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Abstract

In this paper, we extend the recently pro-
posed Core Vector Machine algorithm to
the regression setting by generalizing the
underlying minimum enclosing ball prob-
lem. The resultant Core Vector Regression
(CVR) algorithm can be used with any lin-
ear/nonlinear kernels and can obtain prov-
ably approximately optimal solutions. Its
asymptotic time complexity is linear in the
number of training patterns m, while its
space complexity is independent of m. Ex-
periments show that CVR has comparable
performance with SVR, but is much faster
and produces much fewer support vectors on
very large data sets. It is also successfully
applied to large 3D point sets in computer
graphics for the modeling of implicit surfaces.

1. Introduction

Kernel methods have been highly successful in vari-
ous machine learning problems. Among them, sup-
port vector machines (SVM) and support vector re-
gression (SVR) are especially prominent (Scholkopf &
Smola, 2002). Many kernel methods are formulated
as quadratic programming (QP) problems. If m is the
number of training patterns, then the training time
complexity of QP is O(m?) and its space complexity
is at least quadratic. Hence, a major stumbling block
is in scaling up these QP’s to large data sets. For
example, Scholkopf et al. (2005) recently proposed a
kernel method for modeling the implicit surface of a
geometric object from its 3D point set. However, op-
timization took almost 2 hours even for some small
objects.
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To reduce the time and space complexities, a popular
technique is to obtain low-rank approximations on the
kernel matrix by using the Nystrom method, greedy
approximation or matrix decompositions. However, on
very large data sets, the resulting rank of the kernel
matrix may still be too high to be handled efficiently.

Another approach to scale up kernel methods is by
chunking or more sophisticated decomposition meth-
ods (Collobert & Bengio, 2001; Osuna et al., 1997;
Platt, 1999). In particular, the highly-popular sequen-
tial minimal optimization (SMO) algorithm (Platt,
1999) breaks the original QP into a series of smallest
possible QPs, each involving only two variables. Simi-
lar in spirit to decomposition algorithms are methods
that combine a large number of small SVMs. Alterna-
tively, one can simply use a random rectangular subset
of the kernel matrix, as in the reduced SVM (Lee &
Mangasarian, 2001). Recently, Kao et al. (2004) and
Yang et al. (2005) also proposed scale-up methods
that are specially designed for the linear and Gaussian
kernels, respectively.

In practice, SVM implementations typically have a
training time complexity that scales between O(m)
and O(m?3) (Platt, 1999). This can be further driven
down to O(m) with the use of a parallel mixture (Col-
lobert et al., 2002). However, these are only empirical
observations and not theoretical guarantees.

Recently, Tsang et al. (2005) proposed the Core Vec-
tor Machine (CVM) by exploiting the “approximate-
ness” in the design of SVM implementations. A key
observation is that practical SVM implementations,
as in many numerical routines, only approzrimate the
optimal solution by an iterative strategy. Typically,
the stopping criterion utilizes either the precision of
the Lagrange multipliers or the duality gap. For ex-
ample, in SMO, SVM'“"* and SimpleSVM, training
stops when the Karush-Kuhn-Tucker (KKT) condi-
tions are fulfilled within a tolerance parameter €. Ex-
perience with this software indicates that near-optimal
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solutions are often good enough in practical applica-
tions. By utilizing an approximation algorithm for the
minimum enclosing ball (MEB) problem in computa-
tional geometry, the CVM algorithm has an asymp-
totic! time complexity that is linear in m and a space
complexity that is independent of m. Experiments on
large classification data sets also demonstrated that
the CVM is as accurate as existing SVM implementa-
tions, but is much faster and can handle much larger
data sets than existing scale-up methods.

However, applicability of the CVM algorithm depends
on the following two conditions being satisfied: 1) the
kernel function k satisfies k(x,x) = constant; and 2)
the QP of the kernel method is of a special form. In
particular, there is no linear term in the QP’s objec-
tive. However, as will be shown in Section 3, the dual
objective of SVR contains a linear term and so is not
of the required form.

In this paper, we propose an enhancement of the CVM
that allows a more general QP formulation. It turns
out that this also allows the condition on the kernel
to be lifted. In other words, the algorithm can now
be used with any linear /nonlinear kernels. The rest of
this paper is organized as follows. Section 2 gives a re-
view on the CVM algorithm. Section 3 then describes
the proposed extension for regression problems. Ex-
perimental results are presented in Section 4, and the
last section gives some concluding remarks.

2. Core Vector Machine (CVM)

In this Section, we first review the CVM algorithm in
(Tsang et al., 2005). It utilizes an approximation algo-
rithm for the minimum enclosing ball (MEB) problem,
which is briefly introduced in Section 2.1. The connec-
tion between the MEB problem and kernel methods,
particularly the one-class and two-class SVMs, is de-
scribed in Section 2.2. Finally, the CVM algorithm is
presented in Section 2.3.

2.1. Approximate Minimum Enclosing Ball

Given a set of points S={x1, ..., X, }, where x; € RP,
the minimum enclosing ball of S (denoted MEB(S))
is the smallest ball that contains all the points in S.
Traditional algorithms for finding exact MEBs are not
efficient for problems with D > 30. Hence, it is of prac-
tical interest to study faster approximation algorithms

!As we are interested in handling very large data sets,
an algorithm that is asymptotically more efficient (in time
and space) will be the best choice. However, on smaller
problems, this may be outperformed by algorithms that
are not as efficient asymptotically.

that return a solution within a multiplicative factor of
1 + € to the optimal value, where € is a small positive
number. Let B(c,R) be the ball with center ¢ and
radius R. Given an € > 0, a ball B(c, (1 + €)R) is
an (1 + €)-approzimation of MEB(S) if R < rygp(s)
and S C B(c, (1 + €)R). In many shape fitting prob-
lems, it is found that solving the problem on a sub-
set, called the core-set, Q of points from S can often
give an accurate and efficient approximation. More
formally, a subset Q@ C S is a core-set of S if an ex-
pansion by a factor (1+ €) of its MEB contains S, i.e.,
S C B(c, (1 +€)R), where B(c, R) = MEB(Q).

A breakthrough on achieving such an (1 + ¢€)-
approximation was recently obtained by Badoiu and
Clarkson (2002). They used a simple iterative scheme:
At the tth iteration, the current estimate B(c, Ry) is
expanded by including the furthest point outside the
(14 e€)-ball B(c, (14 €)R;). This is repeated until all
the points in S are covered by B(c;, (14+€)R;). Despite
its simplicity, a surprising property is that the number
of iterations, and thus the size of the final core-set,
depends only on € but not on d or m.

2.2. Kernel Methods as MEB Problems
Consider the hard-margin SVDD (Tax & Duin, 1999):

min R? le—opx)|?<R% i=1,....,m, (1)
where ¢ is the feature map associated with a given
kernel k, and B(c,R) is the desired MEB in the
kernel-induced feature space. Its dual is the QP:
max o'diag(K) — o'Ka : @ > 0, &'l = 1, where
o = [a;,...,q,] are the Lagrange multipliers, 0 =
[0,...,0, 1 =[1,...,1) and K,yxm = [k(xs,%x;)] =
[o(x;)"o(x;)] is the kernel matrix. When k satisfies

k(x,x) = k (a constant), (2)

we have o’diag(K) = k using o'l = 1. Dropping
this constant term from the QP, we obtain the simpler
optimization problem:

max —a’Ka : a>0, a'1=1. (3)

Conversely, whenever the kernel k satisfies (2), any QP

of the form (3) can be regarded as a MEB problem.
For example, the dual of the one-class L2-SVM is:

max —o’Ka : a>0, a/1=1, (4)

where [K]i; = k(xi, %) + 5&,". Hence, if k satisfies (2),
k(x,x) = k + 5 is a constant and thus the one-class
L2-SVM corresponds to a MEB problem. Another ex-

ample is the two-class L2-SVM. Denote the training
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set by {z; = (xi, i)}, where y; € {£1}. Its dual is:
max —o’Ka:a >0, a'1=1, (5)

~ ~ 5i
where [K]” = k(Zi7Zj) = y,;yjk(xi,xj) + yiyj + ol

Again, if k satisfies (2), k(z,2z) = k+1+ &, a constant
and so the two-class L2-SVM is also a MEB problem.

Note that the 2-norm error is used here because it
allows a soft-margin L2-SVM to be transformed to a
hard-margin one. In theory, this could be less robust
in the presence of outliers. However, experimentally,
its generalization performance is often comparable to
that of the L1-SVM (Mangasarian & Musicant, 2001).

2.3. The CVM Algorithm

In the following, we denote the core-set, the ball’s cen-
ter and radius at the tth iteration by S;,c; and R,
respectively. Also, the center and radius of a ball B
are denoted by cp and rp. Given an € > 0, the CVM
proceeds as follows?:
1: Initialize Sy, cg and Ry.
2: Terminate if there is no training point z such that
p(z) falls outside the (1 + ¢)-ball B(cy, (14 €)Ry).
3: Find (core vector) z such that ¢(z) is furthest away
from c;. Set Siy1 = S U {z}. This can be made
more efficient by using the probabilistic speedup
method in (Smola & Schoélkopf, 2000) that finds a
z which is only approximately the furthest.
4: Find the new MEB(S:41) and set cip1 =
CMEB(S;4,) aNd Riy1 = "MEB(S141)-
5: Increment t by 1 and go back to Step 2.

3. Core Vector Regression (CVR)

Applicability of the CVM procedure depends on the
following two conditions being satisfied: 1) k(x,x) is
a constant; and 2) the QP problem is of the form (3).
However, as will be demonstrated in Section 3.1, the
dual objective of SVR contains a linear term and so is
not of the form in (3). In Section 3.2, we thus propose
an extension of the CVM that allows the inclusion of
a linear term into the QP. It turns out that this also
allows the condition on the kernel function to be lifted.

3.1. L2-Support Vector Regression

In SVR, we are given a training set {z; = (x;, i)}
with input x; and output y; € R. A linear function
f(x) = w/o(x) + b is then constructed in the kernel-
induced feature space so that it deviates least from the
training data according to the &-insensitive loss func-

2Note that a similar termination parameter (e) is also
required in many SVM implementations (e.g., SMO).

tion?, while at the same time is as “flat” as possible.
We adopt the following primal which is similar to that
in »-SVR (Scholkopf & Smola, 2002):

m

C
; 2,32, &~ 2 %2y 4L 90g
min - [Jwl” +8* + 22 > (& +&7) +2ce

i—1
st oy — (Wolx;) +b) <E+E,
(Wo(xi) +b) —y <&+ (6)

Here, p > 0 is a parameter (analogous to the v in v-
SVR) that controls the size of £. Also, as in Section 2,
the bias b is penalized and the two-norm errors (£2 and
£:?) are used. Note that the constraints &;, £ > 0 are
automatically satisfied. The corresponding dual is:

max [\ A" { _%%yy } N )\*’]f{[ ;‘ ](7)

st (N ATI=1, A A" >0,

where y = [y1,.-,¥m)s, A = [Ai... ], A" =
AT...A5), and
K = [k(z,2,)]
| K+11U+ 52T —(K+11) (8)
—(K+11) K+ 11"+ 521 |-

The primal variables can be recovered as

w = ngl()‘i_)‘:)@(xi)v b= Cz;il()‘i_)‘f)v (9)
§i = Aipm, & = Afum,

=[N A [ Y

} oY A*']f([ ¢ } (10)
Moreover, since > ., (A; + Af) = 1, so from (9), we
have pn = > 1" (& + &) /m. Thus, u, analogous to v
in »-SVR, can be interpreted as the expected error.
However, this QP is not of the required form in (3).

3.2. The Center-Constrained MEB Problem

The MEB (1) finds the smallest ball containing all
»(x;)’s in S. Now, we augment each p(x;) by an extra
A; € R to form [p(x;)’, A;]’, and then find the MEB
for these augmented points, while constraining the last
coordinate of the ball’s center to be zero (i.e., of the
form [¢/,0]") (Figure 1). The primal in (1) changes to:
min R? : [lc — p(x)||? + A2 < R?* i=1,...,m. (11)
Denote A = [AZ2,...,A2]" > 0. The new dual is:
max o’ (diag(K) + A) —a'Ka : a>0,a'1=1.

3To avoid confusion with the € in (1+ €)-approximation,
we add a bar to the € in the e-insensitive loss function.
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Using the optimal a, we can recover R and c as

R = /d/(diag(K) + A) — o’/Ka,
¢ = 2211 ai‘P(Xi>7 (12)

and the square distance between ¢ and any point is

le = (xo)I* + A7 = lle]* — 2(Ka)e + ke + A7 (13)

Because of the constraint 'l = 1, an arbitrary mul-
tiple of @’1 can be added to the objective without af-
fecting the a solution. In other words, for an arbitrary
1 € R, we can change the dual to

K)+A
st. a>0, a'l=1.

max o (diag( —nl) - od'Ka (14)

As in Section 2, any QP of the form (14), with A > 0,
can now be regarded as a MEB problem (11). Note
that (14) allows a linear term in the objective. Besides,
it does not require the kernel to satisfy condition (2).

Figure 1. The center-constrained MEB problem.

Returning to the QP in (7), define & = [\’ Xk/]/ and

. 2 [y
A = —diag(K 1+ — 15
@)+ 5| Y| 09
for n large enough such that A >0, (7) can then be
written as max &'(diag(K)+A -nl)—a&'Ka : & >
0, &'1=1, which is thus of the form in (14). In other
words, L2-SVR now becomes a MEB problem (11).

This extension is also useful in training the one-class
and two-class L2-SVMs in Section 2.2 when the kernel
does not satisfy (2). By defining A = max;({K;})1
diag(K) > 0 and 7 = max;({K;;}), both duals, (4)
and (5), are of the form in (14) and thus both are also
instances of the MEB problem (11).

3.3. The CVR Algorithm

The algorithm in Section 2.3 can now be modified ac-
cordingly as:
1: Initialize* Sy, co and Ry.

“As in (Tsang et al., 2005), all the G;’s (except those
for the initial core vectors) are initialized to Zero.

2: Terminate if there is no training point z; falls
outside the (1 + e)-ball B(ci, (1 + €)Ry). e,
Vile: — (i) + A7 > (1 +€)Ry.

3: Find z; such that @¢(z;) is furthest away from c;.
Set St+1 = St U {Zi}-

4: Find the new MEB(S:i41) and set cip1 =
CMEB(S;4:) aNd Riy1 = "MEB(S14)-

5: Increment t by 1 and go back to Step 2.

Thus, the only modification is to change the distance
computation between c; and any point z; (in Steps 2
and 3) to /|[c; — ¢(z;)[|2 + A? using (13). Moreover,
as w111 be shown in the followmg, this preserves all the
properties of the original CVM algorithm as expected.
However, note that the detailed proofs are different
because of the use of different formulations.

3.3.1. PROPERTIES

To ensure good scaling behavior of the CVM, a key
property is that it converges in at most 2/e iterations,
independent of the feature dimensionality and the size
of § (Bidoiu & Clarkson, 2002). The following shows
that this still holds for the CVR algorithm.

Property 1 There exists a set Sy C S of size 2 /e such
that the distance between cypp(s) and any point z; of
S is at most (1 + €)ryep(s)-

Proof. The proof is adapted from that of Theorem 2.2
n (Badoiu & Clarkson, 2002). Because of space lim-

itations, we do not show the whole proof. Define
e = |lcip1 — ¢¢f| and 7 = (1 + €)rypp(s). The only
modification is in proving Ri;y1 + e; > 7. If all the

points in S are at distances at most 7 from c;, we are
done. Otherwise, there exists a point z; € S such that
lz: — cil| = \/|lp(z:) — c|2 + A2 > 7. This z,; will be
added to MEB(S;+1). By the triangle inequality,

Riviter > ||zi — el + [lessr — el
> lze — ]| > 7 O

Points outside MEB(S;) have zero «;’s and so violate
the KKT conditions of the dual problem.

Property 2 Choosing the point furthest away from
the center in Step 3 is the same as choosing the worst
violating pattern corresponding to the KKT constraint.
Moreover, when the CVR terminates, all the training
patterns satisfy loose KKT conditions.

Similar to the CVM, a nice property of the CVR is
that its approximation ratio® can be obtained.

5An approximate algorithm has approzimation ratio

p(n) for an input size n if max (%, %*) < p(n). Intu-



Core Vector Regression for Very Large Regression Problems

Property 3 When ¢ = 0, CVR outputs the kernel
problem’s exact solution. When ¢ > 0 and CVR
terminates at the Tth iteration, the optimal primal
objective p* of the kernel problem in (6) satisfies

RZ2  p*/C%4n 2
7o ) < (1o

max (

Proof. The case when ¢ = 0 is similar to that in (T'sang
et al., 2005). When € > 0, assume that the algorithm
terminates at the Tth iteration, then R, < rygp(s) <
(14€)R; by definition. Recall that the optimal primal
objective p* of the kernel problem (6) is equal to the
optimal dual objective C2d* in (7), which in turn is
related to the optimal dual objective rﬁ/IEB(S) =d*+n
using (14). We can then bound p* as

R2 <p*/C? +n < (1+€)’R2. O

Remarks. In other words, CVR is also an (1 + €)2-
approximation algorithm.

3.3.2. TIME AND SPACE COMPLEXITIES

Computations of the time and space complexities are
analogous to those in (Tsang et al., 2005). When prob-
abilistic speedup is not used in Step 3, the overall
time for 7 = O(1/¢) iterations can be shown to be
0] (Eﬂ2 + 6%1), linear in m for a fixed e. When proba-
bilistic speedup, one may not find the furthest point
in each iteration, and so 7 may be larger than 2/e.
However, it can still be bounded by O(1/€?) (Badoiu
et al., 2002). It can be shown that the whole pro-
cedure then takes O (}8)7 which is independent of m
for a fixed e. As for the space complexity®, it can be
shown that the whole algorithm requires only O(1/€?)
space, independent of m for a fixed e.

4. Experiments

Our CVR implementation is adapted from the LIB-
SVM and uses SMO for solving each QP sub-problem
in Step 4. For simplicity, shrinking (Joachims, 1999)
is not used in our current implementation. As in LIB-
SVM, our CVR uses caching and stores all the train-
ing patterns in main memory. Besides, we employ the
probabilistic speedup method” in Step 3. The value of

itively, this ratio measures how bad the approximate solu-
tion is compared with the optimal solution. A large (small)
approximation ratio means the solution is much worse than
(more or less the same as) the optimal solution. If the ra-
tio does not depend on n, we may just write p and call the
algorithm an p-approzimation algorithm.

SHere, we have ignored the O(m) space required for
storing the m training patterns, as they may be stored
outside the core memory.

"Following (Smola & Schélkopf, 2000), a random sample
of size 59 is used.

€ is fixed at 1076 in all the experiments. As in other
decomposition methods, the use of a very stringent
stopping criterion is not necessary in practice. Pre-
liminary studies show that ¢ = 1079 is acceptable for
most tasks. Using an even smaller € does not show im-
proved generalization performance, but may increase
the training time unnecessarily.

4.1. CVR on Large Benchmark Data Sets

The following data sets are used® (Table 1):

1. Census housing: The task is to predict the me-
dian price of the house based on certain demo-
graphic information. Following (Musicant & Fein-
berg, 2004), we use 121 features for prediction.

2. Computer activity: Given a number of computer
systems activity measures, the task is to predict
the portion of time CPUs run in user mode.

3. Elevators: The task is related to an action taken
on the elevators of an F16 aircraft.

4. Friedman: This is an artificial data set. The input
attributes (z1,...,219) are generated indepen-
dently, each of which uniformly distributed over
[0,1]. The target is defined by y = 10sin(7wz1z2)+
20(z3 — 0.5)% + 1024 + 5z5 + (0, 1).

5. Pole Telecomm: The data describes a telecommu-
nication problem. Details are not available.

6. Forest cover type: Following (Collobert et al.,
2002), we aim at separating class 2 from the other
classes. As in (Collobert & Bengio, 2001), we then
convert this classification problem to a regression
problem by predicting +1 for examples in class 2
and —1 for others.

For each data, 10% — 90% of the whole set is used for
training while the remaining 10% are for testing.

For comparison, we also run the SVR implementa-
tions? of LIBSVM and SVM'"_ The root mean
squared error (RMSE) and the mean relative error
(MRE)! are used as evaluation criteria. As the for-
est cover type data is a classification task, the result

8The census housing data set is downloaded from
http://www.cs.toronto.edu/~delve/data/census—house; for-
est from http://kdd.ics.uci.edu/databases/covertype/; oth-
ers from http://www.niaad.liacc.up.pt/~Itorgo/Regression.

LIBSVM  and SVM'" can be downloaded
from  http://www.csie.ntu.edu.tw/~cjlin/libsvm/  and
http://svmlight.joachims.org/ respectively.

0T hese are defined as RMSE =
—L o \/% S (f(xe) — va)? and MRE

s )%, respectively, where n is the num-

ber of test patterns.
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Table 1. Benchmark data sets used.

date set max # training patterns # attr
census housing 22,732 121
computer activity 8,192 21
elevators 16,599 18
friedman 100,000 10
pole telecomm 15,000 48
forest cover type 581,012 54

is compared to the classification SVM using the clas-
sification error instead. We use the Gaussian kernel
exp(—|[x — y[2/8), with B = L 37" [xi — ;]2
The C and p parameters in (6) are tuned by using
a small subset of the training data. The LIBSVM
and SVM!9ht implementations are tuned in a similar
manner. Moreover, all implementations are in C++.
Experiments are performed on a 3.2GHz Pentium—4
machine with 512M RAM, running Windows XP.

As can be seen from Figures 2 and 3, the performance
of CVR is often comparable or even better than the
other SVR implementations on some error criteria.
Moreover, CVR is much faster and produces far fewer
support vectors when the data set is large. Besides,
almost all the core vectors are useful support vectors.
On the very large forest cover type data set, it also
agrees with our theoretical finding that the time re-
quired is constant w.r.t. the training set size.

4.2. CVR for Implicit Surface Modeling

The ability to perform regression on large data sets
is particularly attractive for geometric modeling with
implicit surfaces. Here, a large set of 3D points (can
be in the millions) is acquired from the surface of a
geometric object and then modeled by the zero-set,
i.e., f71(0), of a smooth function f : R® — R learned
from this point set.

In this Section, we use SVR for implicit surface mod-
eling. However, a direct application of SVR can only
obtain a degenerate solution with w = 0,b = 0, and
zero output values. To avoid this problem, we model
the surface by the “one-set” f~!(1), instead of the
zero-set. Also, the bias b is penalized, as has been
done in our formulation of the L2-SVR.

Experiments are performed on the Stanford bunny
and Skeleton hand data sets'!, containing 35,947 and
327,323 points respectively. We use the Laplacian ker-
nel k(x;,x;) = exp(—||x; — x4||/0) and a multi-scale

"http://www.cc.gatech.edu/projects/large_models/ .

approach as in (Scholkopf et al., 2005). A crude model
is first learned by using CVR with a relatively large
value of ¢. Additional CVR’s, each with successively
smaller values of o, are then used to fit the residuals.
A total of three CVR’s are used in the experiments.
Finally, the mesh is computed by the commonly-used
marching cubes algorithm.

Results are shown in Figure 4 and Table 2. Note that,
again, CVR is very fast. Moreover, the set of support
vectors obtained is typically small. This allows fast
testing and consequently fast rendering, which only
takes 493.5 seconds and 415.5 seconds for the Stanford
bunny and Skeleton hand respectively.

(a) Stanford bunny.

(b) Skeleton hand.

Figure 4. Reconstructed implicit surface models.

Table 2. Performance of CVR on the geometric data sets.

data set # CVs # SVs CPU time
Stanford bunny 4,567 4,560 265.8s
Skeleton hand 3,810 3,808 255.8s

5. Conclusion

The original CVM algorithm is restricted to kernels
k with constant k(x,x), and to certain kernel meth-
ods whose dual objectives do not have a linear term.
In this paper, we proposed an extension that allows a
more general form for the dual objective and also any
linear/nonlinear kernels to be handled. In particular,
regression using SVR can now be performed under this
framework. The resultant CVR procedure inherits the
simplicity of CVM, and has small asymptotic time and
space complexities. Experimentally, it is as accurate
as existing SVR implementations, but is much faster
and produces far fewer support vectors (and thus faster
testing) on large data sets. Using CVR, implicit sur-
face modeling now takes minutes, instead of hours as
in (Scholkopf et al., 2005).

While regression has been the focus in this paper, the
proposed extension can also be used for scaling up
other kernel methods, such as the ranking SVM, SVMs
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Figure 2. Results on the regression benchmark data sets. Note that some axes are in log scale. Row 1: census housing;
Row 2: computer activity; Row 3: elevators; Row 4: friedman; Row 5: pole telecomm.
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Figure 3. Results on the forest cover type classification data set. Note that some axes are in log scale.

in imbalanced learning problems, and SVMs with in-
terdependent and structured outputs. Details will be
reported in the longer version of this paper.
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