Learning Discontinuities with Products-of-Sigmoids for
Switching between Local Models

Marc Toussaint
Sethu Vijayakumar

MTOUSSAIQINF.ED.AC.UK
SETHU.VIJAYAKUMARQED.AC.UK

School of Informatics, University of Edinburgh, The King’s Buildings, Mayfield Road, Edinburgh EH9 3JZ, UK.

Abstract

Sensorimotor data from many interesting
physical interactions comprises discontinu-
ities. While existing locally weighted learning
approaches aim at learning smooth functions,
we propose a model that learns how to switch
discontinuously between local models. The
local responsibilities, usually represented by
Gaussian kernels, are learned by a product
of local sigmoidal classifiers that can repre-
sent complex shaped and sharply bounded re-
gions. Local models are incrementally added.
A locality prior constrains them to learn only
local data—which is the key ingredient for in-
cremental learning with local models.

1. Introduction

Locally weighted learning techniques have successfully
been employed as incremental, non-parametric ap-
proximation schemes for high-dimensional regression
problems (Schaal & Atkeson, 1998; Vijayakumar &
Schaal, 2000). Their robustness and efficient online
versions are crucial in robotic domains where, for in-
stance, an inverse model of an articulated dynamic
robot has to be learned in real-time. Such models map
a high-dimensional state (e.g., joint angles and veloc-
ities) and a desired change of state to the required
motor signals (torques).

While typically such mappings are assumed to be
smooth, in real world scenarios, there are many inter-
esting cases where the functions of interest are truly
discontinuous. Some examples include contact with
other objects (and the ground), with other parts of the
body, or with “joint limits”. In fact, many interesting
interactions with the environment manifest themselves

Appearing in Proceedings of the 22™% International Confer-
ence on Machine Learning, Bonn, Germany, 2005. Copy-
right 2005 by the author(s)/owner(s).

through discontinuities in the sensorimotor data.

Switching between models can be modeled by intro-
ducing a latent switch variable 7 that indicates which
model is responsible. Several existing methods address
a scenario where ¢ can be inferred from the tempo-
ral context by learning a latent temporal transition
model P(i'|), e.g., in the context of state space mod-
els (Ghahramani & Hinton, 1998; Pavlovic et al., 2000)
or multiple inverse models (Wolpert & Kawato, 1998).
Here we want to address another scenario, where i
can be inferred directly from the input x (e.g., the
robot’s configuration or sensor readings) by learning a
probabilistic model P(i|x). Learning a deterministic
partitioning of the input space — i has been ad-
dressed before: (Bemporad et al., 2003) use a greedy
search algorithm to find a polygonal partitioning con-
strained by an absolute error bound. (Kavka & Schoe-
nauer, 2004) recently proposed a Voronoi cell parti-
tioning with local fuzzy controllers learned with an
Evolutionary Algorithm. Also decision trees (Model
Trees, (Quinlan, 1992)) are possible choices to rep-
resent a partitioning. None of these approaches pro-
vide a probabilistic model for P(i|x) or for the local
regression models (e.g., to account for outliers) and
none of them provides an incremental learning scheme,
where P(i|x) (or the deterministic partitioning) can be
adapted locally without interference effects.

Our approach will introduce a product-of-sigmoids
model of P(ilx) where the boundary between two
neighboring models can be adapted independently
from all others. A standard EM-algorithm is derived
from a probabilistic regression model which includes a
background noise (outlier) model as a mixture. Un-
like standard mixture models, we introduce a locality
prior which prevents non-neighboring local models to
‘compete for data’—this greatly reduces interference
in the learning process and is one of the key features
of local learning techniques that allows for incremen-
tal learning (Schaal & Atkeson, 1998). In that re-
spect, we follow the approach of locally weighted learn-

Learning Discontinuities with Products-of-Sigmoids for Switching between Local Models

ing (Vijayakumar & Schaal, 2000), where previously a
Gaussian kernel associated with each local model rep-
resented its responsibility (although it is used as an
averaging weight rather than a probabilistic mixture
coefficient). Our key extension to these approaches is
that, using a product of local sigmoidal classifiers as a
model for the responsibilities P(i|x) instead of the typ-
ically Gaussian kernel, we can learn complex shaped,
sharply bounded responsibility regions for each local
model.

The next section will give a brief overview of the model
while Sections 3 and 4 introduce the details of learning
a family of local models and learning the responsibili-
ties. Section 5 briefly addresses the complexity of the
model. In Section 6, we demonstrate the performance
of the algorithm on test functions and a physical in-
teraction problem.

2. Overview of the model

The complete model will be composed of n submod-
els ¢;, i = 1,..,n, and a set of sigmoidal functions
ii(x) € [0,1] that switch between two neighboring
submodels i and j (see Fig. 1). The “cell” associated
to a model ¢ is bounded by the adjacent sigmoids 1,
similar to the Voronoi cells of (Kavka & Schoenauer,
2004). However, adapting Voronoi sites incrementally
to design appropriate boundaries is a complex coupled
problem. Therefore, we represent every boundary by a
separate sigmoid 1);;; hence, incorporating the ability
to represent even non-convex polygonal regions.

Given this setup, we will have to: (1) learn the set
(or family) of submodels ¢; such that it is sufficient to
explain the data, and (2) learn the sigmoidal switch-
ing functions ;; between neighboring models. Fol-
lowing the policy to reduce interference, we decouple
the learning process accordingly on two levels. On
the first level (family learning) the goal is to learn a
set of submodels such that for every datum at least
one of them is a sufficient model. Family learn-
ing will assume a simple, uninformed locality prior
P,(i|x) to formulate a generative mixture model and
derive the EM-updates. The second level uses the
learned family of submodels to learn an accurate pre-
dictive model Ps(i|x) with the product-of-sigmoids ap-
proach. Separating these two levels prevents interfer-
ence problems—typical for mixture of experts mod-
els (Jordan & Jacobs, 1994)—that arise when using a
yet incorrect (gating) model Ps(i|x) for the responsi-
bility inference in the E-step: If initially the learned
model Ps(i|x) is incorrect, the inferred responsibilities
are corrupted and the submodels ¢; are assigned hard
to learn data. No stable set of submodels might de-

Figure 1. The complete model is composed of local models
¢: and classifiers 1);; between neighboring models (e.g., the
solid line indicates a learned linear classification). Every
local model receives responsibility in a region bounded by
adjacent classifiers (dotted lines).

velop and based on this a better model Ps(i|x) could
hardly be learned.

3. Learning a family of models

The first level goal of our algorithm is to learn a fam-
ily ® = {¢1,..,¢n} of models such that every datum
can be explained by at least one model. Thinking in
terms of a generative model, this can be captured as
follows. First, an input @ is drawn from some distribu-
tion P(x). Then, with a probability €, the output y is
pure noise modeled by the uniform distribution U(y).
Otherwise, with a probability 1—e, the ith model of
the family is selected according to a prior P(ilx) and
produces an output P(yl|i,). Formally,

N
Pyle) = (1 —¢) ZPz(ilm) P(yli,x) + € P(yli = 0) ,

1 ly — ¢i()|?
maexp{‘ 202 } ’
P(yli=0)=U(y) .

The latent variable ¢, which we will call the respon-
stbility index, thus decides on which model produced
the data. Here, i = 0 corresponds to the case of the
noise model.

P(yli,) =

On the level of family learning we assume a locality
prior P(i|x), describing which model i may possibly
be responsible for a given input «. This prior is rather
uninformed and is not learned from data—the next
section will exactly focus on replacing this prior by
a more predictive model P;(i|x) learned from data.
The locality prior implements a constraint such that
the same model ¢; cannot be responsible for remote,
disconnected regions of the input domain. This clearly
follows the principle of localized learning, aiming to
reduce interference, and is also a necessary constraint
for the switching model explained later.

Let ¢; denote the mean input (center) on which model
¢; has been trained on. For a given input x, the ith

Learning Discontinuities with Products-of-Sigmoids for Switching between Local Models

i is eligible for z 1 is not eligible for x

\Cj G
Q.
PANN Lo

7 X'\ /
(o [AN Q@
C; N C;

Figure 2. The constraint implemented by the locality
prior: A model with center ¢; is eligible for an input =
only when there does not exist another model with center
c; “between” ¢; and x. A notion of “between” is that the
scalar product in equation (1) is negative (which is equiv-
alent to saying c¢; is not in the ball between x and ¢;).

model is eligible (i.e., a candidate for explaining the
data) if and only if there does not exist a jth model
which has its center “between” c¢; and x. More pre-
cisely,

Pil) =0 <= Jj: (x—cj,c;—¢;) <0, (1)
where (-,) is the scalar product in input space. This
constraint is best explained by Fig. 2. Equal prob-
ability is then associated to all eligible models, i.e.,
P,(i|x) is uniform over all eligible i’s. It would be
straight-forward to introduce smoother locality con-
straints, but since this prior worked sufficiently and is
parameter-free, we stick to this simple option.

Having setup this model, learning follows the standard
EM-machinery. For the E-step, given a current family
of models and a new training datum (x,y), we can
infer a posterior on the latent index ¢ for this datum
using Bayes rule:

1—e€
Z
P(yli=0), (3)

Vizo : Plily, ®) = P(yli, =) Fi(ilz), (2)

€

Pli=0ly,2) = -

where Z normalizes over ¢ (including ¢ = 0). As an M-
step, model ¢; is then trained on the datum weighted
by the P(ily,x) (we give more details on the local
models below). It becomes clear how the locality prior
in equation (2) reduces interference: a model i that is
non-local to & has a weighting zero, is not trained,
and does not participate in the competition to model
the data.

New models are added incrementally to the family
when needed: We use the MAP index

i = argmax; P(ily,) 4)

to label the training datum with the most likely model.
A zero MAP index 7 = 0 indicates that the training
data is “yet unmodeled”. All such data is collected
into a set until it has a desired size sufficient for a new

hypothesis. The generation of new family members is
done, similarly to RANSAC (Fischler & Bolles, 1981),
as follows: A datum (x,y) is selected randomly from
the set of unmodeled data. Then the K closest neigh-
bors! of (x,y) in this batch (w.r.t. Euclidean distance
in input space) are determined. These K data points
are chosen as initial training data for the new hypoth-
esis. Thereafter, all points in the set of unmodeled
data are reconsidered and the MAP index i recalcu-
lated for them according to equation (2), pretending
the hypothesis is a member of the family. If the new
hypothesis receives a sufficient count of responsibilities
(it basically only has to compete with the noise model)
this modeled data is deleted from the batch and the hy-
pothesis added to the family. We considered 10d as a
threshold for sufficient counts of responsibilities. This
threshold naturally limits the number of instantiated
models depending on the data. Additionally, a prun-
ing of models that do not explain a sufficient amount
of data is possible based on how often a model receives
the MAP index. We did not use such heuristics though
in the experiments.

We also define an error measure, the family error,
which is the average squared error of the best fitting
eligible model: For a test data set {(zx,yx)} L, we
define

M
E; = Z lye — ¢i, (x1)*, where
k=1

i, = argmax Py(ilzy) Pygli, zx) -
K3

In this way, the performance of the underlying family
learning can be monitored independently in the train-
ing phase.

3.1. The local models

The general scheme of family learning can be realized
with any type of models ¢;. In the experiments, we will
choose ¢; to be linear functions, learned with Partial
Least Squares (PLS) regression (de Jong, 1993). How-
ever, there exist standard techniques to blend between
local linear functions in order to learn non-linearities
(Schaal & Atkeson, 1998). Future version of our model
will be extended to be able to do both, blending and
switching. Here, we want to focus only on the novel
aspect of the new model: the switching.

The sufficient statistics for PLS need to be collected
in a weighted fashion: The variables of these statistics
are the norm W, the input and output means m, and
my, and correlation matrices V and C. All of these

'We choose K to be a random Poisson number with
mean 3d, where d is the input dimensionality.

Learning Discontinuities with Products-of-Sigmoids for Switching between Local Models

are initialized with zero. When the model receives
an input @, a target output y, and a weighting w (=
P(i|ly, x)) as new training data, the sufficient statistics
are accumulated as

W—W+w,

My — My +WT

Ve—V4wzzl,

My — My +wy,
C—CHwezxy.

Clearly, the total input mean is m, /W, the output
mean is m, /W, the input covariance matrix V/W —
m, mI/W? and the input-output covariance matrix
C/W — m, m,/W?2 Whenever the model has to be
evaluated, the SIMPLS algorithm (de Jong, 1993) fits
a linear regression to these statistics by computing
a projection matrix P that maps x onto a lower-
dimensional representation and a matrix () that maps
this representation to the final output. The composi-
tion Q P : x — y is the learned linear model.

Partial Least Squares can also be realized as an online
learning scheme (Vijayakumar & Schaal, 2000) where
the statistics are accumulated in the same way, but
the projections P are learned by continuous adapta-
tion. The benefit of PLS is that the projections P
are learned in such a way that they are most “infor-
mative” (most correlated) with the output—which is a
very powerful dimensionality reduction method to base
the actual regression on. In addition, the multivariate
regression breaks down into a series of univariate re-
gressions due to the orthogonality of the projection
directions.

4. Products-of-sigmoids for switching

On the second level of our algorithm, the goal is to
learn a predictive model Ps(i]x) of the latent respon-
sibility index ¢ that is more precise than the locality
prior P;(i|z). One may think of exactly the same gen-
erative process as described in the previous section ex-
cept that P(i|x) is replaced with P, (i|x).

Traditionally, in localized learning one associates a ker-
nel o;(x) (typically Gaussian) to each local model such
that P(ix) (or a model’s “weighting”) is proportional
to a;(x), but normalized over i. The shape and size
of such kernels can also be learned (Schaal & Atkeson,
1998). Generally though, the shapes of responsibility
regions may be complex and sharply bounded. Follow-
ing the localized learning principle we still want this
classification be represented in a localized way.

Our approach is to represent such kernels as a prod-
uct of sigmoidal classifiers that are arranged locally
around a model 7. More precisely, given some data
it is easy to decide whether two models are “poten-

(@), 56 (),
02 0.8

0.15 0.6

0.1 0.4

0.05 0.2

0 0

ooo0000000~
et

0.01

Figure 3. Kernels that can be represented as a product-of-
sigmoids. Let s(x) = 1/[1 4+ exp(—z)]. (a): s(z)s(—=x) is
compared with the Gaussian .25 exp(—z2/5) (dashed line).
(b): s(3(z +5)) s(—3(x — 5)), the steepness of the kernel
boundaries can be tuned with the slope of the linear func-
tion n;;. (c): The product s(z)s(—z)s(y)s(—y) in 2 dimen-
sions is very smooth and almost radially symmetric. (d):
s(2(x+2))s(2(—z/1.5+y+2))s(2(—x/1.5 —y +2)) is dis-
played. In principle any polygonal kernel shape with any
boundary steepness can be constructed.

tially neighbored”—mamely whether there exists data
for which both models are eligible—based on their cen-
ters. For each pair (ij) of neighbored models, we learn
a sigmoidal function 1;;(x), where ¢;; = 1 — ;. The
product of such sigmoids around a submodel ¢ then
defines Ps(i|x) as

Pile) = 5[]t o)

B 1
1+ exp[—n;; ()]

Yij() :
where Z’ normalizes over i. As indicated, the sigmoids
1;; are defined by a scalar functions 7;; which we will
assume to be linear (which makes 1) essentially a stan-
dard perceptron). Fig. 3 illustrates some kernels that
can be represented as products of sigmoids.

The sigmoids 9;;(x) are meant to represent the likeli-
hood that a model ¢ rather than j is responsible for an
input @, conditioned on the fact that either ¢ or j is
responsible. The product combination is comparable
to an AND voting. The MAP index i we inferred in the
previous section is now used to train these sigmoids:
For every datum that is labeled with a non-zero MAP
index 7, all sigmoids 1;; adjacent to the ith model are
trained to classify this datum as 1 (or, equivalently, the
1j;’s are trained to classify this datum as 0). The pa-

Learning Discontinuities with Products-of-Sigmoids for Switching between Local Models

rameters of the sigmoid (basically the weights of the
perceptron) are trained with a fast gradient descent
based adaptation (Rprop, (Igel & Hiisken, 2003)).

4.1. Error measures

In addition to the family error, we define the classifi-
cation error E., which counts how often the product
of sigmoids correctly predicts ¢; to be the best fitting
model for a given input: Let us define

i* = argmax Ps(i|z) (6)

as the maximum likelihood predicted index, as opposed
to the MAP index 7 = argmax, P(i|y,) given the tar-
get output y. Then the classification error gives the
ratio of data for which i* # 1.

Our model could be interpreted as a deterministic
function (instead of a probabilistic model) where the
output y* is given by the predicted best model, y* =
¢i+(x). The MSE w.r.t. this function could be used
as an error measure for our model. However, this
is inconsistent with the probabilistic framework and
in the case of discontinuous functions, also mislead-
ing. For instance, consider the Heavy-side function
h(z < 0) = 0 and h(z > 0) = 1. Very close to the
discontinuity our model might predict an output of 0
or 1, each with a probability of 50%. Thereby, with a
chance of 50% it produces a squared error of 1, or in
average % In contrast, a model that predicts an out-
put of % only produces a squared error of i although
it predicts consistently wrong. From the probabilis-
tic point of view, it is clear that it makes no sense
to assume a (unimodal) Gaussian output noise model
at discontinuities. Instead, displaying both, the family
and classification error, gives more insight and directly
reflects the likelihood of the model.

5. Computational issues

For every training point, an E-step (eq. (2)) has to
calculate responsibilities for each model by computing
the product of the locality prior P;(i|x) and the model
likelihood P;(y|z). Ordinarily, these would have to
be evaluated for each model i. However, since the
locality prior is non-zero only for a limited number
of eligible models, we can reduce the computational
cost by maintaining a graph data structure where each
node is a local linear model ¢; and each edge represents
a sigmoid ;; between neighboring models. The graph
allows us to quickly decide which models are eligible
(by finding the closest node and considering its graph
neighbors)—the likelihoods P;(y|x) need be evaluated
only for those models. Evaluation of a likelihood is

a) 2 .
() training data

- learned switching model ——
15 true ——-

1
0.5
0

05 |

training‘ data
., - averaged learned switching model ——

-1 -0.5 0 0.5 1

Figure 4. (a) A 1D test function with d=1, =10, 0=0.1.
Learned switching model after 20 iterations on 1000 train-
ing data points. (b) The averaged switching model: y(z) =
>, Ps(i|x) ¢i(x) compared to LWPR.

O(d) for a linear model in d dimensions.

For the M-step (for every training point), the statistics
of each of the eligible models has to be updated using
incremental PLS weighted with the non-zero respon-
sibility. In (Vijayakumar & Schaal, 2000) details are
found on how to realize incremental PLS in O(d) by
adapting the number p of projections needed for re-
gression (as a result, the sufficient statistics are d x p
matrices rather than d x d). For every training datum,
we also adapt the sigmoids v; j adjacent to the MAP
model ¢;, which is also O(d) when implemented using
gradient based adaptation.

6. Experiments
6.1. Discontinuous test functions

First we tested our algorithm on random, piecewise lin-
ear, discontinuous test functions. A test function has
3 parameters: the input dimensionality d, the num-
ber [of linear pieces it is composed of, and the output
noise 0. They are generated as follows. We draw [

Learning Discontinuities with Products-of-Sigmoids for Switching between Local Models

Figure 5. A 2D test function composed of 10 pieces. The
wire-frame represents the learned switching model which
deviates from the true test function (gray-shaded surface)
only at a few corners. The noise level was o = .01.

basis points &;, ¢ = 1,..,] uniformly from the input
domain [—1,1]%. To each basis point &; we associate
a random offset 3) ~ U([—1,1]) and a random vector
B; ~ U([—1,1]"), where U is the uniform distribu-
tion. Thus, each i represents a random linear function
x — [+ (B;, & — &;). For a given input x, the target
output is then the output of the ith linear piece with
minimal distance |z — &;| plus Gaussian noise with
standard deviation o.

Fig. 4(a) display a 1D test function (dashed) with
10 linear pieces together with the 1000 training data
points sampled from it and the approximation (solid)
learned by our algorithm (i.e., the most likely pre-
dicted output y*). The fit between the learned model
and the true test function is almost perfect, except
of the region around x =~ —.4, where the true test
function has as a step which is not recognized by the
model. Given the noise variance of the actual training
data though, this is not surprising.

Fig. 4(b) displays the same 1D test function,
now compared against a model learned by Locally
Weighted Projection Regression (LWPR, (Vijayaku-
mar & Schaal, 2000)) and an “averaged output” of
our model, y(x) = Y. Ps(ilx) ¢;(x). As mentioned
in the section 4.1, this averaging is probabilistically
questionable. Still, displaying this output on the one
hand gives a concrete idea of the sigmoids, in particu-
lar their slopes, that are implicitly learned, and on the
other hand makes it more comparable to the weighted
averaging usually employed by local regression models.

Fig. 5 displays a 2D test function showing how the
complexity of the kernels (or cells) may increase in
higher dimensions.

In Fig. 6 we display results for 10 independent trials
on random test functions in 2, 5 and 10 dimensions.
The family error (upper graphs) consistently decays

(a) 10 5
d=5 —--
d=10 —

1 4
11}
n
=3

g o1]
[}
=
E
©

= 0.01 1

R s

0001 L L L L L L L L L

0 5 10 15 20 25 30 35 40 45

iterations

(b) o3 —

d=2 —
0.25 f arr .
5 02} |
5
5 0.15 1
5
£ 01]
&
3 0.05]
e e e e e e o F o F — F = — E —
0,
-0.05 L L L L L L L L

5 10 15 20 25 30 35 40 45
iterations

Figure 6. The family error (a) and the classification error
(b) for 10 runs on random 2D, 5D and 10D test functions
with [= 10 and ¢ = .1. We used 1000 training point in
the 2D case and 10000 in the 5D and 10D. Each iteration
corresponds to one cycle through the training data set.
The curves are average errors standard deviations for the
10 runs on independent test data sets.

to the noise level (o2 = 0.01). (A family error below
the noise level is possible because the MAP index i
is a posterior given the target output.) The classifi-
cation is not perfect but still rather robust as shown
by the variance between trials. The 10D case (with a
considerably large input space [—1, 1]1°) indicates that
eventually this classification becomes the challenge in

high dimensions.

6.2. Physical interaction problem

We use a realistic physical simulation? of a movement
system with contact dynamics (cf. Fig. 7(a)) to test our
algorithm. The configuration has 4 degrees of freedom,
an angular position and velocity for both levers. As a
control signal, we applied random Gaussian torques on
the cylindrical lever. When the cylindrical lever comes
in contact and pushes the black lever, contact forces

2The Open Dynamics Engine (http://ode.org/) written
by Russell Smith et al.

Learning Discontinuities with Products-of-Sigmoids for Switching between Local Models

(a) (b)

0.1
0.01

0.001 ¢

family error

0.0001 ¢

1e-05 ¢

—~
o
~

0.01

classification error

0.001

1e-06
0 2 4 6

8 10 12 14 16 18 20 2 4 6
iterations

0.0001

8 10 12 14 16 18 20
iterations

Figure 7. (a) The physical configuration we used to generate the data. The 1D control signal specifies the torque applied
on the (light coloured) cylindrical lever which rotates friction-less about the axis. An unactuated (black) lever rotates
about the same axis with significant friction. No torques are exerted on the black lever unless the cylinder pushes it. The
family error (b) and the classification error (c¢) for the physical interaction problem.

discontinuously change the dynamics of the whole sys-
tem.

The problem is to learn the inverse dynamic model
which maps from the current state (positions and ve-
locities of both levers) and the desired acceleration (of
the cylindrical lever) to the motor signal that is needed
to realize this acceleration. 10000 data points were
collected for training. Eventually, the model instanti-
ated three submodels to learn the data. The family er-
ror given in Fig. 7 corresponds to the noise-level of the
physical simulation; the classification error shows that
only very few of the independent 10000 test points
were wrongly associated. More insight is gained by
investigating how the sigmoidal classifiers learned to
split up the data among the local models. In Fig. 8,
the full training data set is displayed, as well as the
split up. We find that the data is separated in three
parts corresponding to the three submodels. The sim-
plest part is the contact-free data (with non-extremal
relative angle, Fig. 8(b)) which is learned as a linear
relationship between desired acceleration and motor
signal. The two other parts correspond to the contact
situations (from the left and from the right). Here, the
target motor signal additionally depends on the cur-
rent velocities (due to the black lever’s friction) and
two separate models are learned for the cases of left
and right contact.

7. Discussion

The presented model addresses the problem of hand-
ling the discontinuities that naturally arise, for ex-
ample, in sensorimotor data during interaction with
a structured environment. Our model extends ear-
lier local incremental learning approaches in several
ways: The responsibility region associated with each
local model (learned with the product-of-sigmoids) has
a much more versatile boundary shape compared to
typical Gaussian kernels. Problems associated with

initialization of kernel shapes or widths and the heuris-
tic choice of an ad hoc number of submodels are cir-
cumvented by the robust incremental allocation of new
models.

In incremental learning problems, locality is the key
to reduce interference since one local model can be
adapted to new local data without destroying remote
models. The sigmoid-of-products representation of
P(i|z) follows this principle: A new datum leads to
an adaptation of only the local classifiers around ¢ and
leaves remote classifiers unaffected. This contrasts to
previously investigated global approaches (Bemporad
et al., 2003; Quinlan, 1992) to learn a deterministic
partitioning of the input space.

Learning a family of models was realized on a separate
level, decoupled from the learning of the responsibil-
ity prediction which is built on top. The fixed locality
prior P(i|x) that we introduced at the level of fam-
ily learning has a decoupling effect which contrasts
to standard mixture models: Since the prior is zero
for non-local data, non-neighboring submodels do not
compete for modeling this data. For instance, when a
new submodel is added to the family, it only interferes
with its direct neighbors (which may have to readapt)
but does not interfere with remote submodels. This is
the key ingredient for incremental learning with local
models.

Finally, we assumed the local models to be linear. If
one can specify an appropriate set of basis functions
(like low order polynomials) for the given problem,
then it is straight-forward to extend the approach to
local non-linear models following Generalized Additive
Models (Hastie & Tibshirani, 1990). Generally, ex-
isting approaches addressed the problem of blending
(with associated kernels) local linear models in order to
represent smooth non-linear function. Here we focused
on how to discontinuously switch between linear mod-
els. A future version of our model will have to combine

Learning Discontinuities with Products-of-Sigmoids for Switching between Local Models

(a)

motor signal

all data

(b)

motor signal
5

0

Figure 8. (a) The (normalized) training data collected from the physical simulation projected on the desired acceleration
(which is an input), the relative angle between the levers (which is not an input but used here for better visibility), and
the motor signal (which is the target output of the inverse model). When the relative angle is extremal (around £1 in
the given scale) the two levers have contact (from the left or from the right). (b) The separation of the test data set
as learned by the products-of-sigmoids. The model learned to associate the test data points to the three different local
models ¢;. More precisely, the test data is split up according to the maximum likelihood predicted index ¢* (cf. eq. (6)),
which is computed from the product of the learned sigmoids (cf. eq. (5)). The data labeled with “model B” corresponds
to the contact free dynamics and is a linear dependency between desired acceleration and motor signal. The data assigned
to models A and C correspond to contact from the left or the right, respectively.

both, blending and switching, in order to represent dis-
continuous and piece-wise non-linear functions.

Acknowledgments

We would like to thank the anonymous reviewer for
their helpful comments. The first author is grateful
to the German Research Foundation (DFG) for the
Emmy Noether fellowship TO 409/1-1.

References

Bemporad, A., Garulli, A., Paoletti, S., & Vicino, A.
(2003). A greedy approach to identification of piece-
wise affine models. Hybrid Systems: Computation
and Control; LNCS (pp. 97-112). Springer.

de Jong, S. (1993). SIMPLS: An alternative approach
to partial least squares regression. Chemometrics
and Intelligent Laboratory Systems, 18, 251-263.

Fischler, M. A., & Bolles, R. C. (1981). Random sam-
ple consensus: A paradigm for model fitting with
applications to image analysis and automated car-
tography. Comm. of the ACM, 24, 381-395.

Ghahramani, Z., & Hinton, G. (1998). Variational
learning for switching state-space models. Neural
Computation, 12, 963-996.

Hastie, T., & Tibshirani, R. (1990). Generalized addi-
tive models. Chapman and Hall, New York.

Igel, C., & Hiisken, M. (2003). Empirical evaluation
of the improved Rprop learning algorithm. Neuro-
computing, 50(C),, 105-123.

Jordan, M. I, & Jacobs, R. A. (1994). Hierarchical
mixtures of experts and the EM algorithm. Neural
Computation, 6, 181-214.

Kavka, C., & Schoenauer, M. (2004). Evolution of
voronoi-based fuzzy controllers. 8th International
Conference on Parallel Problem Solving from Nature
(PPSN VIII), Birmingham, UK; LNCS. Springer.

Pavlovic, V., Rehg, J. M., & MacCormick, J. (2000).
Learning switching linear models of human motion.
NIPS (pp. 981-987).

Quinlan, J. R. (1992). Learning with Continuous
Classes. &th Australian Joint Conference on Arti-
ficial Intelligence (pp. 343-348).

Schaal, S., & Atkeson, C. (1998). Constructive incre-
mental learning from only local information. Neural
Computation, 10, 2047-2084.

Vijayakumar, S., & Schaal, S. (2000). Locally weighted
projection regression: An o(n) algorithm for incre-
mental real time learning in high dimensional space.
Proc. Int. Conf. on Machine Learning (ICML) (pp.
1079-1086).

Wolpert, D., & Kawato, M. (1998). Multiple paired
forward and inverse models for motor control. Neu-
ral Networks, 11, 1317-1329.

