) and 
MEMMs (McCallum et al., 2000). 
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However, in order to use the existing linear-chain CRFs 

for Web object extraction, we have to first convert a two-
dimensional object block (i.e. an object block whose 
elements are two-dimensionally laid out) into a sequence 
of object elements. Given the two-dimensional nature of 
object blocks, how to sequentialize them in a meaningful 
way could be very challenging. Moreover, as shown by 
our empirical evaluation, using the two-dimensional 
neighborhood dependencies (i.e. interactions between 
labels of an element and its the neighbors in both vertical 
and horizontal directions) in Web object extraction could 
significantly improve the extraction accuracy. 

To better incorporate the two-dimensional neighborhood 
dependencies, a two-dimensional Conditional Random 
Field (2D CRF) model is proposed in this paper. We 
present the graphical representation of the 2D CRF model 
as a 2D grid (see Figure 2) and reformulate the condition-
al distribution by defining some matrix random variables. 
Then we deduce the forward-backward vectors based on 
the reformulated conditional distribution for efficient 
parameter estimation and labeling. Since the sizes of the 
elements in an object block can be arbitrary, we introduce 
the concept of virtual states to model an object block as a 
2D grid. We compare our model with linear-chain CRF 
models for product information extraction and the 
experimental results show that our model significantly 
outperforms linear-chain CRF models in scenarios with 
two-dimensional neighborhood dependencies. 

The rest of this paper is organized as follows. We discuss 
the related work in the next section. In section 3, 2D 
CRFs are presented, and the parameter estimation and 
labeling methods are discussed. Section 4 introduces a 
novel way of modeling an object block as a 2D grid. In 
section 5, we present our experimental setup and results. 
Section 6 brings this paper to a conclusion and finally we 
give our acknowledgements. 

2.  Related Work 

To the best of our knowledge, we haven't seen any work 
on incorporating the two-dimensional neighborhood inter-
actions into a graphical model for Web information extra-
ction.  However, there have been some previous attempts 
to incorporate complex interactions between labels.  

Sutton et al., (2004) proposed Dynamic Conditional 
Random Fields. As a particular case, a factorial CRF 
(FCRF) was used to jointly solve two NLP tasks (noun 
phrase chunking and part-of-speech tagging) on the same 
observation sequence. Improved accuracy was achieved 
by modeling the interactions between the two tasks.  

Bunescu and Mooney (2004) used a relational Markov 
network (Taskar et al., 2002) to collectively classify the 
entities in a document, achieving increased accuracy by 

learning dependencies between similar entities. Our work 
differs from theirs in two main aspects. First of all, 
Bunescu et al. focused on extracting named entities from 
natural language documents. It can not be directly applied 
to solve our problem. Since most of its global clique 
templates, such as overlap template and repeat template, 
are no longer useful in our scenario. Secondly, although 
approaches by Bunescu et al. (2004) and Taskar et al. 
(2002) can be extended to solve our problem by only 
defining neighbor-based global clique templates, the 
resulting graph and its factor graph always contain cycles. 
It’s well-known that exact inference on graphs with cycles 
can be too expensive. Thus, Bunescu et al. used the Voted 
Perceptron (Collins, 2002b) algorithm to train their model 
and the max-product (Kschischang, et al., 2001) algorithm 
to do labeling. However, the Voted Perceptron algorithm 
has its limitations (Collins, 2002a). The max-product 
algorithm must take an iterative procedure to approximate 
the marginal distributions for a graph with cycles. In our 
approach, instead of doing inference on the graph directly, 
we present it on a 2D grid. By marginalizing variables 
progressively along the diagonals, we can use a more 
efficient gradient-based method to train our model and a 
more efficient dynamic programming method to do 
labeling. Please see Section 5.2.4 for an empirical 
comparison. 

Previous work on 2D models can be found in Image 
Processing and Computer Vision. Li et al. (2000) 
proposed two-dimensional Hidden Markov Models (2D 
HMMs) for image classification. Since 2D HMMs are 
generative models, some conditional independence 
assumption is made for computational tractability. Mar-
kov Random Fields (Besag, 1974; Li, 2001) in image 
analysis are also generative models, but unlike 2D HMMs, 
MRFs model the prior distribution over labels as a 
markov random field. For computational tractability, the 
conditional independence assumption is also made as 2D 
HMMs. Recently, to take the advantages of conditional 
models (like CRFs), Discriminative Random Fields 
(DRFs) were proposed by Kumar et al. (2003; 2004) in 
the case of binary image classification. Based on CRFs, 
DRFs model the association potential as well as the 
interactions between the neighboring sites on a 2D grid. It 
has been shown that DRFs outperform MRFs in natural 
image classification. However, the proposed DRFs are 
limited to binary classification, so they can’t be applied to 
our application. 

Liu et al. (2003) and Zhai & Liu (2005) proposed an 
unsupervised approach to automatically detect Web 
blocks and extract the Web data from the blocks, which 
can be used as the input of our model for labeling the 
extracted data. Since we are focusing on assigning the 
semantic label to their extracted data, our work can be 
seen as complementary to theirs.  
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Figure 2. The graphical structure of 2D CRFs 

3.  2D Conditional Random Fields 

In this section we first introduce the basic concepts of  
Conditional Random Fields and present the conditional 
distribution of linear-chain CRFs (a particular case of 
CRFs), and then we discuss the conditional probability 
over labels of 2D CRFs, and finally we discuss how to 
estimate the parameters and how to perform labeling. 

3.1  Linear-chain CRFs 

Conditional random fields (Lafferty et al., 2001) are undi-
rected graphical models. As defined before, X  is a 
random variable over the observations to be labeled, and 
Y  is a random variable over corresponding labels. All 
components iY  of Y  are assumed to range over a finite 
label alphabet � . CRFs construct a conditional model 

( | )p Y X  with a given set of features from paired 
observations and labels. 

CRF Definition: 

Let ( , )G V E= be an undirected graph such that 
{ }v v V

Y Y
∈

= . Then ( , )X Y  is said to be a conditional 
random field if, when conditioned on X , the random 
variables vY  obey the Markov property with respect to the 
graph:

{ }( | , ) ( | , )
vv V v v Np Y X Y p Y X Y− = , where { }V v−  is 

the set of nodes in the graph except the node v  and vN   is 
the set of neighbors of the node v  in graph G . 

Thus, a CRF is a random field globally conditioned on the 
observations X . Linear-chain CRFs were first introduced 
by Lafferty et al. (2001). By the Hammersley-Clifford 
Theorem (Hammersley & Clifford, 1971), the conditional 
distribution of the labels y  given the observations x  has 
the form,  

( )
, ,

1
y | x exp ( , y | , x) ( , y | , x)

(x) k k e k k v
e E k v V k

p f e g v
Z

λ µ
∈ ∈

� �
= +� �

� �
� �  

 

where e|y and v|y are the components of y  associated with 
edge e  and vertex v  respectively; 

kf  and 
kg  are feature 

functions; 
kλ  and 

kµ  are parameters to be estimated from 
the training data and (x)Z  is the normalization factor, 
also known as partition function, which has the form, 

( )
y , ,

x exp ( ,y | ,x) ( ,y | ,x)k k e k k v
e E k v V k

Z f e g vλ µ
∈ ∈

� �
= +� �

� �
� � �  

Figure 3. The diagonal state sequences of a 2D grid 

3.2  2D CRFs 

As we mentioned before, linear-chain CRFs cannot 
represent two-dimensional neighborhood interactions. In 
this section, we introduce a two-dimensional CRF (2D 
CRF) model which is also a particular case of CRFs. The 
graphical structure of 2D CRFs is a 2D grid (see Figure 2). 
Here we use X to denote the random variable over 
observations, and Y  to denote the random variable over 
the corresponding labels. ,i jY  is a component of Y  at the 
vertex ( , )i j . The cliques of this graph are its edges and 
vertices, so the conditional distribution has the same form 
as linear-chain CRFs. 2D CRFs can also be viewed as a 
finite-state model. Each variable ,i jY  has a finite set of 
state values and we assume the one-to-one mapping 
between states and labels. In this paper, we denote the 
label and the state value at ( , )i j using the same notation 

,yi j
. 

In the following, we first define some matrix random 
variables along the diagonals of the model’s graph (see 
Figure 3) and reformulate the conditional distribution. 
Then we deduce the forward-backward vectors (see 
Section 3.3 & 3.4) for efficient training and labeling. We 
first introduce some notations we use as follows: 

1) The state sequence on diagonal d  ( )1 1d M N≤ ≤ + − , 
1,0 2,1 0, 1{y , y , , y }d d d− − −�  is denoted by 

dT . 

2) Two special state sequences are added: 0T start=  
and N MT stop+ = . 

3) The diagonal on which the random variable 
,i jY  lies 

is denoted by ( , )i j∆ . 

4) The set of coordinates of the random variables on 
diagonal d , {( , ), ( , ) }i j i j d∆ = is denoted by ( )I d . 

5) The set of edges between diagonals 1d − and d  
' ' ' '{(( , ), ( , )) : ( , ) ( 1)  ( , ) ( )}i j i j E i j I d and i j I d∈ ∈ − ∈ is 

denoted by ( )E d . 

For each diagonal d , we define the 1d dS S− ×� �  matrix 
random variable '

1(x) [ ( , | x)]d d d dM M T T−=  by  
' '

1 1( , | x) exp( ( , | x))d d d d d dM T T T T− −= Λ   

' '
' '

1 , ,,
( ), ( ),

( , | x) ( ,y ,y ,x) ( ,y ,x) d d d k k i j k k i ji j
e E d k v I d k

T T f e g vλ µ−
∈ ∈

Λ = +� �  

                                                                                      ( )1  

(0:
1)

i
N

−

(0: 1)j M −

X

,i jY

1T

2T

NT

�

1NT + 1N MT + −�

(0 : 1)j M −

(0:
1)

i
N

−
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where ' ' ' '
1 2,0 3,1 0, 2{y ,y , ,y }d d d dT − − − −= �  , 1,0 2,1 0, 1{y ,y , ,y }d d d dT − − −= � ; 

1dS − and dS are the number of states in '
1dT −  and dT  

respectively;  ' '(( , ), ( , ))e i j i j=  and ( , )v i j= . 

Thus, when given the observations x  and the parameters, 
the matrices can be computed as needed. The normalizat-
ion factor (x)Z  can be expressed as the ( , )start stop  entry 
of the product of these matrices:  

( )1 2 ( , )
(x) (x) (x) (x)M N start stop

Z M M M += �  

For a particular combination of label assignments y  given 
the observations x , let 1,0 2,1 0, 1{y , y , , y }d d d dT − − −= �  
( )1 1d M N≤ ≤ + − , and then the conditional probability has 
the form, 

                               

                                                                                          ( )2  

               

 where 0T start=  and N MT stop+ = . 

3.3  Parameter Estimation 

Given the training data 
1{(y , x )}i i N

iD == with the empirical 
distribution (x, y)p� , the log-likelihood of (x, y)p�  with 
respect to a conditional model (y | x, )p Θ is defined as, 

x,y

( ) (x, y) log (y | x, )L p pΘ = Θ∏ �  

The parameter estimation problem is to find a set of para-
meters 1 2 1 2{ , , ; , , }λ λ µ µΘ = � � that optimize the con-
cave log-likelihood function. The function can be optim-
ized by the techniques used in other maximum-entropy 
models (Lafferty et al., 2001; Berger et al., 1996). We 
choose gradient-based L-BFGS (Liu & Nocedal, 1989) 
for its outstanding performance over other optimization 
algorithms for linear-chain CRFs (Malouf, 2002; Sha et 
al., 2003). Each element of the gradient vector is given by 

 

 

where
(x,y)[ ]p kE f
�

 is the expectation with respect to the 
empirical distribution and can be easily computed and 

(y|x, )[ ]p kE fΘ
 is the expectation with respect to the 

conditional model distribution. For feature function kf , 

' ' ' '
'
' ' ,,

' '
(y|x, ) , ,, ,

x y ,y

[ ] (x) (y , y | x) ( ,y , y ,x)
i ji j

p k i j k i ji j i j
e E

E f p p f eΘ
∈

=� � ��  

where ' '(( , ), ( , ))e i j i j= , and for feature function kg , 

,

(y|x, ) , ,
x ( , ) y

[ ] (x) (y | x) ( , y , x)
i j

p k i j k i j
v i j V

E g p p g vΘ
= ∈

=� � ��  

So the main computation is to compute the marginal 
probabilities, which are needed to compute the gradients 
at each iteration. The idea of forward-backward algorithm 
can be extended here to reduce computation. As the 
conditional distribution has the form in equation (2), the 
state sequence dT  is in fact an “isolating” element in the 
expansion of (y | x)p , which plays the same role as a state 
at a single unit of time in linear-chain CRFs.  

For each diagonal index 0, ,d M N= +� , the forward 
vectors (x)dα  are defined with base case 

 

 

and with recurrence 1(x) (x) (x)d d dMα α −=  

Similarly, the backward vectors (x)dβ  are defined as 

 

 

and                       T
1 1(x) (x) (x)d d dMβ β+ +=  

Thus, the marginal probability of being in state sequence 
dT on diagonal d   given the observations x  is 

( ) ( ) ( )
( )

| x | x
| x

x
d d d d

d

T T
p T

Z

α β
=  

So the marginal probability of being at state 
,yi j

at 
,i jY on 

diagonal d is 

 

Similarly, the marginal probability of being in state sequ-
ence '

1dT −  on diagonal 1d −  and dT  on diagonal d  is 

So the marginal probability of being at state 
' '

'
,

y
i j

at 
' ',i j

Y  
and  

,yi j
 at 

,i jY  is, 

where ' '(( , ), ( , )) ( )i j i j E d∈ . 

3.4  Labeling 

Labeling is the task to find labels y∗ that best describe the 
observations x , that is, ( )

y
y max y | xp∗ =  

Dynamic programming algorithms are the most desirable 
methods for this problem. For 2D HMMs, Li et al. (2000) 
have proposed the variable-state Viterbi algorithm and the 
difference from the normal Viterbi algorithm is that the 
number of possible state sequences at every position in 
the viterbi transition diagram is exponential to the number 
of states on the diagonal. For 2D CRFs, the variable-state 
Viterbi algorithm can be used directly for the “isolating” 
element dT . However, as the dimensions of the transition 
matrices (x)dM are exponential to the state numbers in 

'
1dT −  and dT  respectively, the computational complexity 

can also be very high. To reduce computation, Li et al. 
(2000) propose a path-constrained suboptimal method. Li 
et al. choose N  most likely state sequences out of all the 
state sequences based on the assumption that the random 
variables on a diagonal are statistically independent when 
the diagonal is separated from others. Based on the same 
independence assumption, we can use the path-

1
1

1 ( , )

( , | x)
(y | x)

(x)

M N

d d d
d
M N

d
d start stop

M T T
p

M

+

−
=
+

=

=
� �
� �
� �

∏

∏

1    
( | x)

0  
M N

N M M N

if T stop
T

otherwise
β +

+ +

=�
= 	



0
0 0

1    
( | x)

0  

if T start
T

otherwise
α

=�
= 	



,

,
: ( , ) y

(y | x) ( | x)
d d i j

i j d
T T i j

p p T
=

= �

' '
' 1 1 1

1

( | x) ( , | x) ( | x)
( , | x)

(x)
d d d d d d d

d d

T M T T T
p T T

Z
α β− − −

− =

(x,y) (y|x, )

( )
[ ] [ ]p k p k

k

L
E f E f

λ Θ
∂ Θ = −

∂ �

' '
' ' ' ' '

,1 1 ' ',

' '
, 1,

: ( , ) y: ( , ) y

(y , y | x) ( , | x)
d d i jd d i j

i j d di j
T T i jT T i j

p p T T
− −

−
==

= � �
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constrained suboptimal method to compute the approxim-
ate gradients for the L-BFGS (Liu et al., 1989) algorithm 
to train our model, and variable-state Viterbi (Li et al., 
2000) algorithm to find the best state sequence. 

4.  Modeling an Object Block 

As described in the introduction section, an object block 
is composed of some atomic extracted entries called obj-
ect elements. To use the proposed 2D CRFs for Web 
information extraction, we first index the object elements 
on a 2D grid according to their position and size 
information. The two-dimensionally indexed object 
block of Figure 1 is shown in Figure 4, where we have 
used ,x i j to denote the element at ( , )i j  and xnull to 
denote the null elements (i.e. the elements that don’t 
exist). Then we need to associate each element ,x i j with 
a state ,yi j  and null element xnull with null state ynull  (i.e. 
the state that doesn’t exist). At the second step we need 
to handle the irregular neighborhood dependencies 
caused by the elements’ arbitrary sizes in a Web page. 
Take the block in Figure 4 as an example, the element 

1,1x is so large that elements 1,2x , 2,2x and 3,2x  are all its 
neighbors. But for our 2D model, if we associate each 
element with only one state as in Figure 5(a), the 
association result can not represent the neighborhood 
dependencies between state pairs 1,1 2,2(y , y )  and 

1,1 3,2(y , y ) . To model these neighborhood dependencies, 
we introduce some virtual states to avoid further 
segmenting the atomic extracted object elements into 
smaller ones. We denote the states associated with object 
elements as real states, and virtual states are mirrors of 

  

 

 

 

 

 

 

Figure 4. The two-dimensionally indexed object block 

 

 

 

 

 

 

 

        Figure 5(a). One-one                     Figure 5(b). Association                          
association                                    with virtual states 

the real states. The virtual states and the corresponding 
real states must have the same values when a transition 
takes place. We will use  *

,yi j
 to denote the virtual state of 

the real state ,yi j . 

For each element, we define four neighbors (left, top, 
right and bottom) as the neighbors of the state with which 
it is associated. We denote the four neighbors of element 

,x i j  by a quad-tuple
, , , ,( , , , )i j i j i j i jl t r b , where

,i jl ,
,i jt , ,i jr  

and ,i jb are the coordinates of the left, top, right and 
bottom neighbors respectively or null  if the correspond-
ing neighbors don’t exist. The neighbors are determined 
as follows: if ,x i j has only one left, top, right, or bottom 
neighbor, the corresponding neighbor is that one; If ,x i j  
has more than one left or right neighbors, the left or right 
neighbor is the highest one; If ,x i j has more than one top 
or bottom neighbors, the top or bottom neighbor is the 
most left one. Thus, the neighbors of each element in 
Figure 4 are: 

 

 

 

 

 

 

The association result with virtual states is shown in 
Figure 5(b). Since the null states are ignored during 
inference, a diagonal state sequence is composed of the 
real and virtual states on that diagonal. Thus, the diagonal 
state sequences in Figure 5(b) are: 

 

 

 

 

 

 

We define an edge as a virtual edge if the edge’s one end 
is associated with a virtual state and the other end is 
associated with the same real state, or the edge’s two ends 
are both associated with the same virtual state. We define 
the other edges as real edges if the edges are not 
associated with null states. In Figure 5(b), real edges are 
solid and virtual edges are dotted. The virtual edges are 
not taken into account for the probability distribution, but 
they constrain the two states associated with them to have 
the same state value when a transition takes place. Thus, 
equation (1) is reformulated as: 

( )
' '

' '

' ' '
,,

'
'1

, ,,
( ), ( ),

,                               (( , ),( , )) ( )   . . y y
, | x ( ,y ,y ,x) ( ,y ,x),otherwise

r r

v i ji j

d d d
k k i j k k i ji j

e E d k v I d k

i j i j E d st
T T

f e g vλ µ−

∈ ∈

�−∞ ∃ ∈ ≠
�Λ =	 +
�


� �

 

 

( )( )
( ) ( )( )

( ) ( )( )
( ) ( )( )
( ) ( ) ( )( )
( ) ( )( )

0,0

1,0

1,1
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2,2

3,2

x  :  , , , 1,0

x  :  , 0,0 , 1,1 ,

x  :  1,0 , , 1, 2 ,
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null null null

null null
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*
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T
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where ( )vE d  and ( )rE d are the sets of virtual edges and 
real edges between diagonals 1d − and d  respectively; 

( )rI d  is the set of coordinates of the real states on 
diagonal d and ' '(( , ),( , ))e i j i j= , ( , )v i j=  . 

5.  Experimental Studies 

In this section, we first conduct some statistical work to 
demonstrate that strong sequence characteristics exist for 
Web objects of the same type across different Web sites. 
Then we compare our model with linear-chain CRFs in 
the domain of product information extraction. We also 
present some empirical studies to compare Bunescu et al. 
(2004)’s work and our approach. 

5.1  Statistical Results 

To demonstrate that strong sequence characteristics exist 
for Web objects of the same type across different Web 
sites, we conduct our statistical study on two types of 
Web objects, products and researchers’ homepages. We 
randomly collect 100 product pages (964 product blocks) 
and 120 homepages from different Web sites. For product 
objects, the attributes “name”, “image”, “price” and “des-
cription” are surveyed and for researchers’ homepages, 
the attributes “name”, “telephone”, “email” and “address” 
are considered. We decide the sequence order of the 
elements in a web page in a top-down and left-right 
manner based on their position information. Basically, the 
element in the top level will be ahead of all the elements 
below it and for the elements at the same level, the left 
elements will be ahead of their right elements. 

Table 1. Statistical results for objects from both product pages 
and homepages. We have used “DESC” instead of “DESC-
RIPTION” and “TEL” instead of “TELEPHONE” for space. 

  PRODUCT BEFORE HOMEPAGE BEFORE 

(NAME, DESC) 1.000 (NAME, TEL) 1.000 
(NAME, PRICE) 0.987 (NAME, EMAIL) 1.000 
(IMAGE, NAME) 0.941 (NAME, ADDRESS) 1.000 
(IMAGE, PRICE) 0.964 (ADDRESS, EMAIL) 0.847 
(IMAGE, DESC) 0.977 (ADDRESS, TEL) 0.906 

 

The statistical results show that strong sequence charact-
eristics exist among most attribute pairs in both types of 
objects. For example, a product’s name is always ahead of 
its description in all the pages. 

5.2  Performance Evaluation 

We carry out our experiments in the domain of product 
object information extraction because of its plentiful 
spatial information. In the experiments, four attributes 
(“name”, “image”, “price”, and “description”) are 
evaluated. 

5.2.1  DATASETS 
We setup our datasets with 572 randomly crawled product 
Web pages, and use the Web page segmentation tech-
nology (Cai et al., 2004) to collect all the blocks contain-
ing product information. The block elements are detected 
using this technology at a finer granularity. An appropri-
ate segmentation granularity is important when segment-
ing the elements, because either over-segmentation or 
less-segmentation will affect the extraction accuracy. In 
our experiments, we prefer over-segmentation, that is, we 
always prefer smaller elements when there is segmentat-
ion uncertainty. 

We totally collect 2500 product blocks from the Web pa-
ges and all the blocks are manually labeled. Actually, 
there are two types of these blocks. In the first type, the 
elements in a block do not have two-dimensional 
neighborhood dependencies. So, for this type of data, our 
model actually performs like linear-chain CRFs. This data 
set is denoted by ODS. In the second type, the elements  
in a block do have two-dimensional dependencies. This 
type of dataset is denoted by TDS. 400 blocks from TDS 
and 100 blocks from ODS are randomly selected as 
training samples. The remaining datasets, each containing 
1000 blocks, are our testing sets. 

5.2.2  MODEL CONSTRUCTION AND TRAINING 
To test our model’s effectiveness of incorporating two-
dimensional neighborhood interactions for Web IE, we 
choose linear-chain CRFs as the baseline models for their 
outstanding performance over other sequential models. 
Both the linear-chain CRFs and 2D CRFs are constructed 
with the same set of feature functions. In our experiments, 
we use an html-parser to accurately get all the used 
features, such as contents, font size, link-URL, image’s 
source URL, etc. The two most important visual features 
in our approach are elements’ positions and sizes which 
are used to determine the neighborhood dependencies. We 
approximate an element’s size by a quadrangle’s area. 
The quadrangle’s height and width can be accurately got 
with the same parser. 

Both models are trained on the same training data set 
using L-BFGS (Liu et al., 1989) algorithm. For the linear-
chain CRF model, the gradients are exactly computed, 
and for our 2D CRF model, the gradients are approximat-
ely computed using the suboptimal method (Li et al., 
2000) with the path number N set at 20. We use the con-
vergence criterion, 

 

 

where, the relative tolerance is set 710ε −= as Malouf 
(2002). With 500 training samples and the same initial 
parameters 0.1, the linear-chain CRF model converges at 
12 iterations, and the 2D CRF model at 13 iterations. 

5.2.3  EXPERIMENTAL RESULTS AND ANALYSIS 
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We compare our model with the linear-chain CRF model 
on the testing sets ODS and TDS. The performance on 
each attribute is evaluated by precision, the percentage of 
returned elements that are correct; recall, the percentage 
of correct elements that are returned; and their harmonic 
mean F1. We also define two comprehensive evaluation 
criteria: (1) block instance accuracy (BLK_IA) as the 
percentage of blocks of which the key attributes (name, 
image, and price) are all correctly labeled, (2) average F1 
(AVG_F1) as the average of F1 values of different 
attributes. 

Table 2. Evaluation results on the datasets TDS and ODS. We 
have used “DESC” in stead of “DESCRIPTION”. 2D stands for 
2D CRF model and LINEAR stands for linear-chain CRFs. 

 TDS 

2D       LINEAR 

ODS 

2D         LINEAR 

NAME 0.911 0.790 0.794 0.762 
IMAGE 0.963 0.917 0.993 0.979 
PRICE 0.969 0.932 0.977 0.952 

PRECISION 

DESC 0.849 0.828 0.772 0.813 
NAME 0.883 0.762 0.767 0.734 
IMAGE 0.963 0.917 0.993 0.979 
PRICE 0.919 0.895 0.942 0.945 

RECALL 

DESC 0.803 0.669 0.792 0.816 
NAME 0.897 0.776 0.781 0.745 
IMAGE 0.963 0.917 0.993 0.979 
PRICE 0.944 0.913 0.959 0.949 

F1 

DESC 0.824 0.740 0.782 0.814 
AVG_F1  0.907 0.837 0.879 0.872 
BLK_IA  0.756 0.600 0.782 0.755 

 

The experimental results (table 2) show that for the 
dataset ODS, there is no significant difference between 
the linear-chain CRF model and our 2D CRF model 
because of data’s sequential properties. But for dataset 
TDS, the performances on different attributes using our 
2D CRF model are significantly improved. The precision 
and recall of the attribute “name” are both improved by 
12%. Although the precision of the attribute “description” 
is improved only by 2.1%, the recall is improved by 
13.4%. For attributes “image” and “price”, a little smaller 
improvement is achieved, because these two attributes 
have notable state-information. For example, prices must 
contain formatted numbers, and images are all with empty 
texts and nonempty image source URLs. Thus, only using 
this information can give good results, and the 
neighborhood dependencies, which are represented by the 
transition feature functions in the models, don’t contribute 
too much. From the average F1, we can also see the 
contribution of the neighborhood dependencies to 
improve the extraction accuracy. For one dimensional 
dataset ODS, the improvement of AVG_F1 is neglectable; 

but for TDS, the improvement is 7.7%. The block 
instance accuracy says the same thing: the improvement 
of using 2D CRFs on the dataset TDS is 15.6%, but the 
improvement on the dataset ODS is just 2.7%. Thus, the 
2D CRF model significantly outperforms linear-chain 
CRF models for the two-dimensional Web information 
extraction. 

5.2.4  COMPARED WITH VOTED PERCEPTRON ALGORITHM 
As we mentioned before, by marginalizing variables 
progressively along the diagonals, we can use a more 
efficient gradient-based method L-BFGS to train our 
model, while Bunescu et al. used the Voted Perceptron 
(Collins, 2002b) algorithm to train their model because 
the computation of the gradient vectors is prohibitively 
expensive in their approach. 

Figure 6. Evaluation results of Voted Perceptron algorithm 

To show the effectiveness of our approach against theirs, 
we use the Voted Perceptron (Bunescu et al., 2004) 
algorithm to train our two-dimensional CRF model. The 
performance is evaluated on the testing set TDS, and the 
results are shown in Figure 6. We set the learning rate at 
0.01 which was used by Bunescu et al. (2004). A series of 
epoch numbers are chosen as in Figure 6. From the results, 
we can see that when the epoch number is set at 10, the 
Avg_F1 (average F1) and Blk_IA (block instance 
accuracy) both achieve their highs, with Avg_F1 0.8826 
and Blk_IA 0.754. Since there is no systematic way of 
selecting the best epoch number, it’s possible that their 
approach performs much worse than the best performance 
which is still inferior to our 2D CRF model with L-BFGS 
training its parameters. Moreover, Collins (2002a) has 
pointed out that the Voted Perceptron algorithm’s 
performance guarantees depend on the notion of 
“separability” of training samples. If the training samples 
are not separable, the algorithm will not converge. In our 
experiments, the Voted Perceptron algorithm doesn’t 
converge within 3500 iterations, but the L-BFGS algorit-
hm converges rapidly (within 13 iterations).  

6.  Conclusions 

In this paper, we propose a two-dimensional Conditional 
Random Field model. This model provides a novel way of 
incorporating two-dimensional neighborhood depend-
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encies to improve the performance of Web information 
extraction. By marginalizing variables progressively 
along the diagonals, efficient parameter learning and 
labeling can be performed. When the proposed model is 
applied to product information extraction, significant 
improvements are achieved compared with linear-chain 
CRF models. 
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