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Abstract

In the information regularization framework
by Corduneanu and Jaakkola (2005), the
distributions of labels are propagated on
a hypergraph for semi-supervised learning.
The learning is efficiently done by a Blahut-
Arimoto-like two step algorithm, but, unfor-
tunately, one of the steps cannot be solved
in a closed form. In this paper, we propose
a dual version of information regularization,
which is considered as more natural in terms
of information geometry. Our learning algo-
rithm has two steps, each of which can be
solved in a closed form. Also it can be nat-
urally applied to exponential family distri-
butions such as Gaussians. In experiments,
our algorithm is applied to protein classifica-
tion based on a metabolic network and known
functional categories.

1. Introduction

In recent years, we have seen a significant progress of
graph-based semi-supervised learning methods in the
machine learning community (Zhou et al., 2004; Belkin
& Niyogi, 2003; Zhu et al., 2003; Chapelle et al., 2003).
In a typical setting, data points are represented as an
undirected graph. For a limited number of nodes, their
labels are known (i.e. labeled nodes). Our task is to
infer the labels of the remaining unlabeled nodes. In-
tuitively, it is done by propagating labels from labeled
to unlabeled nodes (i.e. label propagation). In binary
classification problems, the label is either +1 or −1,
and, in regression problems, it is real-valued. The
main assumption is that an edge represents associa-
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Figure 1. Propagating distributions on a hypergraph. This
hypergraph contains three labeled and five unlabeled
nodes. Each labeled node has a binomial distribution,
which is depicted as a histgram, where two bars indicate
the probabilities of positive and negative labels. This hy-
pergraph contains six edges and one hyperedge including
three nodes, which is written as a closed contour. Our task
is to infer the binomial distributions on unlabeled nodes
based on neighborhood relations specified by edges and hy-
peredges.

tion of two data points, thus the labels of two adjacent
nodes are likely to be the same. Each edge can have
a positive weight, representing the degree of associa-
tion. Typically, a regularization term is designed using
a graph Laplacian matrix, and it is minimized together
with a loss term which corresponds to the discrepancy
between predictions and labels at labeled nodes.

Recently, Corduneanu and Jaakkola (2005) addressed
a more general semi-supervised learning problem,
where 1. a deterministic label is generalized to a dis-
tribution of labels, and 2. distributions are propagated
on a hypergraph. A typical problem is depicted in Fig-
ure 1. Using distributions, uncertainty of labels can be
described, for example, the probabilities of label A and
B are 0.7 and 0.3, respectively. In regression, one can
employ Gaussian distributions to augment the predic-
tion with an error bar. A hypergraph has hyperedges,
which can connect two or more nodes, instead of con-
ventional edges connecting two nodes. In comparison
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to conventional graphs, hypergraphs have more flex-
ibility in describing prior knowledge, because known
clusters can be directly encoded as hyperedges. It
might be possible to convert a hypergraph to a conven-
tional graph, for example, by converting a hyperedge
to a complete subgraph. However, one drawback is
that many edges are additionally introduced, increas-
ing the computational cost.

For semi-supervised learning on the hypergraph, Cor-
duneanu and Jaakkola (2005) proposed a regulariza-
tion term based on the Kullback-Leibler (KL) diver-
gences among distributions in a hyperedge. Then, the
distributions are propagated by minimizing the regu-
larization term together with the likelihood functions
on labeled nodes, which is done efficiently by a two-
step optimization algorithm like the Blahut-Arimoto
algorithm (Cover & Thomas, 1991). But, one draw-
back of this approach, called distributed information
regularization, is that the optimal solution of one step
cannot be solved analytically even for simple multino-
mial distributions. So one has to rely on an iterative
algorithm such as Newton’s method. Also, when ex-
ponential family distributions are employed, the algo-
rithm has a non-convexity problem inside a step.

In this paper, we propose a dual version of their reg-
ularization term, which is considered to be more nat-
ural in terms of information geometry (Amari & Na-
gaoka, 2000). We obtain a similar alternation algo-
rithm, where the optimal solution of each step can be
found analytically for general exponential family dis-
tributions, including multinomial and Gaussian distri-
butions. We applied our method to the classification
of proteins on a metabolic network (Tsuda & Noble,
2004). In prediction accuracy, our method was com-
parable to that of Corduneanu and Jaakkola (2005).
Furthermore, our method was faster in computation
time due to the simplicity of our learning algorithm.

The paper is organized as follows: In Section 2, we
introduce the basic definitions about information ge-
ometry. In Section 3, we first review the regularizer
by Corduneanu and Jaakkola (2005) and then propose
our dual regularizer. Section 4 explains how to propa-
gate the exponential family distributions on a hyper-
graph. In Section 5, the two regularizers are compared
in protein classification experiments. We conclude in
Section 6 with discussions and future works.

2. Preliminaries

Let us start from introducing the exponential family
distributions and the center of distributions in terms
of the Kullback-Leibler divergence.

2.1. Exponential Family

A distribution q(y) defined on a set Y belongs to the
exponential family iff it can be written in the following
form (Amari & Nagaoka, 2000),

q(y) =
1
Z

exp

 J∑
j=1

θjφj(y)

 . (1)

where φj : Y → < is called the sufficient statistics,
and the normalization factor is written as

Z =
∑
y∈Y

exp

 J∑
j=1

θjφj(y)

 .

In information geometry, one distribution is described
in two coordinate systems. In the e-affine coordinate
system, q is represented by the natural parameters θj .
On the other hand, in the m-coordinate system, it is
represented by expectation parameters,

ηj = Eq[φj(y)] =
∑
y∈Y

q(y)φj(y),

where Eq[·] means the expectation with respect to q.
These dual coordinate systems will play an essential
role in the learning algorithm introduced in Section 4.

2.2. Center of Distributions

The discrepancy of two distributions p, q is commonly
described by the Kullback-Leibler divergence,

D(p, q) =
∑
y∈Y

p(y) log
p(y)
q(y)

,

which is not symmetric, i.e D(p, q) 6= D(q, p). Let
q1, · · · , qn be arbitrary distributions defined on Y. Us-
ing the KL divergence, the center of distributions can
be formulated in two ways:

qE = argminq

n∑
i=1

aiD(q, qi), (2)

qM = argminq

n∑
i=1

aiD(qi, q) (3)

where {ai}n
i=1 are predetermined nonnegative con-

stants summing to 1 (i.e.,
∑n

i=1 ai = 1). Solving the
minimization problems, we get the following (see e.g.
Akaho, 2004),

qE(y) =
1
Z

exp

(∑
i

ai log qi(y)

)
, (4)

qM (y) =
∑

i

aiqi(y), (5)
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where Z is the normalization factor. Those center dis-
tributions are called the exponential center and the
mixture center, respectively. Notice that, if q1, . . . , qn

belong to the exponential family, qE also belongs to
the exponential family, but qM not.

3. Propagation of Distributions

In this section, we present two methods to propagate
distributions on a hypergraph. First, the information
regularization method by Corduneanu and Jaakkola
(2005) is reviewed, and then our new method will be
presented as its dual version.

Let us assume a hypergraph with n nodes. Denote by
Y the set of ` (< ∞) labels. In this section, a node
distribution is defined as a multinomial distribution
qi(y), which is an ` dimensional vector,

(qi(y = 1), qi(y = 2), . . . , qi(y = `))> ,

of nonnegative elements summing to one. It can be
used in a classification problem with ` classes. The
multinomial distribution belongs to the exponential
family, but it has additional favorable properties such
as the joint convexity of the divergence (Cover &
Thomas, 1991). General exponential family distri-
butions including Gaussians will be considered in the
next section.

Each of the labeled nodes has a distribution pi(y), y ∈
Y. Hyperedges are denoted as R1, · · · , Rm, each of
which is a set of node indices. Notice that these node
sets are called regions in (Corduneanu & Jaakkola,
2005). We will derive the predicted distributions qi(y)
for unlabeled nodes based on the given distributions
pi(y) and the neighborhood relations Rk. Our assump-
tion is that, inside each Rk, distributions qi(y) should
be similar to each other.

3.1. Mixture-type Information Regularization

To encode our assumption, let us design a regularizer
function which tends to be small if the assumption
is satisfied. Denote by λk the nonnegative weight of
Rk. Corduneanu and Jaakkola (2005) proposed the
following regularizer,

m∑
k=1

λk

∑
i∈Rk

D(qi, q
M
k ), (6)

where qM
k (x) is the mixture center of Rk,

qM
k (y) =

1
|Rk|

∑
i∈Rk

qi(y). (7)

We call it the mixture-type information regularizer or
m-regularizer in short. To obtain the distributions
qk(x), the following optimization problem is solved.

argminqi
−

n∑
i=1

wi

∑
y∈Y

pi(y) log qi(y)

+
m∑

k=1

λk

∑
i∈Rk

D(qi, q
M
k ).

The first term consists of the negative likelihood of
qi(y), when pi(y) is regarded as the sample distribution
on node i. The parameter wi indicates whether the i-
th node is labeled or not, i.e., wi = 1 if node i is labeled
and wi = 0 otherwise. Notice that this problem is
equivalently rewritten as

argminqi

n∑
i=1

wiD(pi, qi) +
m∑

k=1

λk

∑
i∈Rk

D(qi, q
M
k ). (8)

using the KL divergences only.

The optimization problem (8) is efficiently solved by
an alternating two-step learning algorithm. The key
observation is that the problem can be relaxed as

argminqi,hk

n∑
i=1

wiD(pi, qi) +
m∑

k=1

λk

∑
i∈Rk

D(qi, hk).

(9)
by replacing qM

k with a free distribution hk. The ob-
jective function in (9) is jointly convex with respect to
hk and qi (Corduneanu & Jaakkola, 2005). Further-
more, the solution of the relaxed problem agrees with
that of (8), because qM

k is the solution of the following
subproblem,

argminhk

∑
i∈Rk

D(qi, hk). (10)

The learning algorithm consists of the following two
steps. In the first step, all node distributions qi are
fixed, and hk is obtained as (7). In the second step,
the center distributions hk are fixed, and qi is obtained
as

argminqi
wiD(pi, qi) +

∑
{k:i∈Rk}

λkD(qi, hk), (11)

where {k : i ∈ Rk} is the index set of Rk’s that include
the i-th node. These two steps are repeated until con-
vergence. Unfortunately, the solution of (11) cannot
be obtained in a closed form. But one can use any
iterative optimization method, e.g. Newton’s method,
to minimize (11).
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3.2. Exponential-type Information
Regularization

In this paper, we propose to use another regularizer,

m∑
k=1

λk

∑
i∈Rk

D(qE
k , qi), (12)

where qE
k (x) is the exponential center of node distri-

butions,

qE
k (y) =

1
Zk

exp

(
1

|Rk|
∑
i∈Rk

log qi(y)

)
. (13)

It is called the exponential-type information regular-
izer, or e-regularizer. When the e-regularizer is used,
the optimization problem is written as

argminqi

n∑
i=1

wiD(pi, qi) +
m∑

k=1

λk

∑
i∈Rk

D(qE
k , qi). (14)

As in the previous section, one can relax it as

argminqi,hk

n∑
i=1

wiD(pi, qi) +
m∑

k=1

λk

∑
i∈Rk

D(hk, qi),

(15)
where we replaced the central distribution qE

k by a new
distribution hk. The optimal solution of (15) agrees
with that of (14). The relaxed problem is solved by
the following two-step learning algorithm. In the first
step, the central distributions are updated as

argminhk

∑
i∈Rk

D(hk, qi), (16)

which is solved as (13). In the second step, the node
distributions are obtained as

argminqi
wiD(pi, qi) +

∑
{k:i∈Rk}

λkD(hk, qi). (17)

This optimization problem is solved as

qi(x) =
1

wi + di
(wipi(x) +

∑
{k:i∈Rk}

λkhk(x)).

where di =
∑

{k:i∈Rk} λk.

Unlike the m-regularization, the e-regularization has
the desirable property that the second step (17) can
be solved in a closed form, because the directions of
divergences are aligned. Namely, the variable qi is in
the second argument of each divergence. In the m-
regularizer (11), qi appears both in first and second
arguments, making the problem more difficult to solve.

3.3. Convexity

Theorem 1. The e-regularizer (12) is convex with re-
spect to node distributions qi.

Proof. To prove the theorem, it is sufficient to prove
the convexity of each component in (12),∑

i∈Rk

D(qE
k , qi).

As mentioned in Section 3.2, it is written as the mini-
mum of the following function,

min
h

∑
i∈Rk

D(h, qi). (18)

So it is sufficient to show that (18) is jointly convex
with respect to h and all qi’s. By Theorem 2.7.2 in
(Cover & Thomas, 1991), D(h, qi) are jointly convex,
hence the sum of divergences (18) is also jointly con-
vex.

4. Learning Algorithm for Exponential
Family

In the following, we deal with the cases that the dis-
tributions {qi}n

i=1 are exponential family distributions
with common sufficient statistics {φj(y)}J

j=1, which in-
clude important models such as Gaussian, Boltzmann,
etc (Amari & Nagaoka, 2000). Denote by S the set
of all possible exponential family distributions with
{φj(y)}J

j=1.

Using the e-regularizer, the learning problem is written
as

argminqi∈S

n∑
i=1

wiD(pi, qi) +
m∑

k=1

λk

∑
i∈Rk

D(qE
k , qi),

with additional constraints qi ∈ S. As in the multino-
mial cases, we can relax it as

argminqi∈S,hk∈S

n∑
i=1

wiD(pi, qi)+
m∑

k=1

λk

∑
i∈Rk

D(hk, qi),

where the centers hk also belong to S. Thus we have
the following two steps,

argminhk∈S
∑
i∈Rk

D(hk, qi), (19)

argminqi∈S wiD(pi, qi) +
∑

{k:i∈Rk}

λkD(hk, qi) (20)

Using the dual coordinates, the solution of the first
step (19) is

θE
kj =

1
|Rk|

∑
i∈Rk

θij , (21)
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where θij and θE
kj are the natural parameters of qi and

hk, respectively. Also, the solution of the second step
(20) is

ηij =
1

wi + di
(wiη

p
ij +

∑
k|i∈Rk

λkηE
kj), (22)

where ηij , ηp
ij and ηE

kj are the expectation parameters
of qi, pi and hk, respectively. Therefore, the two steps
of our algorithm are equivalent to weighted averages
in dual representations.

To apply our algorithm, one needs to transform one
representation to its dual. For example, in the first
step, the natural parameters θE

kj are obtained, but the
dual parameters ηE

kj are needed in the next step. This
coordinate transformation is called Legendre trans-
form (Amari & Nagaoka, 2000). Therefore, our al-
gorithm contains the following four steps.

1. Computation of the natural parameters of the
central distributions θE

kj as in (21)

2. Legendre transform from θE
kj to ηE

kj .

3. Computation of the expectation parameters of the
node distributions ηij as in (22).

4. Legendre transform from ηij to θij .

4.1. Gaussian Distribution

The Legendre transform is not always obtained in a
closed form. However, in several cases, especially for
Gaussian distributions, the Legendre transform boils
down to simple computations. Let us consider the fol-
lowing Gaussian distribution with mean µ and stan-
dard deviation σ,

q(x) =
1√

2πσ2
exp(− (x− µ)2

2σ2
).

It can be rearranged in the form of exponential family
(1) with sufficient statistics

φ1(x) = x2, φ2(x) = x,

and natural parameters,

θ1 = − 1
2σ2

, θ2 =
µ

σ2
.

Also, the expectation parameters are written as

η1 = µ2 + σ2, η2 = µ.

Legendre transforms between natural and expectation
parameters can thus be easily done through the con-
ventional parameters µ and σ.
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Figure 2. Nonconvexity of the m-regularizer. The solid
curve describes the divergence D(q, h) between a Gaussian
mixture h and a Gaussian distribution q with variable cen-
ter µ. The dashed curve shows the flipped version D(h, q).
See the text for details.

4.2. Convexity

When exponential family distributions are introduced,
the e-regularizer (12) is no longer guaranteed to be
convex, though each step is formulated as a convex op-
timization and therefore solved in a closed form. This
situation happens also in the em algorithm (Amari,
1995), where a nonconvex function is minimized by
alternating convex optimization steps.

If the m-regularizer term is used for exponential fam-
ily distributions, the second step (11) is non-convex,
making the optimization even more difficult. Suppose
there is only one edge including two nodes with Gaus-
sian distributions. The first likelihood term in (9) is
always convex, but the m-regularizer

∑
i∈Rk

D(qi, hk)
is not convex with respect to parameters of qi. Let
us determine h as the mixture of two Gaussians with
mean 0 and 1, respectively, and standard deviation 0.2.
The solid curve in Figure 2 plots D(q, h) where q is a
Gaussian with the standard deviation 0.2 with vari-
able center µ. Notice that the flipped version D(h, q)
is convex as shown in the dashed curve.

If qi(y) is a mixture model,

qi(y) =
J∑

j=1

θijhj(y),

where hj is a fixed distribution without any parameter,
the situation is the opposite. For the m-regularizer,
both steps are convex, while the e-regularizer suffers
from the non-convexity problem.

4.3. Illustrative Example

Figure 3 shows an example of propagation of Gaus-
sian distributions. The upper figure shows the initial
setting with two labeled nodes, which have Gaussian
distributions with means 0 and 1, respectively, and
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Figure 3. Propagation of Gaussian distributions. Upper
and lower figures correspond to the initial and final sta-
tus, respectively. See the text for details.

standard deviation 0.2. The lower figure shows the re-
sult after convergence. From one labeled node to the
other, the mean is gradually changed. In the nodes dis-
tant from labeled nodes, the standard deviation tends
to be large, showing uncertainty of predictions.

5. Experiments

We will compare the prediction performance of the
exponential-type and mixture-type regularization us-
ing a protein classification dataset.

5.1. Dataset Description

The “metabolic network” dataset available at noble.
gs.washington.edu/proj/maxent/ contains 755 pro-
teins, and each protein has 36 different binary labels.
Each label indicates whether the protein belongs to
a certain functional category or not (Tsuda & Noble,
2004). In this dataset, the relations among proteins
are represented by the metabolic network containing
7860 edges. The network was derived by Vert and
Kanehisa (2003) from the LIGAND database of chem-
ical reactions in biological pathways (www.genome.ad.
jp/ligand). In this network, two proteins are linked
if they catalyze two successive reactions, in which the
primary product of the first reaction is the primary
substrate of the second reaction. Thus, a path in
this graph represents a possible series of reactions cat-
alyzed by proteins along the path.

The nodes (i.e. proteins) are divided into 50% train-

ing and 50% test nodes. Using the exponential-type
and mixture-type regularizers, the labels of the test
nodes are predicted. Since we solve a binary classi-
fication problem with respect to each label, the label
set Y is discrete and contains only two elements. In
a labeled node, the probability of the given label is
set to 0.99, and the opposite label 0.01. We did not
use 0/1 probabilities to avoid the computation of log 0.
The prediction accuracy for each label is measured by
the ROC score. So, each regularizer is evaluated by a
vector of 36 ROC scores.

5.2. Adding Clusters

The metabolic network of this dataset contains binary
edges only. However, to test our methods in various
settings, it would be meaningful to use a hypergraph
with clusters (i.e. hyperedges containing more than
three nodes) as well. So, in prediction of a specific
binary label, we created clusters using the other 35 la-
bels. From each label, a cluster including all the posi-
tive nodes is made and added to the hypergraph. How-
ever, we found that the proteins are classified almost
perfectly, if clusters are made from all the remaining
labels. To make the task difficult, we chose the re-
maining labels whose correlation coefficients with the
target label are below 0.3. 1

In the following experiments, the regularization pa-
rameters λk were set to constant λ for all hy-
peredges. We tried five different values λ =
{0.001, 0.01, 0.1, 1, 10}, and recorded the best ROC
score.

5.3. Results

Figure 4 shows the standard box plots of ROC scores
over all 36 functional categories. This experiment
was performed in three different settings: In ’Com-
bined’, the network was combined with the clusters,
whereas in ’Network only’ and ’Clusters only’, only
one of them was used for constructing the hypergraph.
Comparing the two regularizers (i.e. exponential-type
and mixture-type), the difference in box plots is not
large for all three cases, but, in ’Clusters only’, our
exponential-type regularizer performed slightly worse.
In fact, the p-values of Wilcoxson signed rank test were
0.118, 0.196 and 1.05e-05 respectively for ’Combined’,
’Network only’ and ’Clusters only’. So the difference
of medians is statistically significant in the third case

1The correlation coefficient of two labels are computed
as follows: Let y1 and y2 be two vectors of class labels
where positive labels correspond to one and negative la-
bels zero. Then, the correlation coefficient is defined as
y>1 y2/(‖y1‖‖y2‖).
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Figure 4. Box plots of the ROC scores for function cate-
gory prediction of proteins. The box plot notation speci-
fies marks at 95,75,50,25 and 5 percentiles of values. The
mixture-type regularization (’Mix’) is compared with the
exponential-type regularization (’Exp’) in three different
settings: In ’Combined’, the hypergraph was constructed
from the network and the clusters. In ’Network only’ and
’Clusters only’, only one of the two sources was used.

only. In ’Clusters only’, the number of hyperedges is
less than 35, which is much smaller than the other two
cases (more than 7000). Therefore, from our results,
it is suggested that the choice of the regularizer is not
crucially important when the nodes are densely con-
nected. We have shown the comparison plots as well
in Figure 5.

The advantage of our exponential-type regularizer lies
in the simplicity of the learning algorithm. Its com-
putation time was fast enough for practical use. At
λ = 0.1, the average number of iterations was 35.5,
and, in a standard PC with 2.4Ghz CPU, the time per
iteration was 0.57 second on average. On the other
hand, the mixture-type regularizer took 9.73 second
per iteration using MATLAB’s commmand fminbnd
for solving (11).

6. Discussion

We have presented two dual regularizers for semi-
supervised learning on a hypergraph. We conclude
this paper with discussions from viewpoints of machine
learning and computational biology.

6.1. Regularization vs. Joint Modeling

Our goal was to predict the distributions at unla-
beled nodes based on the similarity relations repre-
sented by a hypergraph. In principle, this goal can

also be achieved by modeling the joint distribution of
all nodes. For example, in the Gaussian process, the
covariance among all Gaussian variables are predeter-
mined by the kernel matrix (Williams & Barber, 1998).
Fixing the variables at labeled nodes, the marginal
distributions of unlabeled nodes can be derived sim-
ply as the conditional distributions. In comparison
to our regularization approach, the joint modeling is
conceptually clearer, because it models the complete
probabilistic mechanism of data generation. However,
our concern is overmodeling, i.e., when unnecessary
parts of the probabilistic mechanism are constrained
to parametric models, it introduces additional risk of
model misspecification. Since our primary aim is to
obtain the distributions on the unlabeled nodes, we
do not need to have a joint distribution. Also, when a
hypergraph is given a priori as in our experiments,
it is easier to directly describe relationships among
individual variables, rather than trying to construct
a joint model. Intuitively, our regularizers implicitly
constrain the joint distribution, but their theoretical
properties need to be investigated further.

6.2. Applications in Computational Biology

In computational biology, it is increasingly common
that relationships among proteins are represented as
protein networks. In such a network, nodes represent
genes or proteins, and edges may represent physical
interaction of the proteins (von Mering et al., 2002),
gene regulatory relationships (Lee et al., 2002), simi-
larities between protein sequences (Yona et al., 1999),
etc. The metabolic network used in our experiments
is just one of them. Our method can be applied to any
type of protein networks to predict various properties
of proteins (e.g., subcellular localization).

6.3. Future Directions

We used our distribution propagation algorithm for
semi-supervised learning, but it can also be applied for
ranking on a hypergraph (Weston et al., 2004). Also,
it would be interesting to apply our algorithm to vec-
torial data to exploit manifold structures, because our
hypergraph representation will provide additional flex-
ibility in manifold modeling.
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Figure 5. Individual comparison of the ROC scores.
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