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Abstract

We present new, general-purpose kernels for
protein structure analysis, and describe how
to apply them to structural motif discov-
ery and function classification. Experiments
show that our new methods are faster than
conventional techniques, are capable of find-
ing structural motifs, and are very effective in
function classification. In addition to strong
cross-validation results, we found possible
new oxidoreductases and cytochrome P450
reductases and a possible new structural mo-
tif in cytochrome P450 reductases.

1. Introduction

A goal of structural genomics is to determine pro-
teins’ three-dimensional structures from their gene se-
quences. The challenge, once the structure is deter-
mined, is to extract useful biological information about
the biochemical and biological role of the protein in
the organism. With the rapid expansion in the num-
ber of known protein structures, prediction of func-
tion based on structure has become one of the major
aims of bioinformatics. It provides useful information
to biochemical experiments and further improves the
performance of genome analysis.

Primary sequence can often be used to infer function.
However, some protein functions cannot be identified
solely by primary sequence-based methods. In such
cases, functional similarities are found from structure
comparisons. Many methods, including SSAP (Taylor
& Orengo, 1989), DALI (Holm & Sander, 1993), and
CE (Shindyalov & Bourne, 1998), have been used for
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structural comparisons.

There are also methods for predicting function from
structure. Many of them compare the structure
of a protein with unknown function to the struc-
ture of proteins with known function in structural
databases, such as CATH (Orengo et al., 1997) and
SCOP (Murzin et al., 1995). Other methods, such as
SITE (Zhang et al., 1999), FFFs (Fetrow & Skolnick,
1998) and superfamily active site templates (Meng
et al., 2004) use structural motif-related information
to search for function in an unknown structure.

A structural motif is a conserved sub-structural pat-
tern that is common to a set of proteins sharing sim-
ilar structures or functions. Most biological actions
of proteins depend on structural motifs. Discovery of
motifs is a complex process including feature extrac-
tion, structure comparison, discovery and evaluation.
The feature selection step extracts features to be used
for pattern discovery from proteins. Structure com-
parison is the most difficult step. Many methods have
been devised, including pairwise structure alignment
using dynamic programming or superposition to mini-
mize RMSD. Other methods, such as geometric hash-
ing (Holm & Sander, 1995) and 3D coordinate tem-
plates (Wallace et al., 1996) have also been applied.
After structural comparison, patterns matching the in-
put structures are found and evaluated to see whether
they are possible structural motifs. Lately, many new
methods have been proposed for this problem. For ex-
ample, SPratt2 (Jonassen et al., 2002) discovers motifs
in an unsupervised fashion. Trilogy (Bradley et al.,
2002) handles sequence and structure simultaneously
and symmetrically in the search process.

We introduce new kernels for three-dimensional struc-
tural analysis. Our results have applications in motif
discovery and in function classification. As with some
other structural methods, we represent a 3D structure
as a set of its components in 3D space. We show that
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these new methods are sensitive enough to identify
some remote structural similarities that are missed by
regularly-used approaches.

Our first result is a new method for structural motif
discovery. In some cases of motif discovery, the func-
tional motif of a protein can be described by defining
the structure’s size, shape, etc. But more often, the
motif itself is also not completely known, and the re-
searcher has only a more or less rough idea of what to
look for (Schmollinger et al., 2004). Thus it is difficult
to specify what to look for in advance. Further, often
the results of motif discovery are sensitive to the size of
the structure (in terms of number of residues) that is
specified. If the sought structure size is too small, then
one risks missing some of the regulatory patterns in a
motif. Conversely, if the structure size is set too large,
the motif will likely include some irrelevant parts.

Our approach is different from other methods, in that
we do not seek conserved fragments or commonly used
geometrically-defined cells. We assume that a sim-
ple function is mediated primarily by one amino acid.
Thus we focus on identifying small conserved substruc-
tures, each centered on a single amino acid. We define
the size of the substructure as a fixed-radius ball in 3D
space rather than as a fixed number of residues. We
use our new kernel1 KPattern Sim to measure similarity
between pairs of substructures. To avoid missing can-
didate motifs, we examine the substructure centered
at each residue. The highly conserved substructures
are candidate motifs.

In our second result, we tune KPattern Sim for ap-
plication to redox function prediction. Here we
leverage known information about the superfamily of
thiol/disulfide oxidoreductases. Most oxidoreductases
have a CxxC primary sequence motif2 at their active
site. We use this to tune KPattern Sim to oxidoreduc-
tases, resulting in a new kernel KRedox Func. Each
substructure we consider consists of all residues that
lie in a fixed-radius ball in 3D space. The residue at
the center of the ball is called the central amino acid
and the other residues in the ball are called the outer
amino acids. For thiol/disulfide oxidoreductases, both
the Cs in each CxxC motif are seen as central residues.
The outer residues include the residues between two Cs
and other amino acids in a fixed-radius ball centered on
each C. KRedox Func measures similarity between sub-
structures by comparing the types of the outer amino

1While a version of KPattern Sim is positive semidefi-
nite, what we use may not be (Section 2). But for clarity,
we use “kernel” to refer to all our similarity measures.

2Sometimes a serine replaces one cysteine, but for clar-
ity we will refer to it always as the CxxC motif.

acids, the distances from the outer amino acids to the
central amino acids, and distances between the two Cs
in the motif’s center. We compute similarity between
two motif structures using these features.

Our final result is a kernel (K3Dball) designed specifi-
cally for tertiary structure comparison. We define the
similarity between two protein structures S and T as
the sum of structural similarities between any two 3D
balls of S and T that have similar constituents. It is
similar to DALI, CE, etc., in that we make compar-
isons between entire three-dimensional structures (i.e.
it is an entire structure-based method as opposed to
an active site-based method).

In our experiments, we test our methods on struc-
tural superfamilies from CATH and two function su-
perfamilies: thiol/disulfide oxidoreductases and cy-
tochrome P450 reductases. For the two function
families, many thiol/disulfide oxidoreductases have a
thioredoxin (Trx) fold (Martin, 1995). If a 3D struc-
ture is known, one can easily determine whether a
given protein possesses a fold. However, some pro-
teins without the fold also have redox function, such
as PDB-1d4u. Cytochrome P450 reductase is found in
the endoplasmic reticulum of most eukaryotic cells and
is an integral component of the monooxygenase system
transferring electrons from NADPH to cytochrome
P450 via FMN and FAD co-factors. Cytochrome P450
reductase may also donate electrons to heme oxyge-
nase, cytochrome b5, and the fatty acid elongation
system, and can reduce cytochrome c. For this family,
no conserved motif is known.

We show that our kernels are sensitive to the fold
in tertiary structure, although they are not designed
for fold identification. They also capture similarities
in thiol/disulfide oxidoreductases beyond the Trx-fold
that are missed by DALI and CE. As a result, they
can be used to find new thiol/disulfide oxidoreduc-
tases, since some such proteins that do not possess
Trx-fold might be missed by traditional methods. We
also successfully apply our kernels to P450 reductases,
identifying several possible candidates in PDB. Since
K3Dball and KPattern Sim do not require any orienta-
tion of the 3D structures or any other prior informa-
tion about the protein families, our methods should be
applicable to many protein families.

Our motif discovery method offers two advantages.
First, it doesn’t require any prior knowledge. Sec-
ond, it is very sensitive to small motifs and can also
find large motifs by combining small motifs that are
close to each other in 3D space. Our kernel-based
protein function classification methods also have ad-
vantages. First, they are simple and very fast: using
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KPattern Sim, KRedox Func and K3Dball are each about
100 times faster than DALI and CE, and can quickly
search PDB. Second, they are very sensitive while still
maintaining low false positive rates.

The rest of this paper is as follows. In Section 2
KPattern Sim is defined. In Section 3 we introduce
KRedox Func. In Section 4 we define K3Dball. Then
in Section 5, we describe how we use the above kernels
in motif discovery and function prediction. We sum-
marize our experimental results in Section 6, and we
conclude in Section 7.

2. KPattern Sim for Motif Discovery

Recall the definition of central and outer amino acids
from Section 1. Each amino acid in a protein is the
central amino acid of a set of substructures, where the
set comes from varying the radius of the ball. The
type of the central amino acid, the types of the outer
amino acids and the distances from the outer amino
acids to the central amino acid are three major features
of a substructure. KPattern Sim computes similarity of
two substructures based on these features.

(1) KPattern Sim(S, T ) — Similarity of two substruc-
tures S and T . Here, the similarity equals zero if the
central amino acids of S and T are of different types. If
S’s and T ’s central amino acids are the same, then we
compute the similarity of S and T by summing the 3D
similarities between each amino acid of S and its most
similar amino acid from T , where similarity between
outer amino acids is based on difference in proximity
to the central amino acid. We make our measure sym-
metric by performing the same operation from T to S.
The sum of these two values is used for the similarity
of two substructures. Formally, KPattern Sim(S, T ) =



























|S|
∑

i=1

AA ssim(S[i], T [i′]) +

|T |
∑

j=1

AA ssim(T [j], S[j′])

When S[1].type =T[1].type

0 otherwise

where S[i] is the ith amino acid of S. S[j′] is the most
similar amino acid in S to T [j], where similarity is
determined by AA ssim, i.e.

j′ = argmax
j′′:S[j′′].type=T [j].type

{AA ssim(S[j′′], T [j])}. (1)

S[1] and T [1] are the central amino acids of S and T .

(2) AA ssim(S[i], T [j]) — similarity of two amino
acids S[i] and T [j] in 3D space. Amino acid 3D simi-
larity is defined as follows: if two amino acids are not

of the same type, then the similarity is zero, else the
similarity is computed using the following procedure:
first we compute the Gaussian RBF value of the dis-
tance from S[i] to S[1] and the distance from T [j] to
T [1], then we divide the value by the product of dis-
tance from S[i] to S[1] and the distance from T [j] to
T [1]. The intuition is that amino acids that are close
to the central amino acid should have a bigger effect
on the central amino acid. AA ssim(S[i], T [j]) =

{

RBF (dist(S[i],S[1]),dist(T [j],T [1]))
dist(S[i],S[1])·dist(T [j],T [1]) if S[i].type=T [j].type

0 if S[i].type6=T [j].type

where dist(S[i], S[1]) is the Euclidean distance from

S[i] to S[1] and RBF (x, x′) = exp
(

−‖x−x′‖2

2δ2

)

, where

δ > 0 is a parameter.

When computing KPattern Sim, if we use all possible
values3 of i′ for which T [i′].type = S[i].type (i.e. if we
do not restrict i′ and j′ as in (1)), then it is easy to
see that KPattern Sim(S, T ) is a positive semidefinite
kernel. This is because it is well-known that RBF is a
kernel and that sums of kernels are themselves kernels.
However, the asymmetry introduced by restricting the
values of i′ and j′ per (1) makes it unclear whether
KPattern Sim is a true kernel. Despite this, our results
show that KPattern Sim works well in practice.

3. KRedox Func for Redox Classification

KRedox Func is a modification of KPattern Sim. In
many thiol/disulfide oxidoreductases, two cysteines
separated by two other residues form a functional
motif, which is named the CxxC motif. This mo-
tif is conserved in the majority of members in the
thiol/disulfide oxidoreductases. The two cysteines
are the two central amino acids of this motif. The
type of the outer amino acids, positions of the outer
amino acids relative to the two central amino acids
and distance between the two central amino acids
are the three major features of the motif structure.
KRedox Func computes similarity of two substructures
based on these features.

Before applying KRedox Func to thiol/disulfide oxi-
doreductases, we orient4 the structures. We first move
the protein structure to place the first C in CxxC mo-
tif at the origin (0, 0, 0). Then we rotate the protein

3In experimental results that are omitted, we redefined
KPattern Sim to fit this revised definition. Our results in
motif identification were adversely affected.

4The only reason for this is to compute coordinate-wise
distances in AA redoxsim. Substituting Euclidean dis-
tance removes the need to orient structures but degrades
performance slightly.
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around two axes to place the second C at (c, 0, 0) for
some c > 0 and to place the first x in the motif at
(a, b, 0) for a, b > 0.

(1) KRedox Func(U, V ) — Similarity of two structures
U and V . We sum the 3D similarities between any
amino acid coming from U and any amino acid coming
from V to compute the similarity of U and V . Then
the sum of the two values is multiplied by the Gaus-
sian RBF similarity of distances between the pairs of
central amino acids of U and V . The result is the
similarity of the two structures.

KRedox Func(U, V ) =

|U |
∑

i=1

|V |
∑

j=1

[AA redoxsim(U [i], V [j])

·RBF (dist(U [1], U [2]), dist(V [1], V [2]))] ,

where U [i] is the ith amino acid of U and V [j] is the
jth amino acid of V . dist(U [1], U [2]) is the distance
from U [1] to U [2]. U [1] is the first C in the CxxC
motif, and U [2] is the second C. RBF (x, x′) returns
the Gaussian RBF similarity of x and x′.

(2) AA redoxsim(U [i], V [j]) — similarity of two
amino acids U [i] and V [j] in 3D space. Formally, if
U [i].type 6= V [j].type, AA redoxsim(U [i], V [j]) = 0.
If U [i].type = V [j].type, AA redoxsim(U [i], V [j]) =

RBF ((U [i].x − U [1].x), (V [j].x − V [1].x))

·RBF ((U [i].y − U [1].y), (V [j].y − V [1].y))

·RBF ((U [i].z − U [1].z), (V [j].z − V [1].z))

·RBF ((U [i].x − U [2].x), (V [j].x − V [2].x))

·RBF ((U [i].y − U [2].y), (V [j].y − V [2].y))

·RBF ((U [i].z − U [2].z), (V [j].z − V [2].z)) ,

where U [1] is the first C in CxxC, U [2] is the second
C, and U [i].x is the x coordinate of U ’s ith residue.

A general procedure to build variants of KRedox Func

for other conserved motif structures is to use the
residues of the conserved structure as central amino
acids and ones near them as outer amino acids, and
following a procedure similar to our derivation of
KRedox Func.

4. K3Dball for Structural Comparison

We think of a protein as a three-dimensional space
filled with 3D balls, where each ball has an amino acid
at its center (central amino acid), and includes the
outer amino acids that lie within a specified distance
from the center. Each amino acid in a protein is the
central amino acid of a set of substructures, where the
set comes from varying the radius of the ball. Thus

for a given radius r, if a protein has m amino acids,
it has m 3D balls. By defining a measure of similar-
ity between two balls, we can compare two proteins S

and T by summing the similarities of their constituent
balls. The amino acids are encoded by their amino
acid type, and a coordinate set (x, y, z) calculated as
the mean coordinate of the residue’s side chain atoms.

The key ideas of K3Dball are as follows: the more sim-
ilar 3D balls two proteins share, the more similar the
two structures are. (Two balls are similar when they
have similar constituents.) Since we consider all pairs
of balls between two structures, K3Dball measures sim-
ilarity of entire structures.

We define similarity of two balls based on the type of
the central amino acid and the number of outer amino
acids two substructures share. We consider each pair
of 3D balls (with a fixed radius r) of the proteins S and
T . If two balls have the same type of central amino
acid and have at least L outer amino acids match in
common, then we say that these two balls have similar
constituents. (We do not consider the effect of the
distance inside such a ball.) An example is in Figure 1.
If the radius r is indicated by the circle and L = 3, then
3D balls s and t are similar, since these two balls share
the 4 outer amino acids A, A, D and E. In our kernel,
r and L are parameters that can be varied to capture
various radius length and similarity levels, i.e. we can
compare as many or as few residues as we want.

s t

Figure 1. Example of two 3D balls s and t.

(1) K3Dball(S, T ) — Similarity of two proteins S and
T . Here, we sum the similarities between all pairs of
3D balls from S and T . The result is a measure of the
similarity of two entire 3D structures:

K3Dball(S, T ) =

|S|
∑

i=1

|T |
∑

j=1

Ball sim(BallS[i], BallT [j]) ,

where BallS[i] is the ball centered at S’s ith amino
acid and |S| is the number of amino acids in S.

(2) Ball sim(s, t) — similarity of balls s and t. If two
structures have similar constituents, then the similar-
ity is the number of pairs of outer amino acids shared
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by the two structures, else the similarity is zero:

Ball sim(s, t) =

8

>

>

>

>

>

<

>

>

>

>

>

:

0 if s and t have
different central AAs

0 if Num pairs(s, t) < L
Num pairs(s, t) if Num pairs(s, t) ≥ L

and s and t have same
type of central AAs

where L is a threshold stipulating minimum similarity.

(3) Num pairs(s, t) — number of pairs of outer amino
acids shared by s and t. There are 20 amino acid types,
so we use the array Vs[1 : 20] to represent s. Vs[i] =
number of type i outer amino acids in 3D ball s.

Num pairs(s, t) =

20
∑

i=1

Min(Vs[i], Vt[i]) .

Theorem 1 K3Dball(S, T ) is positive semidefinite.

Proof: Let k be a constant that is larger than the
number of amino acids in any structure that we will
analyze with our kernel. Thus we know that each 3D
ball can have at most k outer amino acids. Then Vs[1 :
20] can be represented by V ′

s [1 : 20][k], where V ′
s [i][j]

is 0 or 1. If s has m type t amino acids, then V ′
s [t][j]=1

for j ≤ m and V ′
s [t][j]=0 for j > m. Obviously

Num pairs(s, t) =

20
∑

i=1

k
∑

j=1

(V ′
s [i][j] · V ′

t [i][j]) .

Because Num pairs(s, t) can be written as an ordi-
nary dot product, it is a positive semidefinite (PSD)
kernel. It is well-known that aK(·) is a PSD ker-
nel if a ≥ 0 and K(·) is a PSD kernel. Therefore
Ball sim(s, t) is a PSD kernel. It is also well-known
that the sum of PSD kernels is also a PSD kernel.
Therefore K3Dball is also a PSD kernel.

5. Structural Motif Discovery and

Protein Function Classification

5.1. Structural Motif Discovery

We use the following procedure to employ
KPattern Sim to discover structural motifs. First
we select a random set {P1, . . . , Pn} of proteins
from the superfamily in question. We represent each
protein Pi as the set {SPi

1 , . . . , SPi

mi
} of all of the

substructures in Pi. I.e. the set of all substructures of
radius r centered at each amino acid in Pi. For each
substructure SPi

j , we use KPattern Sim to compute
its similarity to all the substructures in protein Pi′ .
The largest such similarity is used to represent the
similarity from substructure SPi

j to protein Pi′ , i.e.

strucsim(i, j, i′) = max
1≤j′≤m

i′

KPattern Sim(SPi

j , S
P

i′

j′ ) .

We repeat this for all proteins Pi′ , 1 ≤ i′ ≤ n, i′ 6= i

and sum the results to get a fitness for SPi

j :

fitness(i, j) =
n

∑

i′=1,i′ 6=i

strucsim(i, j, i′) .

For each protein Pi, we sort its substructures by their
fitnesses. The most fit substructures are those in
Pi that are most highly conserved across the sample
{P1, . . . , Pn}. By examining each sorted list for a rela-
tively large “gap” in fitness values, we can identify can-
didates for structural motifs in each Pi. Denote this
set SPi

⊆ {SPi

1 , . . . , SPi

mi
}. We create a set of global

candidates S =
⋃

i SPi
and sort it by fitness. The top

substructures in S are possible structural motifs.

5.2. Protein Function Classification

We used two machine learning techniques with our ker-
nels to model and classify test proteins: support vec-
tor machines (using SVMlight(Joachims, 1999)) and
a variant of k nearest neighbor (kNN). The kNN
method we use is slightly different from the traditional
kNN method. Given a new (unlabeled) protein S to
classify, we first compute the similarities between S

and all the positive proteins in the training set and
take the mean of the similarities of the top k% positive
proteins most similar to S. We use the same process
for negative proteins. If the mean similarity between
S and the positives is significantly larger than that for
the negatives, then we predict S to be positive, other-
wise negative.

6. Experimental Results

6.1. Structural Motif Discovery

We tested KPattern Sim on motif finding in
thiol/disulfide oxidoreductases and Cytochrome
P450 reductase. We used each amino acid in each
protein as the central amino acid of a substructure,
with a radius of 6 Å. Since the amino acids that flank
the central amino acid are potentially important, we
also added to the set of outer amino acids the two that
lie immediately upstream and the two immediately
downstream from the central amino acid, if they are
not already included in the 6 Å ball.

We used all known thiol/disulfide oxidoreductases in
PDB with known tertiary structure for our first test
set. Following the procedure of Section 5.1, several
substructures had sufficiently high fitnesses to be con-
sidered structural motifs and all of them were similar
to each other, each centered at a cysteine. Evaluation
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of the counterparts5 to the conserved substructure in
each protein clearly shows that almost all the counter-
parts have two cysteines and center on one of them.
We also found most of them also have a proline near
the two cysteine in 3D space. Such a conserved struc-
ture is already known (Fetrow & Skolnick, 1998).

We also tested on Cytochrome P450 reductases. The
number of Cytochrome P450 reductases with known
tertiary structure is about 10 and no conserved struc-
ture motifs are known. Following the procedure of Sec-
tion 5.1, we found a substructure centered at a glycine
that is well conserved. This conserved substructure S

also has another glycine as an outer amino acid. Since
the data set is so small, it is difficult to draw con-
clusions about S. But it is interesting to note that
S’s counterparts in several training proteins (PDB-
1AMO, PDB-1B1C, PDB-1JA0) are related to the
known Cytochrome P450 reductase docking surface,
which is most likely a major portion of the Cytochrome
P450’s binding surface as evidenced by the inhibition
of cytochrome P450 reactions by Cytochrome c (Wang
et al., 1997). Since S resembles a docking surface in
the above positives, there is some evidence that it is a
conserved substructure.

We conclude that our method was sensitive enough to
identify the known structural motifs in thiol/disulfide
oxidoreductases and selective enough to avoid false
positives. It also found something interesting from Cy-
tochrome P450 reductases. Since our method started
with no prior information about either superfamily’s
structure (it only started with the 6 Å radius, which
was chosen as a generally reasonable value for the pa-
rameter), this method appears to be a good approach
to the general structural motif discovery problem.

6.2. Structural Classification

We used a leave one out test to evaluate K3Dball on
general-purpose structural classification. Ten super-
families were retrieved from CATH. CATH clusters
proteins at four major levels: class, architecture, topol-
ogy and homologous superfamily. Homologous su-
perfamilies group together protein domains which are
thought to share a common ancestor and can there-
fore be described as homologous. Proteins in each
sequence family have sequence identities ≥35%. We
tested three superfamilies from mainly Alpha class,
three from mainly Beta class, and four from mixed
Alpha and Beta classes. For each superfamily, we in-
cluded around 20 proteins. To make sure that the

5We define protein P ’s counterpart to a substructure S
Q
i

in protein Q as the substructure in P that is most similar
to S

Q
i using our similarity measure.

Table 1. Summary of leave-one-out test results for 10 su-
perfamilies from CATH. (TP means true positive rate, TN

means true negative rate.)

Super TP for TN for TP for TN for

Family kNN kNN SVM SVM

1.10.238.10 80% 95% 66.7% 100%

1.10.760.10 85.7% 93% 71.43% 95%

1.20.120.200 81.25% 94% 50% 97%

2.40.10.10 85% 95% 85% 100%

2.60.40.30 85% 100% 85% 100%

2.60.40.420 89.5% 99% 79% 99%

3.20.20.80 88.5% 95% 84.6% 99%

3.20.20.90 85% 98% 75% 98%

3.40.50.150 77% 89% 60% 98%

3.40.50.300 91% 92% 72.7% 100%

test proteins are not too similar, all test proteins came
from different sequence families. The negative set (se-
lected randomly from PDB) consisted of 100 proteins.
For each test, we modified the negative set a little by
deleting the proteins coming from the test superfam-
ily. In our experiments, we found that different fami-
lies are sensitive to different 3D ball radii. In general,
the range of radii we used was from 7.5Å to 9.0Å. We
set L = 9 for all the tests.

We used leave one out test for the experiment, where
we trained on all but one member of the data set,
which was withheld from training and tested. This was
done for each member of the training set. The overall
performance for the ten tests was generally quite good
(Table 1). For kNN, the average true positive rate
is about 85% and average true negative rate is about
95%. For SVM, the average true positive rate is about
72.5% and average true negative rate is about 98.5%.
In other words, given 20 positive proteins (from one
superfamily but different sequence families), we can
successfully identify 17 of them at a false positive rate
of 5%. The test shows that our method can success-
fully identify general fold similarities.

6.3. Function Classification

6.3.1. Leave One Out Test

Since the number of Cytochrome P450 reductases with
known tertiary structure is small, we only tested our
method on thiol/disulfide oxidoreductase in a leave one
out test. We extracted 21 thiol/disulfide oxidoreduc-
tase from the PDB database for our test. Seventeen of
them are positive proteins with Trx-fold, four are pos-
itive proteins without Trx-fold. The average pairwise
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sequence identity in the positive data set is 17%. The
negative set (selected randomly from PDB) consists of
100 non-redox proteins having CxxC. Using K3Dball

and KPattern Sim does not require prior knowledge.
Using KRedox Func requires knowledge of the location
of the CxxC active site. This information is known for
the 21 positive proteins in our data set, and it is also
known that each CxxC site of each of the 100 nega-
tive proteins is not a redox active site. Thus when we
trained our classifiers, we used each of the 21 known
active sites from the 21 positives as a positive redox
structural motif, and we used each CxxC site from
each negative (147 substructures total; some proteins
have multiple CxxCs) as a negative (non-redox) sub-
structure. Of course, when classifying new (unlabeled)
proteins as redox or non-redox, the true active site is
unknown. Thus when testing our trained classifiers,
we tested on the CxxC site of each test protein, pre-
dicting it as positive if at least one site is predicted as
positive.

We used a leave one out test. In Table 2, we see that
when used with kNN, KRedox Func, K3Dball (r = 7.5 Å
and L = 9), and KPattern Sim each6 identified at least
15 of the 17 positives with Trx fold and at least 2 of
the 4 without the fold with at most 5% false positive
rate. This result shows that our new methods can
find 3D similarities of redox proteins. Future work is
to investigate why modified kNN performed so much
better than the SVM.

We also tested DALI on each entire structure of the
proteins in the training set. With DALI, the prediction
of test protein S was based on the fraction of positive
examples and negative examples that have significant
similarity to S in the training set. (We define signif-
icant similarity as a z-score ≥ 2.0.) If the fraction of
similar positive examples is higher than that of the
similar negative examples, the protein is classified as
positive, otherwise negative7. DALI identified 100% of
the redox proteins with the Trx fold, but no positive
without the Trx fold was found. We also tested CE
on this data with similar results. Thus when measur-
ing similarity with DALI or CE, the positive proteins
lacking the Trx fold were more similar to the negative
proteins than to the positive ones. Finally, we tried
hidden Markov models on the entire primary sequence,

6To use KPattern Sim for function classification, we use
our motif discovery method to find the most conserved sub-
structure in the training set, then use KPattern Sim to test
whether a given protein has a substructure that is similar
to the motif we found. If it does, we predict it positive.

7The intuition behind this rule is that if we simply con-
sidered similarity to only positives, then the false positive
rate would be unacceptably high. This was corroborated
by results not shown.

Table 2. Summary of leave-one-out test results for
thiol/disulfide oxidoreductases. (TP means true positive
rate, TN means true negative rate)

TP for redox TP for redox TN

with fold without fold

HMM (primary structure) 70.6% 0% 98%

DALI(entire structure) 100.00% 0% 97%

CE (entire structure) 100.00% 0% 98%

KP attern Sim + kNN 88.23% 50% 98%

KP attern Sim + SV M 82.35% 50% 100%

KRedox F unc + kNN 100.00% 75% 99%

KRedox F unc + SV M 94.12% 50% 98%

K3Dball + kNN 94.12% 50% 95%

K3Dball + SV M 70.6% 50% 99%

which yielded the worst results.

DALI and CE identified 100% of the positive proteins
with the Trx fold, but no positives without the fold.
Finally, we note that our methods were each over 100
times faster than DALI and CE. Thus our kernels can
very quickly find similarities among thiol/disulfide ox-
idoreductases beyond the Trx fold.

6.3.2. Database Search

Using the same training set as above, we used kNN
with KRedox Func and K3Dball to search for oxi-
doreductases in PDB, with 28385 total sequences.
KRedox Func with kNN identified 266 candidates as
positive, and K3Dball identified 282 candidates. Over
90% of the known thiol/disulfide oxidoreductases were
identified by each method. We also found several can-
didate thiol/disulfide oxidoreductases. Future work is
to examine these for redox function.

From Section 6.1, we found a conserved substructure
S in Cytochrome P450 reductases. Each known Cy-
tochrome P450 reductase in our data set has a counter-
part to S. We used the counterparts to form a train-
ing set for kNN with KPattern Sim to search for other
proteins in PDB that have similar substructures. We
identified 351 candidates. We also used our set of pos-
itives to train a kNN classifier with K3Dball, which
found 66 candidates. In both cases, All known posi-
tives were found with true negative rates above 99.5%.
With KPattern Sim, we also found NADPH ferrodoxin
reductase, which is one of the two bacterial proteins
that fused to give Cyt. P450 reductase. Thus our
method identified a protein that was a precursor to
one from the P450 superfamily. The other hits need
to be further examined.
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7. Conclusions

We introduced new approaches for protein tertiary
structure comparisons, motif discovery, and function
classification. KPattern Sim for motif discovery is dif-
ferent from other methods as it examines all possible
substructures that lie in a fixed-radius ball centered
at each amino acid in the protein. K3Dball repre-
sents a protein as a set of 3D balls in 3-dimensional
space. Similarity between proteins is defined by a
sum of structural similarities of balls having similar
constituents. Since all possible balls are considered,
K3Dball quantifies similarity between entire structures.
Our kernels are designed to be simple and fast to com-
pute (over 100 times faster than DALI and CE) and
are very general. Experiments showed that K3Dball

works well for ten structural families from CATH and
the two function families thiol/disulfide oxidoreduc-
tases and cytochrome P450 reductases. Further, all
our methods can find thiol/disulfide oxidoreductases
without the Trx fold, which cannot be identified by
other popularly-used methods. We also found that
KPattern Sim can successfully identify the structural
motif in thiol/disulfide oxidoreductases and can cap-
ture the functional similarity in those motifs. It also
found a candidate structural motif from cytochrome
P450 reductases. K3Dball and KPattern Sim do not re-
quire orientation of the structures or prior information.
Thus they should be applicable to many protein fam-
ilies and offer a viable alternative to other methods of
protein tertiary structure comparison.
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