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Abstract

The proliferation of text documents on the
web as well as within institutions necessitates
their convenient organization to enable effi-
cient retrieval of information. Although text
corpora are frequently organized into concept
hierarchies or taxonomies, the classification
of the documents into the hierarchy is ex-
pensive in terms human effort. We present a
novel and simple hierarchical Dirichlet gener-
ative model for text corpora and derive an ef-
ficient algorithm for the estimation of model
parameters and the unsupervised classifica-
tion of text documents into a given hierar-
chy. The class conditional feature means are
assumed to be inter-related due to the hi-
erarchical Bayesian structure of the model.
We show that the algorithm provides robust
estimates of the classification parameters by
performing smoothing or regularization. We
present experimental evidence on real web
data that our algorithm achieves significant
gains in accuracy over simpler models.

1. Introduction

The organization of text corpora in hierarchies is a
convenient approach for the management of the infor-
mation comprised therein, since it enables increased
efficiency of search, and accuracy of retrieval of doc-
uments relevant to the needs of the end user. Web
directories are well known examples of the scenario,
where the most relevant Web pages are classified into a
set of categories structured as a hierarchy (e.g., the di-
rectories of LookSmart™, Yahoo!™, and Google™
with the Open Directory Project initiative®).

! An open source initiative aimed to promote a compre-
hensive Web directory <http://www.dmoz.org>

Appearing in Proceedings of the 22™¢ International Confer-
ence on Machine Learning, Bonn, Germany, 2005. Copy-
right 2005 by the author(s)/owner(s).
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Figure 1. A snapshot of the sub-directory Archaeology ex-
tracted from Google. Each node is represented by labels
and it contains some documents.

A concept taxonomy can be defined as a hierarchy (or
tree) of categories. Each category (sometimes referred
to as class or concept) is represented by a node, which
is described by a set of linguistic labels (or keywords)
that denote the “semantic meaning” of the category.
In addition the directed edges between nodes may rep-
resent the relationships between categories. Ideally,
the nodes near the top of the tree represent general
concepts, while the deepest nodes (i.e., the leaves) rep-
resent specific concepts. Each object in the corpus
belongs to one (in some applications, more than one)
category that best describes the object. Figure 1 is
a small example of taxonomy, where documents are
found in each class.

Although building a domain specific concept hierar-
chy is in itself a challenging task, manual filtering and
classifying documents within these taxonomies are sig-
nificantly more expensive in terms of time and effort.
Consequently there is considerable interest in develop-
ing automated tools to organize documents into hier-
archies of concepts or taxonomies.

We address the problem of automatic classification
of textual information (i.e., documents, web pages,
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etc.) into a concept taxonomy defined by an editor
to reflect the desired organization of the data. Se-
bastiani (Sebastiani, 2002) has written an excellent
survey on machine learning methods for text cate-
gorization. Although there is considerable previous
work on hierarchical classification of textual docu-
ments using many different approaches (e.g., Neu-
ral Networks (Ruiz & Srinivasan, 2002), SVMs (Du-
mais & Chen, 2000; Sun & Lim, 2001; Zhang & Lee,
2004; Hofmann et al., 2003), Probabilistic (Ceci &
Malerba, 2003; Chakrabarti et al., 1997), Association
Rules (Wang et al., 1999), etc.) most of it is directed
towards the construction of document classifiers from
labeled training data (i.e., supervised learning).

However, such an approach is often impractical be-
cause of the necessity to provide labeled training exam-
ples whenever a taxonomy is created or modified. The
solution here is to automatically organize a given col-
lection of unlabeled documents according to the new
taxonomy specifications (nodes’ keywords and the hi-
erarchy) — a process known as bootstrapping (McCal-
lum & Nigam, 1999). We can view bootstrapping as
a preliminary step in a complex process to create and
manage a text corpus. This initial step supports a hu-
man in labeling and classifying a set of unlabeled ex-
amples resulting in a labeled dataset that would even-
tually be used to train supervised classifiers to classify
new documents as the corpus expands.

By the very nature of the problem the data is sparse,
owing to the growth of the size of the taxonomy with
the number of documents to enable easy management.
That is, the number of classes grows with the amount
of data in the corpus, resulting in a situation where the
number of documents per class is never large enough
for accurate parameter estimation. Therefore, simple
approaches such as Naive Bayes or similarity based
classification inevitably have poor accuracy. The ef-
fects of sparse data on parameter estimation and con-
sequently on classification accuracy can be alleviated
by regularization or smoothing, which are essentially
variance reduction techniques.

This approach is fundamental to the EFM with shrink-
age algorithm proposed in (McCallum et al., 1998).
They propose a regularization scheme based on a gen-
erative model for classifying documents on the leafs of
a taxonomy. Each word in a document at the leaf is
assumed to be generated by one of the nodes along the
path from the root to the leaf. Under the generative
model they derive an algorithm to obtain shrinkage es-
timators for class-conditional word probabilities. The
shrinkage estimator derived from our model involves
just one smoothing parameter as opposed to several

parameters per leaf node in Nigam et al. Moreover,
although their algorithm can be extendend to a sit-
uation where internal nodes of the hierarchy are also
valid classes, their generative model is not applicable.
We propose a simple generative model directly for the
parameters (or, loosely, the reference vectors) of the
nodes, which is applicable if the documents are to be
classified also into internal nodes.

As an alternative solution to the small-sample problem
in text classification, Huang et al. populate a topic hi-
erarchy by automatically gathering information from
the web by making search queries (Huang et al., 2004).
Both the formulation of the query (using local key-
words and those of the parent) and the subsequent
computation of node reference vectors from the docu-
ments collected (the documents at a node comprise all
the documents of its subtree) uses the structure of the
hierarchy.

Bayesian methods have been extensively used in ma-
chine learning because they provide a theoretical
framework to analyze and design decision systems as
well as a way to incorporate prior knowledge about the
problem. A Bayesian model is described by its param-
eters as well as prior distributions for the parameters.
The Bayesian model is learnt by estimating its param-
eters from the observed data under the assumed prior.
Hierarchical® Bayesian models are used to define and
exploit inter-relationships between the parameters of
a Bayesian model, by use of so-called hyperpriors, i.e.,
the prior distributions of the parameters of the priors
of the model parameters. Hierarchical Bayesian mod-
els have been widely used in the absence of sufficient
data because they afford a way to pool data from var-
ious sources to obtain robust estimates of the model
parameters (Gelman et al., 2003).

We propose a Hierarchical Dirichlet generative model
for the documents in the corpus and derive an unsu-
pervised classification method based on the EM algo-
rithm to classify a set of text documents into a given
concept hierarchy defined only by the linguistic labels
at the nodes and by the hierarchy of the nodes. Al-
though Dirichlet priors have been extensively used for
multinomial data, the novelty of our contribution lies
in the specification of a model with dependent Dirich-
let priors where the dependence is influenced by the
structure of the concept taxonomy. The main con-
tributions of this paper are the general probabilistic
generative model for documents in a hierarchy, the al-
gorithm for supervised and unsupervised learning of

2We use the word hierarchical in the sense of the tree
of concepts as well as the statistical model. The context,
however, should prevent any confusion.
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its parameters, and the empirical evidence that our
algorithm achieves a significant improvement in classi-
fication accuracy over a Naive Bayes and a simple EM
based classification algorithms.

2. Hierarchical Dirichlet Model

Our generative model for a document in the corpus
can be described as follows.

e A document d is a sequence of words drawn from
the vocabulary V with |V| = k.

e The probability of the document d given the class
(or node) i in the hierarchy is given by

k

p(dli) = (Idl H d, H (1)

where d; is the number of occurrences of the jth
word of the vocabulary in document d. That
is the parameter vector 6; = (0;1,...,0;)7 de-
scribes the parameters for a multinomial distri-
bution (i.e., 8;; is probabilities of the jth word of
the vocabulary for class 7).

We note that, contrary to most previous work
where documents are classified only on the leaves
of the concept hierarchy, we consider every node
in the concept hierarchy as a valid class into which
some of the documents belong.

e Furthermore the parameter vectors #; themselves
have Dirichlet prior distributions®.

6, ~
0il0paiy ~

Dir(1,
Dir(op,;)) otherwise

.., 1) ifiis the root node

where pa(i) identifies the parent of node i and
o is a constant smoothing parameter chosen in
advance.

Note that the prior for the parameter vector for a
class is parameterized by the true parameter vec-
tor of its parent class, signifying that our proposed
Hierarchical Dirichlet model has a hierarchical struc-
ture identical to the hierarchy (the tree) of the classes.
Another way to view the model is to note that the

3We recall that Dirichlet is the conjugate prior
of multinomial distribution. For X ~ Dir(v) ie.,

P = (o) = T

and covariance matrix are given by E[X] = T v and
v;

+ diag(F[X]))

the mean

(X X|E[X]T

)= ﬁ(—ff[ ]

Figure 2. Hierarchical organization of documents.

parameters along a path from the root to a leaf are
generated by a random walk mechanism where the pa-
rameter o controls the step size. Furthermore, we use
the uniform (i.e., non-informative) prior for the root
node. A large value for ¢ indicates that the parameter
vector for a node is tightly bound to that of its parent.
We also note that for most generative models for doc-
ument hierarchies the document length is assumed to
be generated by a class-independent Poisson distribu-
tion. We do not incorporate it into our model because
it does not play a role during classification.

The intuitive justification for our model is that the
concept at a node, being more general, subsumes the
concepts of its children. This is implicitly encoded in
the model because we have

2.1. Parameter Estimation

We now describe how the parameters of the model
can be learnt from data. First let us consider the
case where the data consists of labeled documents
for every class. Let n; = (n;1,...,n4%)7 be the vec-
tor that describes the number of occurrences of each
word of the vocabulary in all the documents at class
i and let N; = Zj ni;. We could say that n; is a
sort of meta-document built merging all the docu-
ments in the node i (see Figure 2). We recall that
n;|0; ~ multinomial(6;).

The estimate for the parameter vector 6; for a node
i is updated iteratively given the data at the node
and the previous estimates of the parameters at its
neighbors. We will now derive the update formulae
for the iterative algorithm.

At the leaves of the hierarchy we perform a Bayes Min-
imum Mean Squared Error Estimate (MMSE) (which
is the a posteriori expectation of the random param-
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eter vector) given the data under the Dirichlet prior
parameterized by the parameter vector of the parent.
This is straightforward since the Dirichlet distribution
is a conjugate prior for the parameters of a multinomial
distribution. Hence the estimate for the parameters of
a leaf node i are:

é _ 1
Zj ni; + 0 Zj Opa(i)j

1 A

(ni =+ O’épa(i) )

3)

For an internal node its parameter vector must be es-
timated given the data at the node, the parameter
estimate at its parent and the estimates of the pa-
rameters at its children. We can view this step as
estimating the parameter vector at a node consider-
ing the parameters of its children also as part of the
data. An MMSE estimate, however, is intractable be-
cause the parameters of the children are generated by
a Dirichlet distribution and the posterior distribution
is no longer Dirichlet. We therefore perform this esti-
mation using a Linear Minimum Mean Squared Error
Estimate (LMMSE). The LMMSE is the linear esti-
mate with the lowest mean squared error and depends
only on the first and second moments of the joint pa-
rameter and data distribution. We do not use a more
natural Maximum A Posteriori (MAP) estimate be-
cause LMMSE leads to a very simple algorithm where
the estimator update equations are the widely used
linearly regularized estimates.

For simplicity, instead of a general derivation, we show
how the estimate of the parameter vector for node 2
in Figure 2 is updated using LMMSE.

Assume that we have the estimates él, é4 and 95 from
the previous iteration for the parameter vectors for the
nodes 1, 4 and 5. We have a prior coming from the
parent of node 2 (i.e., node 1) parameterized by 0;.
The problem is to update the estimate of 65 given 54,
05, the data no and the prior (Dir(cf:)).

Firstly the posterior distribution of 6> given the data
at node 2 is given by

p(f2|ne) = Dir(aél + ng)

Now using this as the distribution for f; we estimate
(using LMMSE) 6 from 6, and 05.

The estimate 65 can be computed by an LMMSE esti-
mate as follows (Moon & Stirling, 2000):

Oy = E[f:] + [3(02,04)%(02,05)] -
S(01)  S(04,05) 17 [ 64— E[64]
SRR el I B o

Let us look at each of the terms in the above equation.

E[f,] =

= 0
O'+N2(U 1+n2)

()

E[f4] = Ep, [E[04]02]] = E[62)] (6)

(®)

S(02,05) = (02, 04)
= Ep,[(02 — E[02])E[(64 — E[04])"|62]]
= Eg,[(62 — E[62])(62 — E[62])"]
= X(62) (7)
3(05,04) (04, 05)
= Ep,[Eo,0[(01 — E[04])(65 — E[05])" [62]]
= Ep,[E[(04 — E[04))|62] E[(65 — E[65])"(62]]
= 3(62)
%(04) X(05) = Xo, (E[04]02]) + Eo,[3(04]62)]

= X(02) + Ep,[X(64]62)] (9)
The above derivations use Equation 2, the properties
of conditional expectation, the law of total variance
and the fact that the random variables 6, and 65 are
exchangeable.

The only two terms left to compute are X(62) and
Ey,[3(04]02)] which are given by

1

S(0) = ———
(2) U+N2+1

(—E[0]E[62]" + diag(E[62]))
(10)

En[S04005)] = — Fo,[-(0:08) + diag(62)
= (30 - B+

+ diag(E[6:])) (11)
The LMMSE estimation step (Eq. 4) seems computa-
tionally expensive due to the mk xmk matrix inversion
(where m is the number of children of the node whose
parameters are being estimated). However owing to
the fact that the parameter vectors for the children
of a node are exchangeable, it can be shown that the
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directory: cooking/soups_and_stews/fish_and_seafood
pre-processed node’s keywords: fish, seafood

url: http://www.fish2go.com/rec_0120.htm
site’s description: Finnan Haddie and Watercress
Soup: made with smoked haddock, potatoes, wa-
tercress, and milk.
pre-processed description: smoke,
make, haddock, milk, potato, soup.

watercress,

url: http://www.bettycrocker.com/default.asp

site’s description: Crunchy Snacks from Betty
Crocker: collection of sweet and savory snack
recipes which pack a crunch, from healthy veg-
etables to s’mores.

pre-processed description: snack, collection,
recipe, healthy, savoury, vegetable, sweet

Figure 3. Example of two “documents” in a node of
Google. Pre-processed node’s keywords and description’s
words were used to generate the vocabulary by which de-
scriptions were then encoded.

general update equation for node ¢ with m children
simplifies to

él‘ = E[@Z] +
+m- (?01‘ [S(Ocn(y0:)]2(6:) " +mI)~" -
- (0. — E[0:]) (12)

where 5Ch(i) = % Zjech(i) 6;, ch(i) represents the chil-
dren of node ¢ and [ is the identity matrix.

Moreover, due to the structure of the matrices
Eg,[X(0cn(iy|0:] and X(0;) (cf. Equations 10 and 11),
Equation 12 reduces to

b, — Uépa(i) +m(o + 1)éch(i) +n;
e oc+m(oc+1)+N;

(13)

Thus starting from the initial guesses for the param-
eters, the estimates are updated (Equation 13) iter-
atively until some convergence criterion is met. We
note that for the root node we have the uniform prior
instead of the prior coming from the parent.

From Equation 13 we note that the estimate of the
parameter vector of particular node is just a weighted
average of the maximum-likelihood estimate from the
data and the corresponding estimates from the par-
ent and children of the node. We also note from the
above equation, that under our model the estimates
of the parameters are very similar to the James-Stein
shrinkage estimators (Efron & Morris, 1977).

2.2. Document Clustering

The above equations for parameter estimation require
class-labeled documents, therefore they can only be
used for a supervised classification task. However, our

goal is to classify a set of unlabeled documents into the
classes which are labeled only by a small set of key-
words. We propose to address this problem by cluster-
ing the documents using the well-known EM algorithm
for multinomial mixtures. The EM algorithm is initial-
ized by using the keywords at each node. Actually, the
prototype vectors made from the node labels are used
as the initial seeds:

0.9
i = { 0.1

At each iteration of the EM algorithm we compute
membership of every document to each class using the
parameter estimates from the previous iteration (the
E-step). We then update the parameters with Equa-
tion 12 using the weighted set of documents at each
node (the M-step).

if word j occurs as a keyword for node ¢
otherwise

3. Experimental Evaluation
3.1. Datasets

We evaluated the approach on eight benchmark
datasets (taxonomies) extracted from two well known
Web directories — Google and LookSmart. These eight
datasets correspond to different sub-directories (con-
cept hierarchies) selected to represent a variety in the
dimensionality. All the linguistic descriptions, i.e.,
keywords for nodes, and documents’ content (short de-
scriptions of the linked sites) are made by the editors
of the directories (see an example in Figure 3).

The data were preprocessed by both removing stop-
words and stemming the words to common roots. The
feature space (i.e., the vocabulary) was separately de-
termined for each taxonomy by a process of feature
selection by eliminating words that were extremely fre-
quent or very rare. We used this approach because the
task we address is unsupervised learning and therefore
a sophisticated feature selection method that requires
class labels cannot be used. Furthermore the keywords
occurring at all the nodes were also added to the vo-
cabulary. Each dataset was further processed to re-
move all documents having less than four words and
all subtrees having their root node without documents.
The statistics of the datasets used for the experiments
are presented in Table 1.

Since our algorithm performs clustering as a means for
classification of the documents, there was no need to
partition the data into training and test sets.

Evidently, the classification task is quite hard, since,
after preprocessing, the document summaries are
made up of only a few words (see Table 1). Due to the
scarcity of repeating words in the preprocessed sum-
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Hierarchies Documents

Max Average | Vocab. Average
depth Nodes Docs lab/no%ie size w/dogc
Google
Archaeology 5 122 1204 1.91 649 10.92
Language 8 514 4138 1.40 866 8.94
Neuro. Disord. 4 210 2443 1.80 632 9.68
News Media 5 29 549 1.38 586 10.69
LookSmart
Archaeology 5 51 609 1.53 673 8.58
Common Lang. 4 139 1794 1.45 529 8.75
Movies 4 34 623 2.21 524 9.39
Peripherals 5 175 3925 1.73 538 11.33

Table 1. Statistics of the eight concept hierarchies used to
evaluate the model. The columns present respectively the
maximum depth of the hierarchy, the number of classes,
total number of documents, the average number of key-
words per node, the number of words in the vocabulary
(after feature selection) and the average number of words
per document.

maries, documents were encoded as set-of-words, i.e.,
binary vectors indicating the presence or absence of
the corresponding word in the document.

3.2. Set-of-words Model

In the set-of-words framework, given a vocabulary of
length k, the bits in a document vector at a certain
node are assumed to be generated independently by k
binomial distributions with Beta priors. The Beta dis-
tribution is just a one-dimensional Dirichlet and there-
fore the update equation (from Equation 13) for the
j*" parameter at node 7 (the probability 0;; of appear-
ance of word j in a document at node ) is

él_j _ Uepa(Z) +m(o + 1)0cnay; + nij (15)
c+m(oc+1)+ N;

where m is the number of children of node i, N; is

the number of documents at node 7, n;; is the number

of documents at node ¢ with word j present 0

the estimate of the parameter for the j?

pa(i)j 1 is
b word for the

parent of node ¢ and 0Ch( ); 18 the mean of the estimates
of the parameter for j** word for all the children of 1.
The above equation is for the estimation of the clas-
sification parameters from a labeled data set. On the

contrary, for clustering documents, the corresponding
EM update formula is given by

(i)j + 2_qd;p(ild)
+ 24 p(ild)

o 00y T mlo+ )‘? (16)

0;; =
! oc+m(oc+1

where

k
plild) o< p(i) - [] (0

j=1

3.3. Choice of ¢

When class labeled examples are available, the value of
the smoothing parameter o can be optimized by cross-
validation. However for the unsupervised classification
of documents the choice of ¢ is more complicated. In
such a situation we may require a small training set
that can be used to optimize o.

At each iteration of our EM-based clustering algorithm
we tried to estimate o using method-of-moments. The
estimates for o we obtained were extremely large ow-
ing to the fact that for most neighboring class pairs
many words never occur and the corresponding word
probabilities are very close to zero for both classes.
Another approach to estimating ¢ may be along the
line used in (McCallum et al., 1998). They optimize
their smoothing parameters by choosing a value that
maximizes the likelihood of some held-out (unlabeled)
data. We intend to pursue this approach in the future.
However, we provide evidence below that smoothing
even with an incorrect value of o is often better than
no smoothing at all.

3.4. Discussion

We used a maximum a posteriori classifier that classi-
fied each document into the class with the highest pos-
terior probability. We reject a document when there
was more than one class with the highest probability.
The efficacy of the proposed algorithms was evaluated
by comparing the classification result of each docu-
ment with its original label. To evaluate the model
we adopted the standard information retrieval mea-
sure micro-F'1 (Baeza-Yates & Ribeiro-Neto, 1999),
that combines precision and recall of a model on a
given dataset. At zero percent reject rate the micro-
F1 value equals the classification accuracy. For each
experiment our EM-based classification algorithm that
performs estimation and classification iteratively was
terminated when the number of documents classified
differently from the previous iteration is less then 1%
or after 10 iterations, which ever occurs first.

The results of the proposed model were then compared
to those of a standard EM algorithm without any reg-
ularization and a standard Naive Bayes classifier. The
word probabilities used by the standard Naive Bayes
classifier are obtained from the keywords at the nodes
as described by Equation 14. These probability vec-
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NB EM HD HD
| best (0) o=2
Google

Archaeology 25.63 0.42[27.74 (1) 25.83
Language 24.67 30.69(27.31 (1) 26.21
Neuro. Disord. 37.78 0.6142.24 (1) 41.55
News Media 31.66 37.86|41.71 (5) 39.53

LookSmart
Archaeology 18.54 5.75|34.48 (10) 29.56
Common Lang. 11.25 1.06(29.93 (7) 28.09
Movies 26.83 33.71(42.70 (5) 41.09
Peripherals 10.96 0.05|20.43 (7) 19.13

Table 2. F'1 measures for all models (Naive Bayes, EM,
and Hierarchical Dirichlet) on the eight benchmark tax-
onomies. The Hierarchical Dirichlet results are presented
both for the best smoothing parameter o, and for a fixed
o for all datasets.

tors were also used to initialize both the standard EM
and our regularized EM algorithms.

In Table 2 we present the classification results of the
different approaches on the eight datasets. We observe
that the standard EM algorithm performs poorly on
several datasets. This can be attributed to the fact
that without regularization the algorithm often results
in an incorrect identification of cluster labels to class
labels. Our smoothed variant of the FM algorithm per-
forms significantly better than both the standard EM
and the Naive Bayes classifier on almost all datasets.
In Table 2 we present the classification results for the
best value of o on each dataset as well as the results
with a fixed ¢ = 2. We observe that even when the
chosen o is not the best for the dataset, smoothed es-
timates of the classification parameters result in con-
siderably better accuracy than without smoothing.

Figure 4 shows the plot of F'1 values against the
smoothing parameter (o) for all the eight benchmark
taxonomies. We observe that for the experimental
datasets the classification accuracy does not degrade
drastically with an incorrect choice of o. In fact for
many of the taxonomies the classification accuracy
stays the same over a wide range of ¢ values.

4. Conclusion and Future Work

We presented a simple generative model for the gener-
ation of documents in a concept hierarchy. The model
encodes our intuition about the relationships between
neighboring nodes in the hierarchy by means of hierar-
chically dependent Dirichlet priors for the class param-
eter vectors. Under this model we derived formulae to
estimate the parameters in a supervised as well as an
unsupervised setting. We have shown that under our
model the parameter estimates closely resemble the
shrinkage estimates used in statistics.

45
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Figure 4. F'1 results of Hierarchical Dirichlet model for
various smoothing parameters ¢ on all eight taxonomies.

The major drawback of our approach is the a priori
choice of smoothing parameter o. We intend to design
methods to automatically choose the ¢ from data. We
plan to find improved methods for the initialization
of the clustering algorithm, since it is critical for the
classifiation accuracy. One way to improve the initial-
ization is to use the method proposed in (Huang et al.,
2004). We also plan on experimenting with datasets
with more repeating words per document in order to
test the more general Dirichlet model and to evaluate
the efficacy of the model on semi-supervised classifica-
tion tasks.

5. Other Related Work

Blei et al. propose latent Dirichlet allocation as a very
general generative hierarchical model for a collection
of text documents where every document is generated
by assuming that for each word a topic is chosen ac-
cording to a Dirichlet distribution and the word by a
multinomial distribution given the topic and repeating
the process. The parameters are estimated by varia-
tional methods (Blei et al., 2003). In contrast to our
approach, they do not model the relationships between
classes.

Vaithyanathan et al. propose a Bayesian approach for
supervised text classification by using an integrated
probability of a document given a class instead of
using the point estimates of the probability vectors.
They also propose ways to learn the parameters for
the priors from the training data (Vaithyanathan et al.,
2000).

Taskar et al. propose probabilistic relational models as
a means to exploit relationships between data points
to improve the accuracy of the models (Taskar et al.,
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2001). Our approach in contrast exploits the prior
knowledge about the relationships between class la-
bels.

Hooper constructed a family of dependent Dirichlet
priors and derived optimal linear estimators for the
rows of the conditional probability matrix at the nodes
of a Bayesian network (Hooper, 2004). The depen-
dence structure between the Dirichlet random vectors
is very different from the one we proposed.
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