
Linear Asymmetric Classifier for Cascade Detectors

Jianxin Wu wujx@cc.gatech.edu
Matthew D. Mullin mdmullin@cc.gatech.edu
James M. Rehg rehg@cc.gatech.edu

GVU Center, Georgia Institute of Technology, GA 30332 USA

Abstract

The detection of faces in images is fundamen-
tally a rare event detection problem. Cascade
classifiers provide an efficient computational
solution, by leveraging the asymmetry in the
distribution of faces vs. non-faces. Training
a cascade classifier in turn requires a solution
for the following subproblems: Design a clas-
sifier for each node in the cascade with very
high detection rate but only moderate false
positive rate. While there are a few strategies
in the literature for indirectly addressing this
asymmetric node learning goal, none of them
are based on a satisfactory theoretical frame-
work. We present a mathematical charac-
terization of the node-learning problem and
describe an effective closed form approxima-
tion to the optimal solution, which we call
the Linear Asymmetric Classifier (LAC). We
first use AdaBoost or AsymBoost to select
features, and use LAC to learn a linear dis-
criminant function to achieve the node learn-
ing goal. Experimental results on face detec-
tion show that LAC can improve the detec-
tion performance in comparison to standard
methods. We also show that Fisher Discrimi-
nant Analysis on the features selected by Ad-
aBoost yields better performance than Ad-
aBoost itself.

1. Introduction

When classification methods are applied to computer
vision problems, asymmetries are usually inherent in
the classification task. As a canonical example of suc-
cessful applications of visual classification methods,
object detection/recognition contains many asymme-

Appearing in Proceedings of the 22nd International Confer-
ence on Machine Learning, Bonn, Germany, 2005. Copy-
right 2005 by the author(s)/owner(s).

H

1
d , f1

1

H2
Non-face

Non-face

2
d , f2

.

Hr

r
d , fr

Non-face Face

Figure 1. Illustration of a cascade with r nodes.

tries. For example, in face detection, the positive
training set contains only faces, but the negative train-
ing set should include images of millions of different
scenes that may appear in the background. In order
to distinguish faces from all other objects, it is neces-
sary to collect millions of negative training samples but
only thousands of face images. This is due to the rare
event nature of the problem. When designing the clas-
sifier, the learning goals in the two classes are asym-
metric, too. We may allow 5% missed faces. However,
in order to dodge the flood of negative samples, the
false positive rate must be very low, e.g. 10−7. These
asymmetries are difficult because conventional classifi-
cation techniques (such as AdaBoost (Schapire et al.,
1998)) are designed for the symmetric case.

One approach to such asymmetric problems is to use a
stage-wise rejection procedure (Baker & Nayar, 1996;
Elad et al., 2002; Fleuret & Geman, 2001; Heisele
et al., 2001; Romdhani et al., 2001; Viola & Jones,
2004). Viola and Jones (2004) built a cascade classi-
fier that detected faces at video rate. Instead of de-
signing a complex monolithic classifier, a cascade of
simpler classifiers was used. In the cascade architec-
ture illustrated in figure 1, an input patch is classified
as face only if it passes the tests in all the nodes. The
early nodes quickly reject most of the input patches
and the testing speed is greatly improved. In the cas-
cade framework, each node only has to deal with part
of the negative training data, which addresses the in-
herent asymmetry in the two sample populations.

Linear Asymmetric Classifier for Cascade Detectors

Assuming that different nodes make independent er-
rors, the detection and false positive rates of a cascade
are

D =
∏r

i=1
di, F =

∏r

i=1
fi (1)

where di and fi are the detection and false positive
rates of the i-th node, respectively. Eq. (1) suggests
the following node learning goal: For every node,
design a classifier H with very high (e.g. 99.9%) de-
tection rate and only moderate (e.g. 50%) false posi-
tive rate. Within this learning goal, we no longer need
to use an imbalanced data set.

In (Viola & Jones, 2004), the node classifier H is an
AdaBoost classifier. However, AdaBoost minimizes
the symmetric error rate, which is not guaranteed to
achieve the node learning goal. Viola and Jones (2002)
proposed an intuitive remedy for this problem. Their
AsymBoost method assigns larger costs to false neg-
atives than false positives. Although AsymBoost has
better performance than AdaBoost, it addresses the
node learning goal indirectly and is still not guaran-
teed to optimize it. The node learning goal was also
implicitly addressed in many other stage-wise rejection
methods.

In this paper, we explicitly express the node learning
goal as a constrained optimization problem and solve
it directly. In general there is no closed-form solu-
tion. We show that under some reasonable simplifying
assumptions, we can derive a closed-form approxima-
tion to the optimal solution. We call the resulting
classifier a Linear Asymmetric Classifier (LAC). We
first use AdaBoost or AsymBoost to select features,
and use LAC to learn a linear discriminant function
to achieve the node learning goal. Experimental re-
sults on both synthetic data set and real world object
detection tasks show that LAC can improve the detec-
tion performance. We also demonstrate that applying
Fisher Discriminant Analysis (FDA) to the weak clas-
sifiers selected by AdaBoost can yield better perfor-
mance than the usual AdaBoost ensemble.

The rest of this paper is organized as follows. In sec-
tion 2 we define the node learning goal mathemati-
cally and derive the LAC. Section 3 describes using
AdaBoost as a feature selection method so that LAC
can be applied to linearly non-separable problems. We
discuss the relationship between the proposed LAC
method to other methods in section 4. Experimental
results on synthetic data set and face detection tasks
are presented in section 5. Section 6 concludes the
paper.

2. The Linear Asymmetric Classifier

We first formalize the node learning goal. Let x ∼
(x̄,Σx) denote that x is drawn from a distribution with
mean x̄ and covariance matrix Σx. Note that we do not
assume any specific form of the distribution. The only
assumption is that its mean vector and covariance ma-
trix are either known a priori or can be estimated from
samples. We are dealing with binary classification
problems with two classes x ∼ (x̄,Σx) ,y ∼ (ȳ,Σy),
which are fixed but unknown. Samples drawn from x
are labelled as positive and samples from y are labelled
as negative. We consider linear classifiers H = (a, b):

H (z) =
{

+1 if aT z ≥ b
−1 if aT z < b

.

Then the node learning goal is expressed as

max
α,a 6=0,b

α s.t. Pr
x∼(x̄,Σx)

{
aT x ≥ b

}
= α

Pr
y∼(ȳ,Σy)

{
aT y ≤ b

}
= β

. (2)

In general this problem has no closed-form solution. In
this section, we will develop an approximate solution
for it. Empirical results showed that it is effective to
set β = 0.5 for all cascade nodes. Thus, we will give a
closed-form (approximate) solution when β = 0.5.

Note that an AdaBoost classifier is a linear combina-
tion of weak classifiers:

H(x) = sgn(ΣT
t=1 atht(x)− b) = sgn(aT h(x)− b)

in which sgn is the sign function and h(x) is the vec-
tor of weak classifiers’ outputs. Thus H(x) is a linear
classifier in the feature space defined by h(x). How-
ever, there is no guarantee that the (a, b) selected by
AdaBoost will satisfy Eq. (2) for a given choice of β.
We seek a linear discriminant (a, b) which maximizes
the node learning goal in Eq. (2).

Let xa denote the normalized distribution of aT x (x
projected onto the direction of a), i.e.

xa =
aT x− aT x̄√

aT Σxa
, (3)

obviously we have xa ∼ (0, 1). Let Φx,a denotes the
cumulative distribution function (cdf) of xa, i.e.

Φx,a (b) = Pr {xa ≤ b} . (4)

ya and Φy,a are defined similarly as

ya =
aT y − aT ȳ√

aT Σya
, Φy,a (b) = Pr {ya ≤ b} .

Linear Asymmetric Classifier for Cascade Detectors

Using (4), the second constraint in Eq. (2) can be
written as

β = Pr
{
aT y ≤ b

}
= Pr

{
aT y−aT ȳ√

aT Σya
≤ b−aT ȳ√

aT Σya

}
= Φy,a

(
b−aT ȳ√
aT Σya

)
,

thus we have

b = aT ȳ + Φ−1
y,a (β)

√
aT Σya (5)

where Φ−1
y,a is the inverse function of Φy,a. Similarly,

the first constraint in Eq. (2) can be written as

1− α = Φx,a

(
b− aT x̄√
aT Σxa

)

Using Eq. (5) to eliminate b and we obtain

1− α = Φx,a

(
aT (ȳ − x̄) + Φ−1

y,a(β)
√

aT Σya√
aT Σxa

)
.

Thus the constrained optimization problem (2) is
equivalent to

min
a 6=0

Φx,a

(
aT (ȳ − x̄) + Φ−1

y,a(β)
√

aT Σya√
aT Σxa

)
. (6)

In Eq. (6), Φx,a and Φ−1
y,a depend on the distributions

of x and y, in addition to the projection direction a.
Because we have no knowledge of these distributions,
we cannot solve Eq. (6) analytically. We need to make
some approximations to simplify it.

First, let us give a bound for Φ and Φ−1. Let Z ∼
(0, 1), applying the one-tailed version of the Chebyshev
inequality, for z > 0 we get

Φ(z) = Pr {Z ≤ z} = 1− Pr {Z ≥ z}
≥ 1− 1

1+z2 = z2

1+z2 .
(7)

Since Φ−1 is increasing, we have

Φ−1(Φ(z)) = z ≥ Φ−1

(
z2

1 + z2

)
,

which gives us the following bound:

Φ−1(β) ≤ κ (β) , where κ (β) =

√
β

1− β
(8)

From the definition, it is obvious that xa ∼ (0, 1).
Thus, instead of minimizing Φx,a(z) in Eq. (6), we can
instead minimize its upper bound κ(z). Furthermore,
since κ(z) is an increasing function, it is equivalent to

minimizing z. Thus, we can approximately solve Eq.
(6) by solving

min
a 6=0

aT (ȳ − x̄) + Φ−1
y,a(β)

√
aT Σya√

aT Σxa
, (9)

or, equivalently,

max
a 6=0

aT (x̄− ȳ)− Φ−1
y,a(β)

√
aT Σya√

aT Σxa
. (10)

Second, we assume that the median value of the dis-
tribution ya is close to its mean. This assumption
is true for all symmetric distributions and is reason-
able for many others. Under this assumption, we have
Φ−1

y,a(0.5) ≈ 0. Thus for β = 0.5 (which is used in the
cascade framework), Eq. (10) can be further approxi-
mated by

max
a 6=0

aT (x̄− ȳ)√
aT Σxa

. (11)

In object detection tasks, the object class is often com-
pact. When x can indeed be modelled by a normal
distribution, xa ∼ N(0, 1) and Φx,a does not depend
on either x or a. In this case, Eq. (10) is exactly equiv-
alent to equations (2) and (6). If in addition we can
assume that y is symmetric, we have Φ−1

y,a(0.5) = 0.
Thus, Eq. (11) is exactly equivalent to the node learn-
ing goal in Eq. (2). We call the linear discriminant
function determined by Eq. (11) the Linear Asymmet-
ric Classifier (LAC) and use it in the cascade learning
framework.

The form of Eq. (11) is similar to the Fisher Discrim-
inant Analysis (FDA), which can be written as:

max
a 6=0

aT (x̄− ȳ)√
aT (Σx + Σy)a

. (12)

This analogy automatically gives us the solution to Eq.
(11) as:

a∗ = Σ−1
x (x̄− ȳ), b∗ = a∗T ȳ, (13)

under the assumption that Σx is positive definite.

3. AdaBoost as a Feature Selector

Since most visual classification tasks are not linearly
separable, we need to inject some non-linearity into
the linear asymmetric classifier. We used the ‘rect-
angle features’ proposed in (Viola & Jones, 2004). A
rectangle feature value is the inner product of the in-
put with a mask mk. However, because of the spe-
cial form of the chosen masks, rectangle features can
be evaluated extremely quickly using a data structure

Linear Asymmetric Classifier for Cascade Detectors

called the ‘integral image’. For details on integral im-
ages and rectangle features, please refer to (Viola &
Jones, 2004). Coupled with a threshold, a rectangle
feature plays the role of a weak classifier:

hk(x) = sgn(xT mk − τk). (14)

Viola and Jones used AdaBoost to select weak clas-
sifiers (or equivalently, rectangle features.) The vec-
tor of weak classifiers’ outputs h(x) is used as fea-
tures. The AdaBoost ensemble classifier is H(x) =
sgn

(
aT h(x)− b

)
.

We also use h(x) as features in LAC. The experimen-
tal results in (Viola & Jones, 2004) showed that Ad-
aBoost could effectively select discriminative rectangle
features. However, AdaBoost is not designed for the
node learning goal. In our proposed method, we use
AdaBoost to select features, but use LAC to learn the
linear discriminant function (a, b) to optimize the node
learning goal. The complete algorithm is described in
table 1.

When we want to apply FDA instead of LAC, we re-
place Eq. (13) with the following FDA solution:

a = (Σx + Σy)−1 (x̄− ȳ) . (15)

It is tempting to use the integral feature values zT mk−
τk directly as features in LAC or FDA. However,
since zT mt − τt is a linear function of the input z,
H (z) = sgn

(∑T
t=1 at(zT mt − τt)− b

)
is still a lin-

ear discriminant function and will not work for prob-
lems that are not linearly separable. The sgn function
in (14) introduces the necessary non-linearity into the
features.

Both AdaBoost and LAC have the same form H (z) =
sgn

(
aT h (z)− b

)
and they share the same feature vec-

tor h(z). The only difference between these two clas-
sifiers are parameters of the linear discriminant (a, b).
In AdaBoost, ai is chosen in step i of the AdaBoost
procedure to minimize a margin-based cost function.
This is a greedy procedure and ai is never changed
after its value is determined. Furthermore, AdaBoost
does not take into account the fact that the two classes
are asymmetric. The linear asymmetric classifier, on
the contrary, is a global procedure to seek the optimal
vector a which optimizes the asymmetric loss in Eq.
(2).

Viola and Jones (2002) proposed AsymBoost to ac-
commodate the asymmetry. In AsymBoost, the weight
updating rule increases the weights of positive exam-
ples after applying the standard AdaBoost updating
rule in each round. This updating strategy causes the

algorithm to gradually pay more attention to positive
samples. However, the resulting linear discriminant
(a, b) is determined in the same way as ordinary Ad-
aBoost.

4. Comparison to Previous Work

Learning imbalanced data sets has attracted many re-
searchers recently (see (Weiss, 2004) for an overview).
One common strategy is to use sampling. Various sam-
pling methods have been used, e.g. under-sampling,
over-sampling, and SMOTE (Chawla et al., 2002).
Variants of existing algorithms, e.g. AdaBoos (Ting,
2000), were also proposed to deal with imbalanced
data sets. However, for problems such as face detection
and network intrusion detection (Fan et al., 2000), the
negative class is so huge that these methods are either
too computationally expensive or hard to get represen-
tative samples. Rejection-based classifiers were often
used in these problems. So we pay close attention to
rejection-based classifiers in this section.

There are other rejection-based methods that are sim-
ilar to the form of Eq. (11) used in cascade classifiers.
However, the node learning goal was not explicitly de-
fined and solved in these methods. We will examine
the relationship between the proposed LAC and other
related classifiers.

By substituting Eq. (8) into Eq. (10), we get another
approximation to Eq. (10):

max
a 6=0

aT (x̄− ȳ)− κ (β)
√

aT Σya√
aT Σxa

, (16)

which is the biased minimax probability machine
(BMPM) (Huang et al., 2004). Eq. (16) is a worst
case lower bound of our objective function Eq. (10).
The solution of a BMPM used fractional program-
ming which is computationally expensive. The BMPM
solver in (Huang et al., 2004) often takes thousands of
iterations to converge, while the solution in Eq. (13)
requires only a single matrix inversion.

Another related objective function comes from the
Maximum Rejection Classifier (MRC) (Elad et al.,
2002), which can be written:

max
a 6=0

(
aT ȳ − aT x̄

)2 + aT Σya
aT Σxa

. (17)

The solution of Eq. (17) requires the solution of a gen-
eralized eigenvalue problem. The intuition behind Eq.
(17) is to make the overlap between the projections
xa and ya small. The derivation of Eq. (17) in (Elad
et al., 2002) treats the two classes equally. Asymme-
try in the MRC framework results from the fact that

Linear Asymmetric Classifier for Cascade Detectors

Table 1. Training the Linear Asymmetric Classifier using AdaBoost features.

1. Given a training set composed of positive examples {xi}nx

i=1 and negative examples {yi}
ny

i=1, and a set of
rectangle features. The output is a classifier with false positive rate β = 0.5.

2. Use the AdaBoost algorithm to select T weak classifiers h = (h1, h2, . . . , hT) where hi(z) = sgn(zT mi− τi).
3. Build a feature vector h(z) = (h1(z), h2(z), . . . , hT (z)) for each training example.
4. Estimate the mean and covariance matrix for every class: x̄ = 1

nx

∑nx

i=1 h(xi), ȳ = 1
ny

∑ny

i=1 h(yi), Σx =
1

nx

∑nx

i=1 (h(xi)− x̄) (h(xi)− x̄)T , Σy = 1
ny

∑ny

i=1 (h(yi)− ȳ) (h(yi)− ȳ)T .
5. Applying Eq. (13) to get: a = Σ−1

x (x̄− ȳ), b = aT ȳ
6. The output is a classifier H (z) = sgn

(
aT h(z)− b

)
the two classes have different prior probabilities with
P (x) � P (y). However, the effect of the prior on y
is reduced quickly as the stage-wise rejection process
continues. After a few rejections, P (x) is not negli-
gible any more in comparison to P (y). Under such
conditions, Eq. (17) is not an appropriate objective
function.

A final comparison can be made between LAC and
FDA. FDA and LAC both have their own merits and
drawbacks. We have shown that when x is normal,
y is symmetric, and β = 0.5, LAC is indeed the opti-
mal solution to the node learning goal. However, when
these assumptions are broken, LAC may be subopti-
mal. The intuition in FDA is to maximize the (nor-
malized) separation between the two class means. It
does not minimize the error rate or the node learning
goal. The advantage of FDA is that it does not have
constraints – performance will be reasonably good if
the class means are far apart. If we assume that x and
y have equal covariance matrices, LAC is equivalent
to FDA.

There are other works that are not directly related
to LAC, but are related to the cascade framework.
The cascade framework has been applied to other ap-
plications, e.g. wiry object detection (Carmichael &
Hebert, 2003). There were also many improvements to
the cascade detector. For example, alternative boost-
ing algorithms, such as FloatBoost (Li et al., 2002),
have been used to replace AdaBoost.

5. Experimental Results

We tested the performance of the linear asymmetric
classifier on both a synthetic data set and a real world
face detection task. In the synthetic data set, LAC is
compared against BMPM, MRC and FDA. For detec-
tion of faces, the cascade framework is used. A de-
tailed algorithm for cascade training and background
data bootstrapping is given in table 2. Two feature
selectors are used: AdaBoost and AsymBoost. We

Table 2. New cascade learning algorithm based on LAC.

1. Given a set of positive examples P , an initial set
of negative examples N , and a database of boot-
strapping negative examples D. Given a false pos-
itive rate goal β for the cascade. The output is a
cascade classifier H = (H1,H2, . . . ,Hr).

2. i=0;
3. While the current cascade’s false positive rate is

bigger than β
(a) i=i+1;
(b) Use LAC to train a classifier Hi with P and

N . Add Hi to the cascade H;
(c) N ′ = ∅. Run Hi on D, add false positives

(those classified as positive by Hi) to N ′, un-
til |N ′| = |N |;

(d) N ← N ′;

compare three different ways to determine the lin-
ear discriminant (a, b) after the features are selected.
The first method is to use the weights a and thresh-
old b found by AdaBoost or AsymBoost; the second
method uses LAC; the third method uses FDA. We
use “X+Y” to denote the methods used in experi-
ment, e.g. AdaBoost+LAC means that the features
are selected by AdaBoost and the linear discriminant
function is trained by LAC. So, there are 6 different
methods compared in our experiments.

5.1. Results on Synthetic Data Set

The synthetic data set was generated using the fol-
lowing steps. Three distributions are created as:
di = Aici + mi, i = 1, 2, 3, where ci ∼ N(0, I),mi ∼
N(0, 0.1I), and the elements of A are drawn randomly
from a uniform distribution in [0, 1]. The positive ex-
amples x are drawn from X = d1, and negative exam-
ples y are drawn from Y = d2

2 − d2
3. This choice pro-

duces a Y which is not symmetric, and has a reason-
able overlap with X. The training and test sets both
contain 1000 samples, including 500 positive and 500

Linear Asymmetric Classifier for Cascade Detectors

negative samples. Four linear discriminant methods
are compared. In each method, we determine the pro-
jection direction a using the corresponding method.
The threshold b is determined such that on the training
set the false positive rate is 50%. For every method,
the experiments are repeated 100 times. The averaged
test set accuracy on both classes are reported in ta-
ble 3. On the synthetic data set, LAC works the best
while FDA follows closely. Two-tailed paired t-test
shows that there is no significant difference between
LAC and FDA. Both the difference between LAC and
MRC, and the difference between LAC and BMPM are
significant, at the 0.01 significance level.

Table 3. Results on synthetic data set.

Classifier Positive Accuracy Negative Accuracy
LAC 96.11 50.04
FDA 95.12 49.96
MRC 90.19 49.96
BMPM 87.99 50.26

In cascaded classifiers, the imbalance between classes
is absorbed by the cascade structure. In each node of a
cascade, balanced training sets are usually used. This
is why we used a balanced training set in the above
synthetic data set. We also tested the performance
of these classifiers on imbalanced training set. Two
extra sets of experiments were performed. The train-
ing sets still had 500 positive examples, but the neg-
ative class had 1000 and 1500 examples, respectively.
The examples were drawn from the same distributions
as described above. All four classifiers’ performances
remained approximately the same, despite of the in-
creasing of negative training examples. Thus detailed
error rates are not presented for space constraint. Un-
der both imbalance level, LAC performed about the
same as FDA, and both LAC and FDA were better
than MRC and BMPM.

5.2. Results on Faces

For face detection, our training set contained 5000 ex-
ample face images and 5000 initial non-face examples,
all of size 24x24. We had a set of 4832 face images for
validation purposes. We used approximately 2284 mil-
lion non-face patches to bootstrap the non-face exam-
ples between nodes. We used 16233 features sampled
uniformly from the entire set of rectangle features. For
testing purposes we used the MIT+CMU frontal face
test set (Rowley et al., 1998) in all experiments. Al-
though many researchers use automatic procedures to
evaluate their algorithm, we decided to manually count

the missed faces and false positives.1 When scanning a
test image at different scales, the image is re-scaled re-
peatedly by a factor of 1.25. Post-processing is similar
to (Viola & Jones, 2004).

We trained 6 different cascades, using the two fea-
ture selectors and three linear discriminant functions.
Each cascade has 21 nodes, except that the Asym-
Boost+LAC cascade has 22 nodes. In order to make
the face detector run at video speed, the first node used
only 7 features. We used more features while the node
index increases (the last node used 200 features).2 In
every node, the false positive rate goal β is set to be
0.5. We observed several distributions xa and ya for
randomly generated a. Although they are not exactly
gaussian, the normal probability plot tests show that
they all fit closely to normal distributions. These re-
sults showed that for the face detection task, LAC’s
assumptions were legitimate.

We consider two types of performance measures: node
and cascade. The node performance measure is the
classifiers’ ability to achieve the node learning goal.
Given a trained cascade, each node has an associ-
ated training set, which is generated by the bootstrap-
ping process (refer to table 1). We collected all such
training sets from the 6 trained cascades. Given one
such training set, different algorithms are required to
achieve the criteria in Eq. (2). Their performance is
evaluated using the validation set. The node perfor-
mance measure is useful because it directly compares
the ability of each method to achieve the node learning
goal. The cascade performance measure compares the
performance of the entire cascade. The performance
of a cascade depends on more than the classifier that
is used to train the nodes. The background data boot-
strapping step and post processing step in face detec-
tion also have significant effects on the cascades’ per-
formance. The cascade performance measure is evalu-
ated using the MIT+CMU benchmark test set.

The node comparison results are shown in figure 2.
We are able to observe the effects of using FDA or
LAC to train a linear discriminant function instead of
using the values provided by the AdaBoost (or Asym-
Boost) algorithm. From the results in figure 2, it is
obvious that both FDA and LAC can greatly reduce
the false negative rates. In figure 2(a), averaged over
the 11 nodes shown, AdaBoost+FDA reduces the false
negative rates by 31.5% compared to AdaBoost, while

1We found that the criterion for automatically finding
detection errors in (Lienhart et al., 2002) was too loose.
This criterion yielded higher detection rates and lower false
positive rates than manual counting.

2The source code and demo video is available at
http://www.cc.gatech.edu/~wujx.

Linear Asymmetric Classifier for Cascade Detectors

0

0.01

0.02

0.03

0.04

11 12 13 14 15 16 17 18 19 20 21

data set index

F
a
ls
e

n
e
g
a
t
iv
e

r
a
t
e AdaBoost

AdaBoost+FDA

(a)

0

0.01

0.02

0.03

0.04

11 12 13 14 15 16 17 18 19 20 21

data set index

F
a
ls
e

n
e
g
a
t
iv
e

r
a
t
e AsymBoost

AsymBoost+FDA

(b)

0

0.01

0.02

0.03

0.04

11 12 13 14 15 16 17 18 19 20 21

data set index

F
a
ls
e

n
e
g
a
t
iv
e

r
a
t
e AdaBoost

AdaBoost+LAC

(c)

0

0.01

0.02

0.03

11 12 13 14 15 16 17 18 19 20 21

data set index

F
a
ls
e

n
e
g
a
t
iv
e

r
a
t
e AsymBoost

AsymBoost+LAC

(d)

0

0.01

0.02

0.03

0.04

0.05

11 12 13 14 15 16 17 18 19 20 21

data set index

F
a
ls
e

n
e
g
a
t
iv
e

r
a
t
e AdaBoost

AdaBoost+FDA

AdaBoost+LAC

(e)

0

0.01

0.02

0.03

0.04

0.05

11 12 13 14 15 16 17 18 19 20 21

data set index

F
a
ls
e

n
e
g
a
t
iv
e

r
a
t
e AsymBoost

AsymBoost+FDA
AsymBoost+LAC

(f)

Figure 2. Experiments comparing different linear discriminant functions. The y axis shows the false negative rate when
β = 0.5. In 2(a), training sets are collected from the AdaBoost+FDA cascades’ node 11 to 21 (x axis shows the index of
the data set). AdaBoost and AdaBoost+FDA are compared using these training sets. Similarly, 2(b)-2(f) used training
sets from the AsymBoost+FDA, AdaBoost+LAC, AsymBoost+LAC, AdaBoost, and AsymBoost cascades respectively.
We do not show results when the data set index is less than 11, for space constraint.

in figure 2(c) AdaBoost+LAC reduces it by 22.5%.
When AsymBoost is used as the feature selector, the
reductions are 27.3% and 17.3%, respectively. In fig-
ure 2(a) to 2(d), training sets came from FDA or LAC
cascades. We also compare node performance when
the training sets came from the AdaBoost or Asym-
Boost cascade. Results are shown in figure 2(e) and
2(f). Both FDA and LAC work better than the origi-
nal AdaBoost and AsymBoost.

Cascade comparison results are shown in figure 3. In
each figure, the marked point with fewest false posi-
tives indicates the performance of the entire cascade.
We then remove the last node and the result is shown
as the next marked point, etc. We do not evaluate the
performance between two consecutive marked points
and use linear interpolation instead. Figure 3(a) shows
the results when AdaBoost is used as the feature selec-
tor and figure 3(b) shows results for AsymBoost. Fig-
ure 3 shows that both FDA and LAC have significant
advantages over AdaBoost or AsymBoost. It coincides
well with the node performances in figure 2. However,
the error reduction effects of FDA or LAC in figure
2 is more significant than those in figure 3. We con-
jecture that the background data bootstrapping and
post processing step remove part of the error reducing
effects.

An interesting observation is that FDA works better
than LAC in a few cases. LAC is derived under the
assumption that for ya, its median value should not
be far away from its mean value. We use the discrete
version of AdaBoost, which means that the features

can only take values 0 or 1. We conjecture that this
may cause the median assumption problematic in a
few cases.

6. Conclusions

The key learning problem in training cascade classifiers
is to achieve the node learning goal: design a classifier
with very high detection rate and only moderate false
positive rate. This node learning goal was implicitly
addressed in many previous works, but not based on
a satisfactory theoretical framework. We present the
first explicit formula of the node learning goal as a con-
strained optimization problem. Although in general
there is no closed-form solution, we propose the Linear
Asymmetric Classifier (LAC) as an approximate solu-
tion under some reasonable simplifying assumptions.
LAC is also computationally efficient, only requiring
a single matrix inversion. In object detection tasks,
we use AdaBoost or AsymBoost as a feature selec-
tion mechanism, i.e. the weak classifiers’ outputs are
used as features in LAC. Experimental results show
that LAC yields better performance than AdaBoost on
object detection tasks. These results show that even
though AdaBoost selects discriminative features, LAC
can find a linear discriminant function that fulfills the
node learning goal more effectively. We find that ap-
plying Fisher Discriminant Analysis on the AdaBoost
features also yields better performance on asymmetric
problems than AdaBoost itself.

There are some issues that we will explore in the fu-

Linear Asymmetric Classifier for Cascade Detectors

0.86

0.88

0.9

0.92

0.94

0.96

0 50 100 150 200

Number of False Positives

D
e
te
c
ti
o
n
 R
a
te

AdaBoost

AdaBoost+FDA

AdaBoost+LAC

(a)

0.89

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0 50 100 150 200
Number of False Positives

D
e
te
c
ti
o
n
 R
a
te

AsymBoost

AsymBoost+FDA

AsymBoost+LAC

(b)

Figure 3. Experiments comparing cascade performances using the MIT+CMU benchmark test set. The x axis is the total
number of false positives. The y axis is the detection rate.

ture. We currently use weak classifiers’ outputs as fea-
tures to inject non-linearity into LAC. Kernel methods
can be readily applied to LAC as an alternative for
introducing non-linearity. We will also use LAC to
detect objects other than faces. Since FDA can be
generalized to multi-class discriminant analysis, it is
possible to extend LAC into a multi-class object de-
tection/recognition method. Finally, LAC may be ap-
plied in other machine learning problems with highly
imbalanced data sets and/or problems with asymmet-
ric costs.

References

Baker, S., & Nayar, S. (1996). Pattern rejection. Proc.
CVPR (pp. 544–549).

Carmichael, O., & Hebert, M. (2003). Shape-based
recognition of wiry objects. Proc. CVPR (pp.
II:401–408).

Chawla, N. V., Bowyer, K. W., Hall, L. O., &
Kegelmeyer, W. P. (2002). Smote: Synthetic mi-
nority over-sampling technique. Journal of Artificial
Intelligence Research, 16, 321–357.

Elad, M., Hel-Or, Y., & Keshet, R. (2002). Pattern de-
tection using a maximal rejection classifier. Pattern
Recognition Letters, 23, 1459–1471.

Fan, W., Lee, W., Stolfo, S. J., & Miller, M. (2000). A
multiple model cost-sensitive approach for intrusion
detection. Proc. 11th ECML.

Fleuret, F., & Geman, D. (2001). Coarse-to-fine face
detection. IJCV, 41, 85–107.

Heisele, B., Serre, T., Mukherjee, S., & Poggio, T.
(2001). Feature reduction and hierarchy of classi-
fiers for fast object detection in video images. Proc.
CVPR (pp. II:18–24).

Huang, K., Yang, H., King, I., & Lyu, M. R. (2004).
Learning classifiers from imbalanced data based on
biased minimax probability machine. Proc. CVPR
(pp. II:558–563).

Li, S., Zhang, Z., Shum, H., & Zhang, H. (2002). Float-
Boost learning for classification. NIPS 15. MIT
Press.

Lienhart, R., Kuranov, A., & Pisarevsky, V. (2002).
Empirical analysis of detection cascades of boosted
classifiers for rapid object detection (Technical Re-
port). MRL, Intel Labs.

Romdhani, S., Torr, P., Schoelkopf, B., & Blake, A.
(2001). Computationally efficient face detection.
Proc. ICCV (pp. 695–700).

Rowley, H. A., Baluja, S., & Kanade, T. (1998). Neu-
ral network-based face detection. IEEE Trans. on
Pattern Analysis and Machine Intelligence, 20, 23–
38.

Schapire, R. E., Freund, Y., Bartlett, P., & Lee, W. S.
(1998). Boosting the margin: A new explanation for
the effectiveness of voting methods. The Annals of
Statististics, 26, 1651–1686.

Ting, K. M. (2000). A comparative study of cost-
sensitive boosting algorithms. Proc. ICML (pp. 983–
990).

Viola, P., & Jones, M. (2002). Fast and robust classi-
fication using asymmetric AdaBoost and a detector
cascade. NIPS 14.

Viola, P., & Jones, M. (2004). Robust real-time face
detection. IJCV, 57, 137–154.

Weiss, G. M. (2004). Mining with rarity: a unifying
framework. ACM SIGKDD Explorations Newsletter,
6, 7–19.

