
Learning Predictive Representations from a History

Eric Wiewiora wiewiora@cs.ucsd.edu

Computer Science and Engineering,
University of California, San Diego

Abstract

Predictive State Representations (PSRs)
have shown a great deal of promise as an al-
ternative to Markov models. However, learn-
ing a PSR from a single stream of data gen-
erated from an environment remains a chal-
lenge. In this work, we present a formalism
of PSRs and the domains they model. This
formalization suggests an algorithm for learn-
ing PSRs that will (almost surely) converge
to a globally optimal model given sufficient
training data.

1. Introduction

Modeling systems that generate sequential observa-
tions is a fundamental problem in many fields. The
standard approach is to assume that the system can be
represented as a Markov model. These models assume
that the history of all previous observations is con-
densed into a sufficient statistic, known as the Markov
state. If the state of the process is known, then the
probability of any future sequence of observations can
be calculated.

While Markov models have been successful in many
applications, they suffer many shortcomings. Markov
models where the state is observable tend to scale
poorly with the complexity of the system to be mod-
eled. Markov models with a latent state tend to be
difficult to learn from data.

Predictive state representations (PSRs), and closely
related Observable Operator Models (OOMs), address
many of these issues (Littman et al., 2001; Jaeger,
2000b). Unlike Markov models with observable state,
PSRs can represent a wide class of stochastic processes
succinctly. Unlike latent state Markov models, PSRs
use only information that is present in the observables

Appearing in Proceedings of the 22nd International Confer-
ence on Machine Learning, Bonn, Germany, 2005. Copy-
right 2005 by the author(s)/owner(s).

generated from the stochastic process.

There has been much previous work on learning a PSR
from data. Singh, et al. provide an algorithm that
updates the parameters of a PSR online, but do not
address the issue of adapting the model’s representa-
tional power (2003). James & Singh give an offline
algorithm that learns an arbitrarily complex PSR, but
it requires the system to have a “reset”, which reverts
the system to some previous state (2004).

In this work, we provide a formalism of PSRs and the
policies that interact with them. We also provide a
theoretical analysis of the data generated from systems
that can be modeled as a PSR. From this analysis, we
develop an algorithm for learning a PSR from a sin-
gle stream of data. Given sufficient data, the learned
model will be a near optimal representation.

1.1. Stochastic Processes

We define a stochastic process (also referred to as a
dynamical system) as a source of sequential observa-
tions that occur on fixed time steps. We will assume
that observations are drawn from a finite set O. Some
processes require an action to be provided by an out-
side source. This action is from a finite set A. When a
stochastic process requires an action, we call it a con-
trolled process; otherwise it is an autonomous process.
In this paper we focus on controlled processes, but all
analysis can be carried over to the autonomous case.

The distribution on the next observation generated by
a stochastic process is a function of all observations
the system has generated and all actions provided to
the system. The entire string of previous observations
and actions is known as a history.

A policy is a mapping from a history to a distribu-
tion over the current action that will be supplied to
the system. When a policy is specified along with a
controlled process, and the entire system can be mod-
eled as an autonomous process. This coupled system
generates observations from a finite set U = {A×O}.

Learning Predictive Representations from a History

1.2. Events and Tests

Predictive state representations use explicit predic-
tions about future actions and observations to model
the state of the system. We specify the target of these
predictions using events and tests.

An event is a set of action-observation sequences,
where each sequence contains l observations and l ac-
tions. An event is said to have occurred when the last
l action-observation pairs in the history match one of
the sequences in the event.

A test consists of two events. The conditioning event
for test g, called gc, is assumed to occur over the next
l time steps. The conditioned event gu may or may
not occur. The conditioned event must a subset of the
conditioning event. At any point in the history of a
stochastic process, we define the probability of a test
g succeeding as the probability that the conditioned
event occurs in the next l observations, divided by the
probability that the conditioning event occurs:

Pr(g|h) ≡ Pr(hgu|h)
Pr(hgc|h)

= Pr(hgu|hgc).

We give special attention to a class of tests called s-
tests. These tests have a single sequence of actions and
observations as a conditioned event, and a conditioning
event consisting of the same sequence of actions, but
with any sequence of observations. Thus, an s-test g
of length l can be written as

gu = a1o1a2o2 . . . alol;
gc = {a1Oa2O . . . alO}.

Because the actions that are in gu are in all sequences
in gc, the influence of the policy has been factored out
of the probability that an s-test will succeed. We de-
fine s-tests for autonomous processes analogously by
assuming there is an implicit action between every ob-
servation.

We include one special case in the class of s-tests. The
ε-test is the only test consisting of events of length
zero. This test succeeds with probability 1. Collo-
quially, the ε-test represents the event that anything
happens in the future.

2. Linear PSRs

A predictive state representation is a method for mod-
eling a stochastic process using a set of tests called the
core tests. We say that a set of k tests q1, . . . , qk are
core tests of a PSR if given any history h, the success
probability of any future s-test g is a function of the

probability that each of the core tests will succeed:

Pr(g|h) = fg

(
Pr(q1|h), P r(q2|h), . . . , P r(qk|h)

)
.

We call the vector of probabilities that the core tests
succeed, given the history, as q(h). This vector is used
much like the belief state vector of a hidden Markov
model.

Linear PSRs assume that all core tests are s-tests and
fg is a linear function of q(h):

Pr(g|h) = q(h)>mg.

We say a stochastic process has rank k if it can be
modeled as a linear PSR with k core s-tests.

In order to use this model, we need accurate core test
probabilities. We do this inductively. Given a history
h, followed by action a and observation o, we update
the probabilities that the core tests using two sets of
vectors.

First, we need the vector mao such that

Pr(hao|haO)) = q(h)>mao,

for each possible action a and observation o. These
are called the one step tests.

Also, for each core test qi consisting of conditioning
event ci and conditioned event ui, we find the vector
maoi such that

Pr(haoui|haOci) = q>maoi.

We call these the core extension tests.

The future core test probabilities are updated using
mao and maoi. When a new action a is taken and
observation o received, the new success probability of
core test qi is given by:

Pr(qi|hao) =
q(h)>maoi

q(h)>mao
.

For convenience, we arrange the core extension test
vectors for ao into a matrix Mao, where the ith column
in this matrix corresponds to the extension test for core
test qi.

Any s-test’s success probability can be calculated
using Mao and mao. For s-test g, where gu =
a1o1a2o2 . . . anon, and a core test probability vector
q(h), we can calculate the probability g succeeds as

Pr(g|h) = q(h)>Ma1o1 × . . .×Man−1on−1manon
(1)

(Littman et al., 2001).

Learning Predictive Representations from a History

2.1. Regular Form PSRs

Any rank k stochastic process can be modeled by many
rank k PSRs. Any set of k s-tests where each test can-
not be predicted by the others will constitute a core
test set (Singh et al., 2004). We would like a guide-
line for choosing a core tests that leads to as simple a
representation as possible.

Definition 1 A PSR is in regular form if the set of
core tests is minimal and each core test is either the
ε-test, or an extension of a core test.

An algorithm for producing a (nearly) regular form
PSR from a Markov model has been provided in
(Littman et al., 2001). We extend these results to
all systems that can be modeled as PSRs.

Theorem 1 Any k test PSR can be converted to a
regular form PSR with no more than k tests.

Proof: Assume PSR P = (q1 . . . qk, {mao}, {Mao}) is
not in regular form. We show how to incrementally
convert it to a regular form PSR by replacing core
tests that do not meet the regular form defiition.

Consider when the ε-test is not a core test in P. By
our definition of a PSR, there is some mε such that
q(h)>mε = 1 for all histories h. We find some test qi

where the ith entry in mε is nonzero. Such a test must
exist since the probability of the ε test is nonzero. We
can calculate the probability of qi using the other core
tests and the ε-test:

1 =
∑

j

Pr(qj |h)mε[j]

Pr(qi|h)mε[i] = 1−
∑
j 6=i

Pr(qj |h)mε[j]

Pr(qi|h) = Pr(ε|h)
1

mε[i]

+
∑
j 6=i

Pr(qj |h)
−mε[j]
mε[i]

.

Because we can calculate Pr(qi|h) for any h, this core
test can be replaced with the ε-test.

Now consider the case where there is some core test qi

which is not an extension of any other core test. Also,
assume there is some extension of a shorter core test
qj , which we call gaoj , that is not a core test, and qi has
a nonzero entry in maoj . We use the same argument
made for the ε-test to show that we can replace qi with
gaoj .

Suppose, however that we cannot find a core test
extension of any shorter qj , where qi influences the
success probability. If qi also does not influence the

success probabilities of extensions no shorter than qi,
then this test is redundant. We show this by pro-
ducing an mi that predicts the probability of qi with-
out using the value of qi. Using equation 1, we have
mi = Mai

1oi
1
× . . . × Mai

lo
i
l
mε, where we have multi-

plied core extension matrices corresponding to the l
actions and observations in the qi event. Because qi

does not affect the probabilities of extensions of any
other test, all of the M matrices have zero entries in
the off-diagonal rows corresponding to i. If the ε event
is present, mε must also have a zero entry in the ith
position. Thus, the product of these matrices and mε

will have a zero in the ith position.

Finally, we must consider the case where qi is needed
to predict some extension of a longer core test. In
this case, we use arguments similar to those above to
show that either there is a long core event that can be
replaced with a shorter event, or all core events longer
than qi are redundant. �

A regular form PSR has fewer parameters than a gen-
eral PSR. Because we have included the ε-test, all one
step tests are also core extension tests. Also, many
core extension tests are also core tests. A general k
test PSR has |U| ∗ k entries in one step test vectors,
and |U| ∗ k2 entries in core test extension matrices. A
regular form PSR has only |U|∗(k2−k) unique entries.

The regular form PSR proof also guarantees that we
will not have to search indefinitely for a set of core
tests.

Corollary 1 Every rank k stochastic process has a
predictive state representation where each core test has
length less than k.

Proof: Because every core test is an extension of some
other core test, the maximal length of any test is the
maximum number of times a test can be extended.
This is (k − 1) times. �

3. Linear Policies

We treat policies much like we have treated the pro-
cesses that policies control. Like a controlled process,
the next action a policy outputs can be an arbitrary
function of the entire history of previous observations
and actions. This is an infinite set of possible policies.
In order to analyze the long-term behavior of a pol-
icy, we need a measure of its complexity similar to the
rank of a PSR.

We will do this by introducing the a-test. An a-test
is equivalent to an s-test, but with the role of actions

Learning Predictive Representations from a History

and observations reversed:

pu = o1a1o2a2 . . . okak;
pc = {o1Ao2A . . . okA}.

The ε-test is also included in the set of a-tests.

A policy of rank has rank f if the probability that any
sequence of actions, conditioned on the sequence of
observations, is a linear combination of the probability
of a set of f a-tests. After any history h, we call the
probability vector of the a-tests b(h).

Like a PSR, we will need to define functions to main-
tain the probabilities of the success of the a-tests.
The one-step tests calculate the probability of the test
Pr(oa|o) for all a and o. This is a linear function pa-
rameterized with a weight vector roa. Also, we need
to calculate the vectors for the a-test extensions. We
arrange the weight vectors for the core test extensions
of oa into matrix Roa. Like PSRs, a regular policy can
be expressed in a regular form.

In order to gain intuition on proper policies, consider
the class of reactive policies. A reactive policy selects
the next action only based on the previous observation.
This policy has rank 1. The reason for this is that the
probability that any action is taken is completely de-
termined by the one-step tests. The probability these
tests succeed remains constant throughout the inter-
action of the policy with the environment. Because
of this, b(h) contains only one entry corresponding to
the ε-test. In general, a kth order reactive policy (one
that selects the next action according to the previous
k observation-action pairs) will have rank |U|k. Reg-
ular policies are also capable of representing policies
encoded as options (Sutton et al., 1999), finite state
automata (Hansen, 1997), and many other forms.

Now we examine the behavior of a linear PSR coupled
with a proper policy. It is easy to show that an n state
Markov decision process that is controlled by a m state
controller will become a m∗n state Markov chain. We
show a similar result for PSRs.

Theorem 2 A rank k process controlled by a rank f
regular policy is an autonomous process with rank no
greater than k ∗ f .

Proof: We treat the combination of a policy and a
controlled process as a coupled system that outputs
an action-observation pair every time step. A similar
analysis is possible if one considers the system output-
ing observation-action pairs, or a system that period-
ically outputs a single observation or action.

The coupled system is parameterized by the initial
probabilities of the core s-tests of the decision process

q(h). We also know the initial probabilities the core
a-tests, b(h−). We use the term (h−) to reflect the
fact that the a-tests in b are defined on histories end-
ing in an action, not an observation. Also, because the
first output of the coupled system will be an action,
we specify special tests r−a and R−a for all actions a.
These tests respectively determine the probability of
the first action, and the value of b(ha) multiplied by
the probability that a is the first action.

The probability that some ao occurs immediately is

Pr(ao|ε) = Pr(a|h)Pr(ao|h, a)
= q(h)>mao · b(h−)>r−a.

We calculate the probability of longer sequences induc-
tively. Assume that any sequence sk of length k can
be written as a product of q(h)>msk

and b(h−)>rsk
.

We now show how to calculate probability of a length
k + 1 sequence sk+1:

Pr(skak+1ok+1|h) = Pr(a1o1 . . . akok|h)
·Pr(ak+1|ha1o1 . . . akok)
·Pr(ok+1|ha1o1 . . . akokak+1)

= q(h)>msk
· b(h−)>rsk

·b(h−)>Rsk

b(h−)>rsk

rokak+1

·q(h)>Msk

q(h)>msk

mak+1ok+1

= m(h)>msk+1 · b(h−)>rsk+1 .

Here Rsk
and Msk

are Matrices calculated according
to equation 1. Thus, the probability any sequence of
action-observation pairs occurs can be described as the
product of two dot products. We rewrite this as the
single dot product:

q(h)>ms · b(h−)>rs = m>
s

(
q(h) · b(h−)>

)
rs

= m>
s C(h)rs

=
∑
i,j

C(h)[i, j]ms[i]rs[j]

= c(h)>ωs,

where c(h) is the vectorized outer product of q(h) and
b(h), and ωs is the vectorized outer product of ms and
rs. Because any sequence probability is a dot product
of a (k ∗ f)-dimensional vector, we will only be able to
find up to k ∗ f linearly independent sequence proba-
bilities. �

It’s important to note that the core tests of the coupled
system are not a-tests or s-tests, but rather distinct

Learning Predictive Representations from a History

sequences. In fact, the core tests of the coupled system
need not have any relation to s-tests or a-tests of the
component systems.

4. A Limit Property

Given an autonomous process, we would like to know
its long-term behavior. In OOM theory, it is gener-
ally assumed that the process is stationary and ergodic
(Kretzschmar, 2003). We take a more careful look at
what conditions are sufficient to build learning algo-
rithms, and when these conditions are met.

We analyze long-term behavior in terms of the empiri-
cal frequencies of sequences a process generates. Given
history hT+j we define the empirical frequency of se-
quence g of length j as

ḡ =
1
T

T∑
i=1

I(hi+j = hig),

where the function I() is the indicator function. Given
a sufficiently long history, we hope that the empiri-
cal frequency of a sequence converges to its average
success probability:

ĝ =
1
T

T∑
i=1

Pr(g|hi) as T →∞.

Theorem 3 As T becomes large, for all qi that con-
stitute a minimal set of core tests for an autonomous
process, q̂i converges almost surely.

Proof:(sketch) At any point in the evolution of the
stochastic process, the system’s future is characterized
by the (unkown) vector q(ht).

We track the expectation of q(ht+1) using the matrix

M =
∑
u∈U

Mu.

This matrix calculates the expected value of the core
test vector on the next time step. The M matrix shares
many properties of a transition matrix for a Markov
chain. It can be shown that M has spectral value one,
with at least one eigenvector for eigenvalue one. All
Jordan blocks for eigenvalue one must have rank one.
If the spectral value is greater than one, then either
some entry in q(h) will not be a valid probability, or all
valid q vectors are orthogonal to all eigenvectors with
eigenvalue greater than one. This additional linear
constraint on the core test probabilities contradicts the
assumption that q was minimal. If the spectral value
of M is less than 1, the ε event will be expected to have
probability less than 1 in the future. More properties

that the M matrix must display can be derived from
results in the OOM literature (Jaeger, 2000a).

Define M∗ as
∑N

i=1
1
N M i, as N → ∞. This matrix

determines the expected value of q̂, given the current
value of q(h). Because of the spectral properties of
M we have outlined above, we know that this limit-
ing matrix exists. Since M∗ converges, it must satisfy
M∗ = MM∗.

Note that for any possible q(hi),

q(hi)>M∗ = q(hi)>MM∗ = E[q(hi+1)>M∗].

Thus, q(·)>M∗ is a martingale (Grimmett & Stirzaker,
1982). Also, note that q(·)>M∗ has bounded variance,
due to the fact that the entries in q always range be-
tween 0 an 1. Using these two results, and standard
martingale theory, we can show that the random vari-
able q(·)>M∗ = E[q̂] converges to a fixed point almost
surely (Grimmett & Stirzaker, 1982). �

Corollary 2 If the average success probabilities of all
core tests converge, then the average success probabil-
ities of all sequences converge.

Proof: At each time step, the probability that a se-
quence g will occur over the next observations is de-
termined by the probabilities of the core tests at that
time:

Pr(g|h) = q(h)>mg.

The long term average success probability can likewise
be written as a linear function of the average success
probabilities of the core events:

ĝ ≈ 1
T

T∑
i=1

q(hi)>mg

=
(1

T

T∑
i=1

q(hi)>
)
mg

≈ q̂>mg.

As T becomes large, both q̂ and ĝ will be arbitrarily
close to some fixed point with probability 1. �

4.1. Empirical Test Frequencies

Given empirical frequencies of sequences, we can de-
rive estimates of the average success probabilities of
tests. We adopt the estimator used in James and Singh
(2004). For some test t = Pr(tu|h, tc) we calculate t̄
as:

t̄ =
t̄u
t̄c

,

Learning Predictive Representations from a History

where we calculate t̄i as the sum of the empirical fre-
quencies of sequences that compose event ti.

In order for us to use this estimate, the process should
have nonzero probability of generating tc for any his-
tory. Thus, in order to learn s-tests, we should use a
policy that chooses all actions with nonzero probabil-
ity, given any history.

4.2. Context Tests

Our estimates of empirical test probabilities suggest a
method for learning the parameters of a PSR. We de-
fine a set of context tests ϕ1, . . . , ϕf . Given a context
test ϕ and some test g, we find the empirical frequency
of test ϕg, where

Pr(ϕg|h) = Pr(h{ϕugu}|h{ϕcgc}).

We call these context extension tests.

When context tests are s-tests, the following nice prop-
erty holds. Given the core tests q, a context test ϕ and
an arbitrary test g, we have

ϕ̂g = q̂>mϕg

= q̂>Mϕmg

= ϕ̂q>mg,

where Mϕ is a matrix built according to equation 1.
Thus, if we can find context tests that produce k lin-
early independent ϕ̂q, we can derive an estimate of
mg. The restriction that context tests are s-tests can
be loosened to include any test. In general, when
we have used a finite rank policy to collect data,
ϕ̂g = cϕ ∗ (ϕ̂′q

>
mg), where ϕ′ is a linear combina-

tion of s tests and cϕ is a constant that depends on
the policy that is used.

The context test has several precursors in the litera-
ture. In OOM theory, the role of the context test are
assumed by indicative events (Jaeger, 2000b). A set of
indicative events partition all length m sequences into
k sets. In both Rosencrantz et al. (2003) and James
and Singh (2004), context sequences consist of a single
history, starting from time zero.

5. Learning and Discovery

The discovery problem is to find a set of core tests,
and the learning problem is to find appropriate {mao},
and {Mao} parameters for these tests (Littman et al.,
2001). Given a sufficient number of empirical test fre-
quencies, we can solve these problems.

We do this by accumulating empirical test frequencies
into a matrix F. The [i, j]th entry of F corresponds

to the value of ¯ϕigj , for arbitrary context test ϕi and
s-test gj .

If we impose an upper bound on the complexity of the
system to be modeled, we can limit the size of F that
will be required to find a set of core tests.

Theorem 4 If a stochastic process has rank k, the F
matrix consisting of context tests of all sequences of
length (k − 1) and less will be sufficient to find core
tests that model the process’s future observation prob-
abilities.

Proof:(sketch) The argument is similar in detail to the
proof of theorem 1. If we have not found k linearly
independent rows in the F matrix consisting of context
tests of length m < k and less, then there must be at
least one column in the F matrix where length m + 1
context tests are also included. If this is not the case,
then all larger F matrices cannot contain additional
independent rows. This last condition may arise if the
process has transient characteristics that will not affect
probabilities after some point in time. �

Using theorems 1 and 5, we see that in order to learn
k core tests, we need an F matrix with no more than
O(|U|k−1) rows and columns. This is a worst-case
bound; it is very likely that far fewer than |U|k−1 rows
will be required to find k good core tests.

We now have enough theory to specify an algorithm
that solves the discovery and learning problems. This
algorithm is similar to many algorithms in the litera-
ture (Rosencrantz et al., 2003; James & Singh, 2004;
Jaeger, 2000b). We diverge from existing algorithms
by explicitly learning a regular form PSR and explic-
itly minimizing the average error of context extension
tests.

Greedy Discovery/Learning Algorithm

1. Build an F matrix from a sequence of observa-
tions generated from a stochastic process; Choose
a value for error threshold parameter θ.

2. Assign the ε-test as the first core test:

Q[·, 1] = F[·, ε]

3. For all core test extensions i in F:

(a) solve F[·, i] ≈ Qmi with regression
(b) E[·, i] = F[·, i]−Q mi

4. For k = 2, 3, . . . , while ||E|| > θ:

(a) Search all columns in E that correspond to
core test extensions; choose column j with

Learning Predictive Representations from a History

maximum norm:

Q[·, k] = F[·, j]

(b) Recompute mi and E using the equations of
step 4.

Below we discuss some details of the algorithm.

• The algorithm requires the specification of a pa-
rameter θ, which effectively controls the number
of core tests the algorithm will discover. We can
control for the number of core tests explicitly if we
have some idea how many to expect. The SVD al-
gorithm has been used in prior literature for this
purpose (Rosencrantz et al., 2003).

• When we train using a short history, the raw F
matrix is very noisy, with some entries represent-
ing a handful of occurrences of the conditioning
event. In order to compensate for this, we use
context tests that do not condition on the actions
of the sequence. This effectively weights each row
by the probability the context sequence occurs in
the data.

• Our choice of context tests will bias the estimates
towards reducing average error after a particular
context test succeeds. This provides a potential
selection criterion for context tests.

• In our experiments, we use least squared error re-
gression to estimate the mi parameters. Optimiz-
ing for other error measures is possible.

6. Examples

The following examples intend to demonstrate the ap-
plicability of the above algorithm to PSR problems.
The experiments are ongoing, and the present results
should be treated as a proof-of-concept.

We test our algorithm on several learning tasks taking
place in the float-reset domain (Littman et al., 2001).
This domain can be represented as a 5 state Markov
model with two actions and two observations. When
the reset action is taken, the system transitions to state
0. If the system is in state zero when the reset action is
taken, an observation of ”1” is emitted; otherwise the
system outputs a ”0”. The float causes a transition
to a neighboring state with equal probability. Thus,
a float in state 3 causes a transition to state 1 or 4.
Transitions to states −1 and 5 instead transition to
0 and 4, respectively. The ”0” observation is always
observed when the float action is taken.

Figure 1. An frequency matrix calculated from data on the
float-reset problem. Below is a reconstruction of the matrix
using the columns corresponding to the core tests.

Although this domain is conceptually simple, it has
proven hard to learn in practice. The minimal set
of core tests for this domain each have a different
length. For instance, a set of core tests is ui =
{ε, ”r0”, ”f0r0”, ”f0f0r0”, ”f0f0f0r0”}. In order to
learn the mg vectors for this set of core tests, the sys-
tem must spend a significant amount of time in state 4.
It requires a fairly long sequence of float actions before
the system will be in state 4 with high probability.

James and Singh (2004) present an experiment on
learning and discovery of a PSR model for the float-
reset domain. They found that using a uniformly ran-
dom policy, they could not gather sufficient data to
confirm that the system has rank 5. This is because the
influence of the longer core tests on transition proba-
bilities is very subtle. After 30,000 examples, the al-
gorithm did not have sufficient evidence to warrant a
fifth core test.

We present a series of experiments on the float-reset
problem with various instantiations of our greedy al-
gorithm. In all experiments, we learn from a single
stream of data generate from the process.

We enumerate every s-test of length 5 or less. These
s-tests are used as both context tests and as poten-
tial core tests. The F matrix constructed from these
tests is very large, with many rows and columns that
correspond to conditioned events that have rarely or
never been seen in the training data. Thus, weighting

Learning Predictive Representations from a History

F with W is necessary for small sample sizes.

In our first experiment, we sample 25,000 action-
observation pairs from the float-reset domain being
controlled by a policy that chooses between float and
reset uniformly at random. On 5 runs of the greedy
discovery and learning algorithm, the shortest 4 core
tests are always chosen by the discovery algorithm out
of the first five core tests. On 2 runs, the first five core
tests that were chosen were a core set. On 2 other
runs, the fifth core test was chosen as the sixth test.

The second experiment attempts to discover the core
tests more effectively by using an exploratory policy.
This policy performs between 0 and 10 float operations
before executing a reset action. The policy performs
0 float operations between resets with probability 1/3,
and divides the probability of performing 1 to 10 floats
evenly. The system performed comparably to the pre-
vious experiment. It learned the correct core tests 3
times out of five, and chose 5 core test out of 6 on
another trial.

In order to show that we have successfully learned
proper parameters as well as discovered the core tests,
we ran an experiment to construct an F matrix from
the core tests and core test extension vectors. The
original F matrix is shown on the top of figure 1. After
running the greedy learning and discovery algorithm,
we applied the learned PSR to predicting future rows
of F, given ¯ϕjq. This is analogous to the PSR starting
with a prior probability on q(h). Is is obvious from the
figure that the experiment was successful. The entire
F matrix was reconstructed with little error.

7. Conclusion

In this paper, we have presented a theoretical frame-
work for analyzing Predictive State Representations
and algorithms for learning them. This analysis has
been put to use in developing a new learning algo-
rithm, as well as providing a theoretical justification
for some design choices made in previous work.

An important contribution of this work is the intro-
duction of regular policies. This formalism has the
promise of unifying the analysis of many classes of poli-
cies. For example, the PSR framework may be provide
the proper analytic tools for justifying the benefit of
temporal abstraction through options.

Acknowledgements

I would like to thank Satinder Singh for many valuable
comments and suggestions. The author was funded
under a grant from the NSF IGERT program.

References

Grimmett, G., & Stirzaker, D. (1982). Probability and
random processes. Claredon Press.

Hansen, E. (1997). An improved policy iteration algo-
rithm for partially observable MDPs. Advances in
Neural Information Processing Systems.

Jaeger, H. (2000a). Discrete-time, discrete-valued ob-
servable operator models: a tutorial (Technical Re-
port). GMD - German National Research Center for
Information Technology.

Jaeger, H. (2000b). Observable operator models for
discrete stochastic time series. Neural Computation,
12.

James, M. R., & Singh, S. (2004). Learning and dis-
covery of predictive state representations in dynam-
ical systems with reset. Twenty-first International
Conference on Machine Learning.

Kretzschmar, K. (2003). Learning symbol sequences
with observable operator models (Technical Report).
GMD - German National Research Center for Infor-
mation Technology.

Littman, M., Sutton, R., & Singh, S. (2001). Pre-
dictive representations of state. Advances in Neural
Information Processing Systems.

Rosencrantz, M., Gordon, G., & Thrun, S. (2003).
Learning low dimensional predictive representa-
tions. Twenty-first International Conference on Ma-
chine Learning.

Singh, S., James, M., & Rudary, M. (2004). Predictive
state representations: A new theory for modelling
dynamical systems. Conference on Uncertainty in
Artificial Intelligence.

Singh, S., Littman, M., Jong, N., Pardoe, D., & Stone,
P. (2003). Learning predictive state representa-
tions. Twentieth International Conference on Ma-
chine Learning.

Sutton, R., Precup, D., & Singh, S. (1999). Between
MDPs and semi-MDPs: A framework for temporal
abstraction in reinforcement learning. Artificial In-
telligence, 112.

