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Abstract
Despite of the large number of algorithms devel-
oped for clustering, the study on comparing clus-
tering results is limited. In this paper, we pro-
pose a measure for comparing clustering results
to tackle two issues insufficiently addressed or
even overlooked by existing methods: (a) taking
into account the distance between cluster repre-
sentatives when assessing the similarity of clus-
tering results; (b) constructing a unified frame-
work for defining a distance based on either hard
or soft clustering and ensuring the triangle in-
equality under the definition. Our measure is
derived from a complete and globally optimal
matching between clusters in two clustering re-
sults. It is shown that the distance is an instance
of theMallows distance—ametric between prob-
ability distributions in statistics. As a result,
the defined distance inherits desirable properties
from the Mallows distance. Experiments show
that our clustering distance measure successfully
handles cases difficult for other measures.

1. Introduction

As a primary knowledge discovery technique used in var-
ious fields, clustering has been extensively studied for
decades. With the existence of many clustering algorithms,
it is often desirable to assess the extent of “agreement” be-
tween two clustering results (Meila, 2002). For brevity,
hereafter, we refer to a clustering result as clustering and a
set of objects grouped together as a cluster.

There have been some, if not many, efforts on compar-
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ing clusterings. Existing methods form three categories
(Meila, 2002): (1) pair counting (Ben-Hur, 2002; Fowlkes,
1983; Hubert, 1985; Rand, 1971), (2) set matching (Meila,
2002; Dongen, 2000) and (3) variation of information (V I)
(Meila, 2002). The pair counting method evaluates the
similarity between two clustering algorithms by examin-
ing how likely they are to group a pair of objects to-
gether, or, separate them in different clusters. All pair
counting methods are restricted to handling hard cluster-
ing. Other drawbacks of pair counting methods are also
discussed in (Fowlkes, 1983). The set matching method
seeks for a match between clusters, that is, the sets of ob-
jects grouped together in two clusterings respectively. Ex-
isting set matching approaches performmatching in a step-
wise manner without a global optimization objective. In
the case when two clusterings possess different numbers
of clusters, some clusters may even be ignored and play
no role in the comparison. The VI measure computes the
amount of information that is lost or gained in changing
from one clustering to the other. It also addresses the prob-
lem of soft clustering. However, V I no longer maintains
the triangle inequality when handling soft clustering.

All the aforementionedmethods compare clusterings based
only on the memberships of objects to clusters. An im-
portant aspect neglected in the comparison is the variation
of similarity between pairs of cluster representatives. In
particular, for vector data, a cluster representative can be
the mean of that cluster. Consider the following example.
Given three clusters A,B and C, suppose A and B are rel-
atively similar in the sense of their representatives while C
is quite different from both, as shown in Figure 1(a). Sup-
pose in another two clustering results, some data in A are
mislabeled as cluster B and C respectively, as shown in
Figure 1(b) and 1(c). Existing methods yield the same dis-
tance between the original clustering and each of the other
two clusterings. We will propose a measure to take into
account the similarity between cluster representatives. Un-



(a) Dataset (b) Clustering (I) (c) Clustering (II)

Figure 1.Clusters with different inter-distances

der this new measure, the distance between the clusterings
formed by assigning objects inA to B will be smaller than
that by assigning the objects toC instead.

In this paper, we propose new measures for the distance
between clusterings under two scenarios: (1) comparing
clusterings based on the memberships of objects to clusters
alone; (2) based on memberships as well as the similarity
between cluster representatives. For brevity, we refer to
the first case as categorical clustering comparison and the
second as comparison with similarity differentiation. Our
work advances existing clustering comparison techniques
in several aspects: (1) The similarity between cluster repre-
sentatives is taken into consideration when comparing clus-
terings; (2) For categorical clustering comparison, all the
clusters are guaranteed to affect the measure as a result of
using a globally optimal matching approach. (3) The clus-
tering distance developed for the categorical comparison
treats hard and soft clustering in a seamlessly unified man-
ner and the distance satisfies intrinsic properties of a metric,
e.g., the triangle inequality. For most existing clustering
distance measurements, however, the triangle inequality is
violated.

The rest of the paper is organized as follows. Section 2 and
Section 3 provide background, notations and introduction
to the Mallows distance. Section 4 describes our measures
in two scenarios. Experiments are presented in Section 5.
We conclude in Section 6

2. Preliminaries and Motivations

Clusteringis the process of dividing a data setD into clus-
ters so that objects within each cluster are highly similar to
each other and those in different clusters differ as much as
possible.

Forhard clustering, each object is associated with only one
cluster. Forsoft clustering, an object is associated with
every cluster to a certain extent indicated by a weight. The
weight assigned to clusterk for objecti is denoted bypi,k.

Normally,0 ≤ pi,k ≤ 1 and
∑K

k=1 pi,k = 1. In the light of
statistical modeling based clustering,pi,k is the posterior
probability for objecti belonging to clusterk. The cluster-
ing result is hence summarized by a membership probabil-
ity matrix: PN×K = (pi,j) , 1 ≤ i ≤ N, 1 ≤ j ≤ K.

Hard clustering can be considered as a special case of
PN×K with each row containing exactly one element equal
to 1 and the rest0. If pi,k = 1, objecti is assigned exclu-
sively to clusterk.

Let the two clustering results be denoted byCls1 and
Cls2, whose membership matrices arePN×K andQN×J .
The distance betweenCls1 and Cls2 in the categori-
cal comparison case is a function of the two matrices:
D(Cls1, Cls2) = Γ(PN×K , QN×J). On the other hand,
for the comparison that differentiates clusters based on
their labels as well as representatives, the distance between
Cls1 and Cls2 can be denoted by:D(Cls1, Cls2) =
∆(PN×K , QN×J , RP , RQ), whereRP andRQ are matri-
ces containing cluster representative vectors generated by
Cls1 andCls2.

(a) Low threshold (b) High threshold

Figure 2.Clustering with high, low thresholds

Our motivation for this paper is based on the the follow-
ing observations: First, existing comparing methods lack
similarity consideration for clusters within each clustering.
Second, existing set matching methods all greedily search
for a ”best match” for each cluster and then add up the con-
tributions of the matches found. By doing so, these meth-
ods ignore the ”unmatched” part of each cluster. Such a
case is illustrated in (Meila, 2002).
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Figure 2(a) and Figure 2(b) illustrate an example when one
algorithm performs on the same dataset with different pa-
rameter settings. Consider a density-based clustering algo-
rithm (e.g. DBSCAN (Ester, 1996)): it uses a small thresh-
old and generates one big cluster as in Figure 2(a); but in
Figure 2(b), under a higher density threshold, the algorithm
only identifies the inner part of this cluster, which is of high
density. The outskirt data portion is divided into several
small clusters distributed evenly. Intuitively, the two clus-
tering results should be somehow “close” considering that
these two results are for the same dataset obtained by the
same clustering algorithm, only with different parameters.
Now consider how an existing set matching method (Ro-
bardet, 2000) works for this example: it searches for the
”best match” between the only cluster in Figure 2(a) and
a cluster in Figure 2(b). It finds the biggest cluster in Fig-
ure 2(b) as the ”best match” and stops. However, all the
other small clusters in Figure 2(b) are not even considered.
A possibly better way is to match the big cluster in Fig-
ure 2(a) with all the clusters in Figure 2(b), distributing
weights on the match with both big and small clusters.A
key issue is how to determine the weights assigned to the
matching between each pair of clusters in a certain opti-
mal sense.

Another problem concerning most existing clustering com-
paring methods is that they were primarily designed to han-
dle comparison of hard clusterings. When comparing clus-
ters only based on hard labels, we may encounter situations
where the comparison conflicts intuition. Here we give one
example to show the importance of comparing soft cluster-
ing:

(A)

(B)

Border

=0.49

=0.51

X

Figure 3.Data object near cluster border

As shown in Figure 3, consider a data objectX on the
border of two clusters(A) and (B). By soft clustering
Cls1, we get the probability of0.51 that X belongs to
(A) and 0.49 that X belongs to (B). Suppose there is an-
other clusteringCls2 that generate the opposite probabil-
ity: p(X ∈ (A)) = 0.49 andp(X ∈ (B)) = 0.51.

Using hard clustering comparison, we merely compare the
labels after firstly labelX with (A) in Cls1 while (B) for
X in Cls2. In a case when there are many objects on the
border,Cls1 andCls2 tend to be quite different under hard
comparison though in fact they are not. As a result the orig-
inal meanings of the clustering results may be misinterpret
if only hard clustering comparison is available.Hence, it

is compelling for us to design a measure that is capable of
handling soft clustering.

3. Monge-Kantorovich mass transfer and
Mallows distance

The distance measure we discuss in this paper has its roots
in optimal mass transport problems and Mallows distance
for measuring the difference between two multivariable
probability distributions (Rachev, 1984; Mallows, 1972).
In this section, we provide some background materials on
those topics.

The original mass transport problem proposed by Monge in
1700s asks how to move a pile of dirt to a fill with the least
amount of work. In the 1940s, Kantorovich gave a relaxed
formulation of the problem and proposed a dual variational
principle for solving the problem. Consider two probability
distributionsP andQ onRn. Define

M ={probability distributionµ(x, y) on Rn ×Rn} |∫

y

dµ(x, y) = P (x),
∫

x

dµ(x, y) = Q(y)}

Let C(x, y) indicates the work to move a unit amount of
mass fromx to y. Then, we seek to minimize the cost
functional,

J(µ) =
∫

C(x, y)dµ(x, y)

among allµ ∈ M .

Unaware of the work in mass transport, in 1972 (Mal-
lows, 1972) Mallows proposed to measure the difference
between two probability distributionsP andQ onRn as

Mallowp(P, Q) = min
µ

(Eµ‖x− y‖p
p)

1/p

subject to:
∫

y

dµ(x, y) = P (x),
∫

x

dµ(x, y) = Q(y)

where the‖ · ‖p denotes theLp norm, and1 ≤ p <
+∞. Clearly, Mallows distance is a special case of Kan-
torovich’s mass transport problem withC(x, y) = ‖x −
y‖p

p.

For two discrete distributionsP = {(x1, p1), ..., (xn, pn)}
and Q = {(y1, q1), ..., (ym, qm)} with

∑
pi = 1 and∑

qi = 1, minimizing the cost functional reduces to

min
µ

n∑

i=1

m∑

j=1

µ(i, j)C(xi, yj),
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subject to

µ(i, j) ≥ 0 and
∑m

j=1 µ(i, j) = pi;

∑n
i=1 µ(i, j) = qj and 1 ≤ i ≤ n; 1 ≤ j ≤ m.

The dual of the above linear programming problem is to
find u = [u1, . . . , un] andv = [v1, . . . , vm] to

max
n∑

i=1

piui +
m∑

i=1

qivi

subject toui+vj ≤ C(xi, yj), i = 1, . . . , n, j = 1, . . . , m.
By solving the dual problem, we may achieve better com-
putational efficiency.

We mention that another recent topic in which the mass
transport problem and Mallows distance play a role
is the measuring of texture and color similarities for
image retrieval (Rubner, 1998), under the name of
Earth Mover′s Distance(EMD). It is pointed out
in (Levina, 2001) that theEMD is in fact a special case
of the mass transport problem when both sides have equal
amount of mass.

4. Clustering Comparison

By matching clusters in two clusterings in a globally opti-
mal manner with all the clusters involved in the compari-
son, we develop clustering distance measures for the two
cases: categorical comparison and comparison with sim-
ilarity differentiation. For the categorical clustering dis-
tance, we address soft clustering directly. Hard clustering
is a special case of soft clustering and requires no special
treatment. It will be shown that the matching based cat-
egorical distance is equivalent to a Mallows distance and
hence inherits its metric properties. The distance devel-
oped for comparison with similarity differentiation will be
referred to as the cluster similarity sensitive (CSS) distance.

4.1. Categorical clustering distance

Given a datasetD = {x1, x2, ...xN}, suppose two clus-
tering resultsCls1 andCls2 are obtained.Cls1 contains
K clusters andCls2 J . For soft clustering, let the prob-
ability matrix generated byCls1 be P = (pi,j), where
pi,j denotes the probability that objectxi belongs to clus-
terCj . Let the corresponding matrix generated byCls2 be
Q = (qi,j). Denote theK clusters inCls1 by C1, ..., CK

and theJ clusters inCls2 by C ′1, ...,C ′J .

A cluster, for instance,Cj is characterized by theN -
dimensional vector(p1,j , p2,j , ..., pN,j)t, denoted byζj .
That is, Cj is determined by the probability of each ob-
ject xi belonging to it. Similarly, denote the vector char-
acterizing clusterC ′j by γj = (q1,j , q2,j , ..., qN,j)t. To

reflect the significance of each cluster inCls1 andCls2

for the purpose of comparing the two, we assign a weight
to each cluster. Let the weights assigned toCj be αj ,∑K

j=1 αj = 1, and those toC ′j beβj ,
∑J

j=1 βj = 1. Ex-
ample values forαj are1/K if all the clusters are weighted
equally, or the percentage of data assigned to clusterCj

with respect to the whole data set. To summarize, a clus-
tering can be represented by a discrete distribution on the
spaceRN . In particular,Cls1 corresponds to the distrib-
ution: P = {(ζ1, α1), ...(ζK , αK)}; and Cls2 to: Q =
{(γ1, β1), ...(γJ , βJ )}. To measure the distance between
Cls1 andCls2, we adopt the Mallows distance for the two
distributionsP andQ. Without difficulty of extension, we
assume thatL1 norm is used in the Mallows distance. The
distance betweenCls1 andCls2 is thus given by

D(Cls1, Cls2) = min
wk,j

K∑

k=1

J∑

j=1

wk,j

N∑

i=1

|pi,k − qi,j | (1)

subject towk,j ≥ 0,
∑K

k=1 wk,j = βj ,
∑J

j=1 wk,j = αk,
for all k, j.

The Mallows distanceD(Cls1, Cls2) can be interpreted as
an optimal cluster matching scheme. The distance between
two clustersCk andC ′j is measured by theL1 distance of

their characterizing vectors:‖ ζk − γj ‖1=
∑N

i=1 |pi,k −
qi,j |. Since it is not known beforehand which pairs of clus-
ters in Cls1 and Cls2 should be compared against each
other, every clusterCk in Cls1 is “soft” matched to each
C ′j , j = 1, ..., J , in Cls2. The extent of matching between
Ck andC ′j is indicated by weightwk,j . By ensuring that∑K

k=1 wk,j = βj for all j, and
∑J

j=1 wk,j = αk for all
k, every cluster in bothCls1 andCls2 will play a role in
determining the overall distance between the clusterings.
In addition, the optimization over the matching weights is
global and yields a unique solution for the distance. Linear
programming is used to compute (1).

A

B

C

D

A’

B’

C’

D’

(a) K = J

A

B

C

A’

B’

C’

D’

(b) K 6= J

Figure 4.Mapping between two clusterings

In the special case whenJ = K andαj = 1/K, βj =
1/K, j = 1, ...,K, by the intrinsic property of linear pro-
gramming, the optimalwk,j satisfy the following: for allj
in wk,j , wk,j = 1/K for one and only onek andwk′,j = 0
for all k′ 6= k. Similarly for all k in wk,j , wk,j = 1/K for
one and only onej andwk,j′ = 0 for all j′ 6= j. From the
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matching perspective, this implies that the optimal match-
ing is given by permuting the clusters in one clustering and
then matching the clusters in the two clusterings one by
one, as shown in 4(a). This is consistent with the intu-
ition that when the pairing between clusters is unknown,
we should seek for a pairing that minimizes the resulting
average pair-wise distance between clusters.

Since the clustering distance defined is a Mallows distance,
it inherits all the properties of the Mallows distance. It is
shown in (Robardet, 2000) that the Mallows distance is a
metric. In particular, it is nonnegative and equals zero if
and only if the two distributions are identical, i.e.P = Q;
it is symmetric; and it satisfies the triangle inequality.

4.2. Cluster similarity sensitive distance

In this section, we develop a clustering distance measure
that takes into account the distances between cluster repre-
sentatives. We motivated the usefulness of such a distance
by an example in section 2. Again we follow the approach
of global cluster matching.

Consider hard clustering withJ = K first. Suppose we
seek a permutation between clusters in the two clusterings
and letCj be matched toC ′ρ(j). An objectxi will contribute
to the difference betweenCls1 andCls2 if it is assigned to
unmatched clusters in the two clusterings. The amount of
contribution depends on the similarity between the repre-
sentatives, also referred to as centroids, of the two clusters.
Let the distance between the centroids ofCk and C ′j be
L(k, j). The object-wise difference resulting fromxi is:

di =
K∑

k=1

K∑

j=1

pi,kqi,jL(k, j)(1− I(ρ(j) = k)) . (2)

As usual,I(·) is the indicator function that equals1 when
the argument is true and zero otherwise. For hard clus-
tering, only one term in the above summation is possibly
nonzero. Supposexi ∈ Ck andxi ∈ C ′j . Then the only
possibly nonzero term ispi,kqi,jL(k, j)(1− I(ρ(j) = k)),
becausepi,k′ × qi,j′ = 0 if k′ 6= k or j′ 6= j. If C ′j
is matched toCk, then this term will also be zero andxi

causes no difference forCls1 and Cls2. We can write
(2) equivalently asdi =

∑K
k=1

∑K
j=1 pi,kqi,jL(k, j)(1 −

Kwk,j), wherewk,j = 0 or 1/K and
∑

k wk,j = 1/K,∑
j wk,j = 1/K. Whenwk,j = 1/K, Ck is matched to

C ′j .

Although we deriveddi by considering hard clustering with
J = K, it is straightforward to extend (2) to soft clustering
and the caseJ 6= K, where soft matching between clus-
ters is needed. As in the previous section, let the weight
assigned to the match betweenCk andC ′j bewk,j . Then,

in general, the object-wise difference is

di =
K∑

k=1

J∑

j=1

pi,kqi,jL(k, j)(1− 2
αk + βj

wk,j) , (3)

where wk,j ≥ 0,
∑K

k=1 wk,j = βj for all j and∑J
j=1 wk,j = αk for all k. The overall distance between

Cls1 andCls2 is then defined as:

D(Cls1, Cls2) = min
wk,j

N∑

i=1

di

=min
wk,j

K∑

k=1

J∑

j=1

(1− 2
αk + βj

wk,j)
N∑

i=1

pi,kqi,jL(k, j) .(5)

In our experiment, for both types of clustering distance, we
used equal weights for all the clusters, i.e.,αk = 1/K for
all k and βj = 1/J for all j. Extension to the general
case causes no essential difference in the computation of
the distances.

Now let us see how the defined measure works. Consider
again the example concerning three clusters A, B and C
illustrated in Figure 1.Clscorrect provides the correct la-
bels. Cls1 mislabels objects inA to B, andCls2 misla-
bels the same objects toC instead. When comparingCls1

andClscorrect, according to Equation (2), the clustering
difference reflected by objecti is L(A,B′) since only the
term involving clustersA and B′ is nonzero. Similarly,
when comparingCls2 andClscorrect, the clustering differ-
ence form objecti is L(A,C ′). As L(A, B′) < L(A,C ′),
the difference resulting from objecti when comparing with
Cls2 is larger than withCls1, which coincides with the
intuition.

5. Experiments

In this section, we present empirical evaluation of several
existing clustering comparing methods as well as the new
measures we proposed. Four real world datasets are em-
ployed. They are the Sequoia benchmark 2000 and the
sonar, liver and diabetes datasets from UCI Machine
Learning Repository. Also we generated two synthetic
datasets based on different purposes of comparisons: (1)
datasetDS1: we design this dataset according to our mo-
tivation for the case in Figure 1(a). Three clusters named
A,B andC are produced with different inter-cluster dis-
tances, as illustrated in Figure 5(a). Three clusters are of
the same size, each containing 400 2-d data objects. The
distance between centroids ofA and C is two times the
distance betweenA andB; (2) datasetDS2: 4 small clus-
ters center around a big cluster in a satellite formation. The
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dataset contains 2000 2-d points in all, 1000 of which are
in the center cluster and each small cluster has around 250
points.

A 
C 

B 

(a) DS1 (b) DS2

Figure 5.Experimental datasets

We experiment with four popular clustering algorithms:
K-Means, DBSCAN (Ester, 1996), EM (Dempster, 1977)
and CEM. The first two are hard clustering and the rest
soft. We design the comparison of these algorithms by
implementing the state-of-the-art comparing measureV I
in (Meila, 2002) as well as the classical methodRand
proposed in (Rand, 1971). We first evaluate our categor-
ical clustering (CC) measure for soft clustering. Then we
present experimental results of our second measure, the
clustering similarity sensitive (CSS) measure. In Section
5.3, we examine the computational complexity of our met-
ric in comparison with existing methods.

5.1. Measure for soft clustering

In this section, we firstly compare soft clustering compar-
ison methods based on results produced by EM and CEM
on the synthetic and real world datasets we introduced. We
present the comparisons between our firstCC measure and
theV I method in (Meila, 2002) becauseV I is the only ex-
isting measure for soft clustering as far as we know.

As can be derived from Eq. 1, ourCC measure is lower
bounded by zero and upper bounded by the number of data
points. TheV I distance is lower bounded by zero and up-
per bounded bylog(K) + log(J), whereK andJ are the
number of clusters in each clustering. In Table 1, we avoid
confusion on scales by normalizing the comparison results.

V I CC V I CC
DS1 0.19 0.0068 diabetes 0.53 0.049
DS2 0.42 0.39 sonar 0.33 0.02
Seq. 0.17 0.07 liver 0.40 0.002

Table 1: Clustering comparing byV I andCC

First let us consider the synthetic datasetsDS2 and real
datasetSonar. The corresponding clustering results are
illustrated in Figure 6 (results onSonar after PCA). Ob-

Seq. diabetes liver sonar
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Figure 7.CC/ CSS v.s.V I, Rand on real world datasets

viously, EM and CEM perform more differently onDS2

than onSonar. As shown in Table 1, ourCC measure
well matches such intuition on both datasets. By contrast,
V I does not clarify the differences between EM and CEM
for the two datasets by giving the close measures, 0.42
and 0.33. V I commits the large distance between Fig-
ure 6(c) and Figure 6(d) because there are many points
on the boundary of two classes that are misclassified.CC
measure, however, smoothes such differences in Eq. 1.

Comparisons between EM and CEM are also presented in
Table 1 on three other real world datasets and one other
synthetic dataset. Some real world datasets are all high
dimensional datasets and we perform dimension reduction
(PCA) yielding better separated clusters. By doing this we
expect that EM and CEM will generate very similar cluster-
ing results for all of them. In Figure 7(a), we plot both nor-
malized comparison results byV I and ourCC measure.
We can seeCC coincides with our expectations whileV I
produces instable comparison results.

In addition to these convincing examples, from theoretical
perspective, ourCC measure is more appealing as it is pos-
itive, symmetric and transitive, which is inherited from the
properties ofMallows distance.

5.2. Measure with cluster similarity differentiation

In this section, we produce several cases of cluster la-
belling and implement two hard clustering algorithms: DB-
SCAN (Ester, 1996) and K-Means. The same two synthetic
datasets and four real world datasets are used.

For DS1, we label1/3 of the points in cluster A to cluster
B, producing labellingLab and1/3 of the points in cluster
A to C, producingLac. Denote the original labels byOri.

In the second column of Table 2, different labelling onDS1

are compared with the original labels usingV I, Rand and
our secondCSS measure. From the normalized results of
V I andRand, we can see that bothV I andRand produce
the same distance (similarity) forLac/Ori andLac/Ori
cases, which intuitively should be different. Such a phe-
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(a) EMDS2 (b) CEMDS2 (c) EM Sonar (d) CEMSonar

Figure 6.EM v.s. CEM onDS1 andDS2

nomenon, as discussed earlier in this paper, results from the
lack of cluster similarity differentiation in both measures.
By contrast, ourCSS measurement gives larger distance
to Lac because cluster C is farther than cluster B, which is
a more plausible comparison1.

Lab/Ori. Lac/Ori. KM/Ori. DB/Ori
V I 0.202 0.202 0.186 0.263

Rand 0.881 0.881 0.931 0.761
CSS/102 0.287 0.658 0.0841 0.564

Table 2: Hard clustering comparing onDS1

We also run ourCSS measure to compare clusterings gen-
erated by DBSCAN and K-Means. As illustrated in the
rightmost column of Table 2, three clustering comparison
methods all conclude the K-Means performs better than
DBSCAN onDS1.

Uni-Label/Ori. DB/Ori. KM/Ori.
V I 0.58 0.59 0.48

Rand 0.57 0.53 0.39
CSS/102 0.06 0.058 1.19

Table 3: Hard clustering comparing onDS2

For DS2, we compare the original labelling with three la-
bellings produced manually and by clustering algorithms.

Firstly, we compare Ori. with that all points are labelled
as in the same cluster. As explained earlier such two la-
belling should intuitively be similar given they may be pro-
duced by different settings of clustering parameters. Ac-
cordingly,CSS yields relatively low distance for this case
while bothV I andRand differentiate them unfairly. Sec-
ondly, we test with real clustering algorithm DBSCAN by
setting low threshold, as illustrated in Figure 2. Similarly,

1Note that the inter-cluster distances for various clusterings
are unpredictable. Therefore it becomes an open problem to nor-
malize ourCSS measure. Nevertheless, in order to better com-
pare the quantities underCSS measure, we divide allCSS re-
sults by102.

CSS outperformsV I andRand. Finally, we compare Ori.
with labels produced by K-Means. In the K-Means results
(KM), many points from the central are labelled to the out-
skirt, shrinking the size of primary cluster in the center.
This sheerly conflicts with the tendency of data distribu-
tion, where outskirt points are generated from the center.
With this comparison, we expect a large distance between
KM and Ori. However,V I returns relatively small dis-
tance.CSS andRand detect the inappropriateness of KM
onDS2 by giving the large distance or small similarity.

For real world datasets, which are mostly high-
dimensional, we plot the normalizedV I, Rand results and
scaledCSS wrt. each dataset in Figure 7(b). We can see
that CSS differs from V I andRand in most real world
cases by considering cluster similarities.

5.3. Computational complexity

In this section, we will examine the computational com-
plexity of the two measures we propose.

5.3.1. ANALYTIC COMPLEXITY

Computing Mallows distance is a special case of the dis-
crete mass transport problem. The complexity for the trans-
port problem is the same as for the minimum cost flow
problem. As for the minimum cost flow problem, the best
complexity is due to (Orlin, 1988): Given two clusterings
onN data points, each producingJ andK clusters respec-
tively, the complexity for setting up the optimization prob-
lem is linear inN : O(N). The solution to a transporta-
tion problem corresponds to a bipartite graph and the worst
case complexity isO((J ∗K)2log(J + K) + J ∗K(J +
K)(log(J + K))2). On average, the algorithm runs much
faster, and there are also many faster heuristic methods for
finding an approximate solution for large problems.

5.3.2. EMPIRICAL EVALUATION

The computational complexity of bothCC andCSS are
evaluated empirically in terms of both the scale of datasets
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and the number of clusters. We compare both metrics with
V I andRand.

For soft clustering comparison, we first generate a set of
two soft labelling matrices for datasets sized from 200 to
16000. In Figure 8(a), we can see bothV I andCC scale
very well to the number of data points. The computational
complexity to number of clusters are experimented in Fig-
ure 8(b). The setting of datasets is sized 5000 varying from
from 2 to 25 clusters. Comparatively,CC is slightly more
sensitive to the increase of cluster number.
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Figure 8.Runtime for soft clustering comparison

For hard clustering comparison, we use two sets of cluster-
ing results, one of various numbers of data points from 200
to 6000, the other containing 2 to 20 clusters. Obviously,
it is illustrated in Figure 9(a) that the computation ofCSS
largely advancesRand in terms of dataset size. The run-
time of Rand is relatively stable to the increase of cluster
number. However,CSS still outperformsRand with large
number of clusters in Figure 9(b).
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Figure 9.Runtime for hard clustering comparison

6. Conclusions

This paper addresses the need for clustering comparison
with similarity differentiation. By introducing the ideas of
data distribution assessment from statistics into the clus-
tering comparison, we proposed two metrics to compare
clustering results, which are positive, symmetric and tran-
sitive. Our metrics consider cluster similarity differences
and is also able to handle soft clustering comparison. The
implementation of our comparison measures relies on lin-
ear programming.
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