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Abstract

We present an efficient “sparse sampling” tech-
nique for approximating Bayes optimal decision
making in reinforcement learning, addressing
the well known exploration versus exploitation
tradeoff. Our approach combines sparse sam-
pling with Bayesian exploration to achieve im-
proved decision making while controlling com-
putational cost. The idea is to grow a sparse
lookahead tree, intelligently, by exploiting in-
formation in a Bayesian posterior—rather than
enumerate action branches (standard sparse sam-
pling) or compensate myopically (value of per-
fect information). The outcome is a flexible,
practical technique for improving action selec-
tion in simple reinforcement learning scenarios.

1. Introduction

Even though reinforcement learning is a rapidly maturing
subject, there remains little convergence on the fundamen-
tal question of action selection; that is, how to choose ac-
tions during learning. Beyond the standard e-greedy and
Boltzmann selection strategies, few techniques have been
adopted beyond the papers that originally proposed them.
However, there remains a persistent belief that more so-
phisticated selection strategies can yield improved results
(Kaelbling, 1994; Dearden et al., 1999; Strens, 2000; Wy-
att, 2001). Possible reasons for the limited use of sophis-
ticated exploration approaches might be the complexity of
implementing some proposed methods, or the presumption
that the degree of improvement might not always be dra-
matic. Therefore, beyond the quality of action selection
results, it is also important to consider the complexity and
computational cost of choosing the actions. In this paper
we adopt a Bayesian approach to reinforcement learning
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and attempt to derive relatively straightforward action se-
lection strategies for a class of problems.

The Bayesian approach to reinforcement learning still ap-
pears to be under-researched given the prominent role it
has played in other areas of machine learning (Jordan,
1999; Neal, 1996). Flexible Bayesian tools, such as Gaus-
sian process regression (Williams, 1999; Neal, 1996), have
had a significant impact on other areas of machine learn-
ing research but have only just recently been introduced
to reinforcement learning (Engel et al., 2003). Neverthe-
less, Bayesian approaches seem ideally suited to reinforce-
ment learning as they offer an explicit representation of
uncertainty—essential for reasoning about the exploration
versus exploitation tradeoff. In fact, Bayesian approaches
offer the prospect of optimal action selection. Bayesian
decision theory solves the exploration versus exploitation
tradeoff directly (but implicitly) by stipulating that the opti-
mal action is one which, over the entire time horizon being
considered, maximizesthe total expected reward (averaged
over possible world models). Therefore, any gain in re-
ducing uncertainty is not valued for its own sake, but mea-
sured instead in terms of the potential gain in future reward
it offers. In this way, explicit reasoning about exploration
versus exploitation is subsumed by direct reasoning about
rewards obtained over the long term.

Despite the apparent elegance and conceptual simplicity of
the Bayesian approach, there remain serious barriers to its
application. The most serious drawback is the computa-
tional challenge posed by optimal Bayesian decision mak-
ing, which is known to be intractable in al but trivial de-
cision making contexts (Mundhenk et al., 2000; Lusena
et al., 2001). This means that with a Bayesian approach
one is forced to consider heuristic approximations. In re-
sponse, a small body of research has developed on on-
line approximations of optimal Bayesian action selection
(Dearden et al., 1999; Duff, 2002; Strens, 2000). Although
the number of proposals remains relatively small and no
widely adopted approximation strategy has emerged, the
potential power of Bayesian modeling makes this approach
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worth investigating.

In this paper we attempt to further develop practical ap-
proximations of optimal Bayesian action selection for rein-
forcement learning. Specifically, we combine the Bayesian
approach (Dearden et al., 1999) with the (non-Bayesian)
sparse sampling technique of (Kearns et al., 2001). Our
idea is to exploit information in the posterior to make in-
telligent action selection decisions during lookahead sim-
ulation, rather than simply enumerating actions (Kearns
et al., 2001). This approach yields improved action se-
lection quality while controlling computational cost. We
also show that our technique improves the myopic value
of perfect information approximation strategy of (Dearden
et a., 1999) by alowing deeper lookahead. Throughout,
we attempt to propose simple strategies that can be easily
implemented in a Bayesian framework.

2. Background

The standard reinforcement learning problem involves
learning to behave optimally in an unknown Markov de-
Ccision process.

Markov decision processes A Markov decision process
(MDP) is defined by a set of actions A; a set of states .S
atransition model p(s;+1]|s:a:), specifying the conditional
probability of a successor state s, 1 given that the process
isin state s; and action a; is executed; and a reward model
p(r¢|s:at), specifying the conditional distribution over re-
wards r; given that action a; istaken in state s;. The goal
is to choose actions to maximize the reward obtained over
the long run, where this can be defined in a few different
ways. (1) maximizing the episodic (or finite horizon) re-
ward o + 1 + --- + rp obtained over a finite episode
t = 0,...,T; (2) maximizing infinite horizon (discounted)
reward o ++ry +72r2+- - - obtained over an infinite run of
the system, 0 < v < 1; or (3) maximizing the asymptotic
rate of return. We will focus on finite horizon problemsin
this paper, athough all of our techniques easily extend to
the infinite horizon discounted case.

Under genera conditions, for afully specified MDPthereis
alwaysadeterministic policy 7* : S — A that givesthe op-
timal action in each state (Bertsekas, 1995). Such a policy
can be conveniently characterized by the action value func-
tion (or Q-function), Q(s, a), which is defined as the supre-
mum of the expected (discounted) reward obtainable by
first taking action a in state s and then following an optimal
action selection strategy thereafter. The Q-function satis-
fies the well known Bellman equation (Bertsekas, 1995)
Q(s¢,ar) = Elfrelsiar] + vyE[maxaea Q(s¢41,a)| spa]
where we assume the maximum aways exists in A. (In
the finite horizon case we also assume v = 1.) If the Q-
function is known for a particular domain, then the opti-

mal action selection strategy can be recovered by 7* (s;) =
argmaxgea Q(s¢,a). Classica agorithms for comput-
ing 7*, or so caled “planning” algorithms, can be based
on value iteration, policy iteration, or linear programming
(Bertsekas, 1995).

Reinforcement learning Of course, we are interested in
the problem of learning to behave optimally in an ini-
t|a”y unknown MDP. Let p(st+1|stat0) and p(rt\statu)
denote the transition and reward models, where 6§ and u
denote the unknown parameters defining these models re-
spectively. Thus, we consider a learning scenario where
the transition and reward parameters, ¢ and p, are not pre-
cisely known, but instead assumed only to belong to a gen-
eral set, # € © and u € M. The three standard ap-
proaches to reinforcement learning are value based, pol-
icy based and model based learning. Roughly speaking, in
the value based approach one attempts to estimate the opti-
mal Q-function (or state value function) directly (Sutton &
Barto, 1998; Watkins, 1989), from which a greedy policy
isrecovered. The policy based approach tries to estimate a
good policy directly (Ng & Jordan, 2000; Strens & Moore,
2002). In model based reinforcement learning, one first at-
tempts to estimate the transition and reward models, and
then determines a policy by solving the planning problem
in the learned model.

Bayesian reinforcement learning The literature on
Bayesian reinforcement learning by comparison is rel-
atively small. Nevertheless, Bayesian approaches have
been considered from the outset (Martin, 1967; Bellman,
1961) and interest has re-emerged in this approach (En-
gel et a., 2003; Dearden et a., 1999; Strens, 2000;
Wyatt, 2001). Much of the research on Bayesian re-
inforcement learning is model based: A prior distri-
bution is defined over transition and reward models,
P(6,p|s0), which is usually assumed to be factored
P(8, ulso) = P(]s0) P(ulso) = pf(0)ph (1). Given expe-
rience sgagrosi..-Sta:T+S¢+1 One determines the posterior
distribution P (0, u|soaorost...stairesir1) = p(0)p (1);
thus learning consists essentially of updating the posterior.
Given this model based approach, one of the main difficul-
tieswith the Bayesian method (or any model based method)
isthat planning is required for action selection.

Except for the heavy reliance on planning, Bayesian ap-
proaches seem ideally suited to reinforcement learning
problems. Bayesian modeling is not only a flexible tool
that allows prior knowledge about the transition and reward
models to be explicitly stated, it also readily allows gener-
alization across actions, states and rewards, through a prin-
cipled mechanism. Some of the best developed Bayesian
modeling tools, such as Gaussian processes (Williams,
1999), are suited specifically for continuous state and ac-
tion spaces, where classical reinforcement learning meth-
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ods are not always conveniently applicable. Bayesian ap-
proaches also naturally provide an explicit representation
of uncertainty in the posterior distribution, which is emi-
nently useful for exploration/exploitation decision making.

3. Action selection

We focus on the problem of on-line reinforcement learning
where action selection decisionsinvolve atradeoff between
exploration and exploitation.® Intuitively, achieving alarge
reward over the long run would seem to involve, early on,
taking exploratory actionsto alow a good model (or value
function or policy) to be estimated, and then later exploit-
ing this model (or value function or policy) to consistently
obtain high reward. Of course, the two phases are not nec-
essarily distinct and it is not always advantageous to think
of an action aseither purely exploratory or exploitive. Clas-
sically, action selection in reinforcement learning has not
been thought of in Bayesian terms but instead tackled intu-
itively. The most common action selection strategies have
been:

e-greedy With probability 1 — ¢, choose the current best
estimate a* = arg max, Q(s, a). Otherwise choose a (uni-
form) random actiona € A.2

Boltzmann ~ Sample a random action according to
P(als) = exp(Q(s,a)/T)/Z where T is atemperature pa-

rameter and Z is a normalization constant.

Interval estimation (Kaelbling, 1994) Choose an action
according to a = argmax,[Q(s,a) + U(s,a)] where
U(s,a)isa(1l — d) upper confidence interval on the point
estimate Q(s,a). This approach has been extended by
(Wiering, 1999) to general MDPs.

These non-Bayesian action selection strategies are all my-
opic, in that they do not explicitly consider the effects that
actions have on future value estimates. Instead, they use
uncertainty as a proxy for lookahead. The basic intuition
is that the greater the uncertainty in an action’s value, the
greater the chance that it might actually prove to be opti-

There is an important distinction between on-line and and
batch reinforcement learning. Batch learning distinguishesan ini-
tial training phase from a subsequent testing phase. During train-
ing, the learning algorithm has no responsibility for obtaining re-
ward and focuses solely on gaining information. During subse-
quent testing, a non-adaptive policy is executed. Although batch
learning is a slightly unnatural model for reinforcement learning,
important theoretical results have been obtained which show that
near optimal policies can belearned intime polynomial inthesize
of the state and action spaces (Kearns & Singh, 1998; Brafman &
Tennenholtz, 2001). Curiously, these efficient “exploration” al-
gorithms behave by putting artificially high rewards on unknown
state-action pairs and then executing exploitive actions.

2For infinite action spaces we assume the range of possible
actionsis bounded.

mal, and therefore we should give a greater bonus to ex-
ploring this action. One difficulty with thistype of intuitive
reasoning, however, isthat it is hard to quantify. The result-
ing selection procedures are heuristic, sometimes difficult
to justify, and do not perform well in all circumstances.

Bayesian action selection A conceptually more elegant
solution to the action selection problem is offered by
Bayesian decision theory. A Bayesian approach to learn-
ing optimally in a Markov decision process is essentially
equivalent to solving a partially observable Markov deci-
sion process (POMDP). More precisely, it is egquivalent
to solving for an optimal action selection strategy in a
meta-level Markov decision process defined by the be-
lief states of the problem. This meta-level problem is
sometimes referred to as a belief state MDP or a Bayes-
adaptive MDP (Duff, 2002). In the meta-level prob-
lem, each state b; is given by a current base-level state
s¢ and a posterior distribution over the base-level transi-
tion and reward models, # and p, respectively. That is,
by = (plpl's;) where p? = P(0|spag...s;_1as_15;) and
pi = P(u|soagro...s¢—1at—17m¢—1). The meta-level reward
model isthen simply given by the expectation

P(r|pip)siar) = /P(Ttlstatu)pf(,u)du
Ju

= P(r¢|so...stat) Q)
and the meta-level transition model is given by
P(pf vty e |pi Dl sear)

Lips, =P (6ls0ac...s011)] [/9 P(s141]s10:0)p} (0)do

/ 1[piﬁrl=P(;L|so...staﬂ't)] / P(T.t|stat/'l’)p?(#’)dlj’drt
Tt H
= P(Tt8t+1|50...5tat) (2)

where r, is such that pj’ , = P(ulso...s;a.re). In fact,
the meta-level states b, = (p?p!'s;) are equivalent to his-
tories by = sgagrg...Si—1a¢—171—15¢, and the state tran-
sition probability is simply the probability of a partic-
ular history extension r,s:1 given the current history
SpQoTy...St—1a:_1T¢—15¢ and action a;.

An optimal action selection strategy for reinforcement
learning in this setting is given by a policy that obtains
maximum expected reward in the meta-level (belief state)
Markov decision process. However, even though this ob-
servation nicely characterizes optimal action selection for
Bayesian reinforcement learning, there is no efficient way
to compute or even approximate this strategy in a guaran-
teed way (Mundhenk et al., 2000; Lusenaet al., 2001). One
obvious difficulty is that there are far more meta-level be-
lief states (i.e. base-level histories) than original base-level
states. In all but trivial circumstances, there is no hope of
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exactly following an optimal action selection strategy.®

For the most part, work on approximating Bayes op-
timal action selection has followed two approaches:
pre-compilation and on-line computation. In the pre-
compilation approach, one attempts to derive a compact
approximation to the optimal value function (Bertsekas &
Tditsiklis, 1996; Boyan & Moore, 1996) or the optimal
policy (Ng & Jordan, 2000; Strens & Moore, 2002) for
the meta-level belief state MDP. In fact, any approxima-
tion strategy for general POMDPsisapplicablein this case,
although a few interesting specidizations have been at-
tempted for belief state MDPs (Duff, 2002). One potential
shortcoming of the pre-compilation approach is that once
an action selection strategy has been fixed, it is hard to
adapt it to the belief states that are actually encountered
during learning. Moreover, this approach necessarily can-
not obtain a uniformly accurate approximation over the en-
tire state and action space, and there is no guarantee that
the approximation holds over the belief states that are en-
countered in a particular learning episode. Pre-compilation
might nevertheless be the only viable approach if actions
need to be selected in real time (Ng & Jordan, 2000).

In contrast, the on-line approach to approximating Bayes
optimal action selection attends only to the particular be-
lief states encountered during learning, which would seem
to relax the burden on the approximation strategy and of-
fer the prospect of higher quality decisions. The drawback
is that instead of extensive pre-compilation (allowing fast
on-line decisions), these techniques can require nontrivial
computation for each action selection decision.

The simplest on-line strategies are pure myopic strate-
gies. In fact, Bayesian variants of the e-greedy and Boltz-
mann action selection strategies are easy to develop. In
this case one uses the expected Q-function Q;(s,a) =
Byt ump[Qou(s, a)] defined by the current belief state.
Since Bayesian approaches are generally model based, in
that the belief state keeps a distribution over transition and
reward models, the mean Q-value function has to be com-
puted by planning in the underlying mean Markov decision
process defined by the belief state distributions p? and p!'
(Dearden et al., 1999).* The fact that Bayesian on-line ac-

3Perhaps the only well known exception to thisis the result of
(Gittins, 1989) which shows that in the special case where there
arefinitely many actions, each with their own independent (finite)
state spaces (i.e., bandit problems), then optimal action decisions
can be made in polynomial time to maximize the expected sum of
infinite horizon discounted rewards. However, the restrictiveness
of the independence assumption has prevented this approach from
being widely applied in reinforcement learning problems. Beyond
(Salganicoff & Ungar, 1995; Duff, 2002) very few successes have
been reported in this direction.

“Note however that planning in abase-level MDPis much eas-
ier than planning in the meta-level MDP.

tion selection strategies require (even limited) replanning
for every belief state they encounter is probably the single
greatest barrier to their routine use. Nevertheless, replan-
ning is till viable in arange of interesting scenarios, which
we will exploit below. For example, planning is trivia in
bandit problems, and remains feasible in many episodic
problems. Dearden et al. (1999) also show how importance
sampling and prioritized sweeping can reduce the cost of
replanning to just afew sampled models while maintaining
reasonable estimates of Q; (s, a).

One of the most interesting myopic action selection strate-
giesin the Bayesian setting isin fact one of the first action
selection strategiesto have ever been proposed (Thompson,
1933; Berry & Fristedt, 1985).

Thompson sampling Given a current belief state b, =
(p?pl's;), sample a transition and reward model, 6 and ,
from the belief state distributions p? and p/', solve for the
optimal Q-function Qg (s,a) for this model, then select
the optimal action a; = arg max,ca Qo,.(5¢, @).

This technique was originaly proposed by (Thompson,
1933) for bandit problems, and has recently reemerged
in the reinforcement learning literature (Strens, 2000).
Thompson sampling selects actions according to the prob-
ability that they are optimal in models drawn randomly
from the current belief state. Although old, this remains
an elegant and effective action selection strategy that often
outperforms modern proposals (Berry & Fristedt, 1985).
Thompson sampling is not Bayes optimal however, asit is
still myopic. In our experiments we find that it tends to
over-explore (which is obviously true at the horizon).

A more recent action selection strategy of significance is
that of (Dearden et al., 1999), which attempts to take the
effects of exploration explicitly into account (see also (Wy-
att, 2001)). Thisapproach isbased on considering the value
that is gained by improving a Q-value estimate.

Value of perfect information Given the distribution over
action value functions Qg,, (s, a), defined by the current
belief state, 0 ~ p?, 1 ~ pf', for each action a € A, con-
sider the value of learning the exact value Q* (s, a) under
thetruemodel. Let a; and a, bethe actionswith the largest
and second largest expected Q-values respectively. The
gain in value of learning Q* (s, a) for an action a is given
by Gain(Q*(si,a1)) = (Q(ss, az) — Q*(St,al))+ if a =
a1, and Gain(Q*(st,a)) = (Q*(st, a) — Q(st,al))Jr
otherwise, where the mean Q-values are taken with respect
tof ~ pl, u ~ pi'. (That is, value is gained only if
a new action becomes the best, but not otherwise.) The
value of learning the exact Q-value of an action in the cur-
rent belief state is then simply given by the expected gain
VPI(a) = Ey,Gain(Qou(st, a)), which provides an up-
per bound on the myopic value of information of executing
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Figure 1. lllustration of alookahead tree, showing decision (max)

nodes and outcome (expectation) nodes. Once built, optimal value
and action estimates are backed up to the root.

| max | max |

action a. Finally, one chooses the action that maximizes
Qi(st,a) + VPI(a).

Although these myopic strategies are interesting, a short-
coming of all such strategies is that they cannot explicitly
account for the effects that actions have on future belief
states, and therefore can only supply proxy summaries for
the future rewards that might indirectly accrue as the result
of acurrent action.

4. Bayesian spar se sampling

The gap between Bayes optimal and myopic action selec-
tion strategies appears to be intuitively large. For exam-
ple, for afinite horizon problem the Bayes optimal action
is determined by dynamic programming: first solve for the
optimal actions and values at the horizon, and then pro-
gressively back these up to earlier belief states (see Figure
1). Bayes optimal action selection essentially involves enu-
merating possible futures, averaging according to their re-
alization probabilities, and choosing the best action. Itisno
surprise therefore that the only guaranteed way to approx-
imate Bayes optimal action selection at a given belief state
isto simulate the belief state MDP to the effective horizon.

The sparse sampling approach of (Kearns et al., 2001) re-
places myopic estimates of the value of exploration with
explicit lookahead to the effective horizon. This approach
yields a general strategy for approximating optimal ac-
tion selection in Markov decision processes, including the
meta-level belief state MDPs we consider. A generic out-
line of the sparse sampling algorithm for finite horizon
problemsis given in Figure 2.

Note that sparse sampling requires a generative model, but
this is conveniently exactly what a model based Bayesian
approach provides, as shown in Equations (1) and (2). In
this approach, lookahead is performed only by simulation
in the meta-level belief state MDP which is maintained in-
ternaly, not by actually taking actions in the world. That

GrowSparseTree (node, branchfactor, horizon)
If node.depth = horizon; return

If node.type = “decision”
Foreacha € A
child = (“outcome”, depth, node.belstate, a)
GrowSparseTree (child, branchfactor, horizon)

If node.type = “outcome”
For i« = 1...branchfactor
[rew,obs] = sample(node.bel state, node.act)
post = posterior(node.belstate, obs)
child = (“decision”, depth+1, post, [rew,obs])
GrowSparseTree (child, branchfactor, horizon)

EvaluateSubTree (node, horizon)

If node.children = empty
immed = MaxExpectedVal ue(node.bel state)
return immed * (horizon - node.depth)

If node.type = “decision”
return max(EvaluateSubTree(node.children))

If node.type = “outcome”
values = EvaluateSubTree(node.children)
return avg(node.rewards + values)

Figure 2. Sketch of sparse sampling algorithm. Grows a balanced
lookahead tree, enumerating actions at decision nodes and sam-
pling at outcome nodes. Sufficient values of branchfactor and
horizon yield approximation guarantees.

is, sparse sampling is an action selection strategy where,
upon entering a belief state, extensive computation is ex-
ploited to determine an action that would yield near opti-
mal reward over the long run (i.e. to the horizon) in the
meta-level belief state MDP. Once chosen, the action is ex-
ecuted, and anew belief state is entered. To the extent that
the Bayesian posterior concentrates on the true underlying
model, this next belief state would have been influential in
the previous computation.

Ignoring the obviously massive computation it requires to
select each action, sparse sampling has some advantages.
First, as (Kearns et al., 2001) show, it is guaranteed to pro-
duce a near optimal action for any belief state encountered,
not just a restricted class of belief states. Second, sparse
sampling can be easily applied to infinite state spaces. Of
course, the theoretical procedure is too expensive to be ap-
plied in any real problem. But as Figure 2 shows, this pro-
cedure can be parameterized so that the computational cost
can be controlled, by making the outcome branching fac-
tor and lookahead depth inputs to the procedure. Doing so
requires us to forgo any theoretical guarantees of near op-
timality, but of course, one should not be surprised, since
guaranteed approximation in this case is till provably in-
tractable (Mundhenk et al., 2000; Lusena et a., 2001).

Even though sparse sampling can be parameterized to ren-
der a controllable lookahead strategy, it is still not a so-
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GrowSparseBayesianTree (node, budget, p, horizon)

While # nodes < budget
branchnode = BayesDescend(root, p)
If branchnode.type = “decision”
Add outcome then leaf node below branchnode
If branchnode.type = “ outcome”
Add leaf decision node below branchnode
return EvaluateTree(root)

BayesDescend (node, p)

If node.type = “decision”
a = ThompsonSample(node.bel state)
If a ¢ node.children % new branch
return [node,a]
Else % follow
return BayesDescendTree(node.child(a))

If node.type = “outcome”
If possible to branch, with probability p % new branch
return node
Else % follow
[rew,obs] = sample(node.bel state,node.act)
return BayesDescend(node.child([rew,obs]))

Figure 3. A Bayesian sparse sampling algorithm that adaptively
grows alookahead tree.

phisticated action value estimator, and can be easily im-
proved by addressing some shortcomings. Given a belief
state, our god is to use lookahead search to estimate the
long term value of possible actions. This situation is not
unlike game tree search where one wants to expand the
lookahead tree (here an expecti-max tree) intelligently so
that search effort is not wasted and important branches are
explored. The first idea we pursue is not to build a fully
balanced lookahead tree, but instead attempt to grow the
tree adaptively. The intuition is that one need only inves-
tigate actions in detail that are potentially optimal, and not
waste computational resources on proving that unpromis-
ing actions are, indeed, suboptimal. That is, uniformly ac-
curate estimates are not required at every decision node in
the lookahead tree. Our second idea is to use an effective
myopic action selection strategy—specifically Thompson
sampling—to preferentially expand the tree below actions
that at least appear to be locally promising. Finaly, to re-
duce the variance of the estimates at outcome nodes, we
also exploait the fact that unbiased reward expectations, |o-
caly, can be obtained by sampling them from the mean
model, rather than first sampling a model and then sam-
pling rewards from a random model. These ideas lead to
the algorithm shown in Figure 3.

Once grown, the sparse lookahead tree must be evaluated
to choose an action at the root. There are a few subtleties
in doing so effectively. Clearly, values are backed up from
the leaves; averaging at outcome nodes, and maximizing at
decision nodes, as shown in Figure 1. However, when eval-
uating leaf nodes (which are always decision nodes in this

approach) it is important to account for differing depths.
Therefore, at each leaf, the mean posterior reward for each
actionisfirst multiplied by the number of decisionsremain-
ing to the horizon, thus correcting the leaf values to the
same absolute depth. Another important issue is to con-
sider every action at each decision node, even if some were
not sampled during the tree growing phase.® That is, ac-
tions that have not been explored at a decision node are
gtill evaluated by multiplying their posterior mean reward
by the number of decisions remaining to the horizon.

Note that in this overall approach, myopic strategies are
only used to decide where to look ahead in the simulation,
not make any real action selection decisions. Real deci-
sions are left to the full lookahead search. The procedure
exploits the fact that thereis alot of latitude, during looka
head, to make heuristic action choices at the internal deci-
sion nodes (i.e. max nodes). In fact, the Bayesian sparse
sampling procedure can be easily applied to infinite action
spaces, whereas standard sparse sampling isinapplicable if
actions cannot be enumerated. The Bayesian approach also
has an advantage in that it allows one to approximate the
maximum of a set of random variables without enumera-
tion: Given a prior and sampled values, a posterior is de-
termined over the distribution of the remaining variables.
Thus, it is possible to stop whenever the expected poste-
rior maximum value is no larger than the current maximum
value, pluse. Inthisway, it appears as though one can de-
rive sparser sampling bounds in the Bayesian setting that
are applicable to infinite action spaces.

5. Experimental results

To investigate the effectiveness of this sampling approach
we conducted experiments on a number of simple domains
where the planning problem is not difficult. These include
bandit problems, but also episodic reinforcement learning
problems. Our goal in this paper is not to focus on MDP
planning, but rather to demonstrate action selection im-
provements, which isaready achallengeeveninsimplere-
inforcement learning scenarios. (However, subject to cop-
ing with MDP planning challenges (Dearden et al., 1999)
our approach can be applied to richer domains.)

We compare Bayesian sparse sampling (BayesSamp) with
standard sparse sampling (SparseSamp) and standard my-
opic action selection strategies. Theseincluded Bayesian e-
greedy with e = 0.1 (eps-Greedy), Boltzmann exploration
with temperature = = 0.1 (Boltzmann), and interval es-
timation (IE) with a range of two standard deviations, all
using the expected Q-values given the current belief state.

5In the continuous action case we did not consider actions be-
yond those explicitly sampled, although additional local sampling
could be used to ensure that a reasonable number of actions are
considered at each decision node.



Bayesian Sparse Sampling for On-line Reward Optimization

We also compared to Thompson sampling (Thompson) and
the myopic value of perfect information (MVPI), using the
same number of samples as a full lookahead tree of depth

Five Bernoulli Bandits

2 eps—Greedy
+ - Boltzmann
IE

one to estimate the Q-value distributions. Finally, we com- _© Thompson
pared to alookahead strategy for action selection in MDPs 2 . Eeretcarcia,

proposed by (Péret & Garcia, 2004). This technique can
be applied to Bayesian reinforcement learning simply by
treating the problem as acting in a belief-state MDP. The
Péret & Garcia strategy uses fixed length lookahead trajec-

—e— BayesSamp

Average Reward per step
o
]

tories sampled from a current state; employing Boltzmann s 0 o 15 20
selection to choose the actions along each trajectory. Inde-
pendent trajectoriesto afixed horizon H are generated (set Figure 4. Bernoulli bandiits

to H = 5 in our experiments) and the action with the best
overall trgjectory reward on average is selected at the root.

Five Gaussian Bandits

R

For each problem domain, we set a finite horizon time 7'

and measure the rewards accumulated by each action se- 3 Eorzmann”
lection strategy, averaged over 1000 to 10,000 repeats to Thompson
estimate the expected total reward achieved as a function . Peretcarcia
of horizon time. The lookahead strategies were set up to e
give a controlled comparison with each other. First, stan-

dard sparse sampling was run with a given |ookahead depth

(1 or 2) and fixed decision and outcome branching factors,

yielding a balanced tree. Then the total humber of nodes
expanded in the balanced tree generated by sparse sam-
pling was set as amaximum node budget for both Bayesian
sparse sampling and Péret & Garcia sampling. Figures4 to
7 show the results obtained.
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Figure 5. Gaussian bandits

The first domain is a simple bandit problem with five ac- 1-dimensional Continuous Gaussian Process
tions, each yielding {0, 1} rewards according to indepen-
dent Bernoulli distributions with payoff probabilities dis-
tributed according to a Beta prior. Here we see that looka-
head strategies outperform the myopic strategies, even
MVPI which uses comparable computation (Figure 4).

2 eps—Greedy
+- Boltzmann
IE
Thompson
- 2- MVPI
—+— PeretGarcia
—*— SparseSamp
—o— BayesSamp

Average Reward per step

Nevertheless this simple problem does not show much ad- s

vantage for Bayesian over standard sparse sampling. Sim- 0.3

ilar results were obtained for a related five action bandit 0.2l = = o
problem where instead each action yields areward accord- Horizon

ing to an independent Gaussian distribution with means

distributed according to a Gaussian prior (Figure 5). Figure 6. 1-dimensional continuous action Gaussian process

More interesting results are obtained on complex domains

where the action rewards are correlated. Here we con- 2-dimensional Continuous Gaussian Process

ducted experiments in a scenario that involved continuous 2 = eps—Greedy
action spaces. Specifically, we considered problems where T Emenn
the reward distribution over actions is defined by a Gaus- BNV
sian process prior over the action space (Williams, 1999). B et
This creates an interesting exploration problem where re-

wards are correlated between actions, and the acions them-

—<— SparseSamp
selves are not restricted to atrivial finite set.

[

o
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—o— BayesSamp

o

Average Reward per step
o o
> o
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Figures 6 and 7 show the results of the two continu-
ous problems we considered. The first involved a 1-
dimensiona action space and the second a 2-dimensional
action space. In each case, a Gaussian process prior over

4

10 15 20
Horizon

Figure 7. 2-dimensional continuous action Gaussian process
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rewards was defined by an RBF kernel on actions, speci-
fying the covariance between action rewards. (We used a
Gaussian RBF kernel with width parameter 1. The noise
standard deviation was set to o = 0.5.) Technically stan-
dard sparse sampling and MPI are unable to cope with con-
tinuous action spaces, so we sampled actions for them to
consider according to auniform distribution. Figures 6 and
7 show aclear advantage for Bayesian sparse sampling over
standard sparse sampling and the myopic approaches—
using the same number of lookahead nodes as standard
sparse sampling and Péret & Garcia sampling, and similar
computation to MVPI. Surprisingly, Péret & Garcia sam-
pling performed nearly as well in this case, even though it
exhibits weaker performance in the bandit problems.

6. Conclusion

We have proposed a simple approach to improving action
selection quality in model based Bayesian reinforcement
learning. The main advantage is that the approach yields
improved exploration/exploitation decision making when-
ever Bayesian posteriors can be conveniently calculated.
The main drawback of our approach is shared by all model
based Bayesian approaches to reinforcement learning: the
need to repeatedly solve an MDP planning problem. Nev-
ertheless, there are many interesting domains where this
is not a significant barrier, and promising approaches have
been devel oped for mitigating this expense (Dearden et al.,
1999). Another area for future research is to compare
on-line action selection strategies with pre-compilation ap-
proaches (Boyan & Moore, 1996) to verify that the per-
ceived advantages of the on-line approach are real. It is
aso interesting to contemplate the prospect of hybrid ac-
tion selection strategies that combine pre-compilation with
on-line computation, perhaps by alowing a pre-compiled
value function approximation to guide lookahead simula-
tion without the need for on-line MDP planning.
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