
Unifying the Error-Correcting and Output-Code AdaBoost
within the Margin Framework

Yijun Sun1,2 SUN@DSP.UFL.EDU

Sinisa Todorovic2 SINISHA@UFL.EDU

Jian Li2 LI @DSP.UFL.EDU

Dapeng Wu2 WU@ECE.UFL.EDU
1Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL 32611, USA
2Department of Electrical & Computer Engineering, University of Florida, Gainesville, FL 32611, USA

Abstract

In this paper, we present a new interpretation of
AdaBoost.ECC and AdaBoost.OC. We show that
AdaBoost.ECC performs stage-wise functional
gradient descent on a cost function, defined in the
domain of margin values, and that AdaBoost.OC
is a shrinkage version of AdaBoost.ECC. These
findings strictly explain some properties of the
two algorithms. The gradient-minimization for-
mulation of AdaBoost.ECC allows us to derive
a new algorithm, referred to as AdaBoost.SECC,
by explicitly exploiting shrinkage as regulariza-
tion in AdaBoost.ECC. Experiments on diverse
databases confirm our theoretical findings. Em-
pirical results show that AdaBoost.SECC per-
forms significantly better than AdaBoost.ECC
and AdaBoost.OC.

1. Introduction

A review of the literature indicates that the majority of
available pattern classification algorithms are designed
only for binary classification problems. Some of them can
be easily generalized to solve multiclass problems (e.g.,
C4.5 [Quinlan, 1993]), while for others the extension is
not straightforward. Therefore, it is important to inves-
tigate how to use well studied binary classification algo-
rithms for solving multiclass problems. One of the possi-
ble approaches is to first decompose a multiclass into sev-
eral binary problems by using a code matrix, then, to apply
binary classifiers to these binary problems, and finally to
combine the binary outcomes toward the final classifica-
tion. The outlined approach can be systematized into three

Appearing inProceedings of the22nd International Conference
on Machine Learning, Bonn, Germany, 2005. Copyright 2005 by
the author(s)/owner(s).

sub-categories [Crammer & Singer, 2000]: (1) given a set
of binary classifiers, find a code matrix that yields small
empirical loss; (2) given a code matrix, find a set of bi-
nary classifiers that result in small empirical loss; (3) find
both a set of binary classifiers and a code matrix simulta-
neously that produce small empirical loss. Since herein we
assume that binary classifiers are not known in advance,
we omit considerations of the first category. A majority of
the existing algorithms belongs to the second category in
which the underlying dependence between the constructed
binary classifiers and the fixed code matrix is not explic-
itly accounted for. This problem is discussed in [Allwein
et al., 2000], where five different output codes are com-
pared for a variety of datasets, with indecisive answers as
to which output code is the best. The results in [Allwein
et al., 2000] suggest that finding the optimal code matrix
and binary classifiers simultaneously is the best strategy.

The third category, however, has been shown to be NP-
hard [Crammer & Singer, 2000]. To alleviate this prob-
lem, a number of sub-optimal algorithms have been pro-
posed in the literature, of which we are particularly inter-
ested in those formulated within the AdaBoost framework
– more specifically, output-code AdaBoost (AdaBoost.OC)
[Schapire, 1997], and error-correcting code AdaBoost
(AdaBoost.ECC) [Guruswami & Sahai, 1999]. Here, the
columns of the code matrix and binary hypothesis func-
tions are generated alternatively, in a specified number of
iteration steps. Thereby, the underlying dependence be-
tween the code matrix and binary classifiers is exploited
in a stage-wise manner.

AdaBoost.OC and AdaBoost.ECC have been successfully
applied to a number of standard multiclass problems. For
both algorithms, the upper theoretical bounds of the train-
ing error have been derived. Yet, a mathematically rigorous
formulation of how AdaBoost.OC and AdaBoost.ECC de-
crease the classification error has not to date been proposed.
In addition, the relationship between these two algorithms,

Unifying the Error-Correcting and Output-Code AdaBoost

as well as the algorithms’ behavior in the case of noise-
corrupted data are not fully examined in the literature. In
fact, current understanding of the two algorithms, as re-
ported in the literature, might even mislead practitioners
to choose a wrong algorithm between the two for a given
application. For example, in [Guruswami & Sahai, 1999],
AdaBoost.ECC is said to outperform AdaBoost.OC, which,
as we show in this paper, is not true for many settings.
The aforementioned missing links in the theoretical devel-
opment of AdaBoost.OC and AdaBoost.ECC motivated us
to conduct the research reported in this paper.

We present a new interpretation of the two algorithms
based on the analogy of boosting to steepest-descent min-
imization [Mason et al., 2000, Breiman, 1999, Friedman
et al., 2000]. More precisely, we show that AdaBoost.ECC
performs stage-wise functional gradient descent on a cost
function, defined in the domain of margin values. We
further prove that AdaBoost.OC is a shrinkage version
of AdaBoost.ECC. This theoretical analysis allows us to
derive the following results. First, we formulate and
strictly prove several properties of AdaBoost.ECC and
AdaBoost.OC, including the relationship between their
convergence training-error rates, and their performances
in noisy regimes. Second, we show how to simplify
the computation of AdaBoost.OC by avoiding the redun-
dant calculation of pseudo-loss. Third, we derive the
shrinkage version of AdaBoost.ECC, which we refer to
as AdaBoost.SECC. This novel algorithm naturally arises
from the gradient-descent formulation of AdaBoost.ECC,
where a shrinkage parameter can be used as a regulariza-
tion parameter, similar to introducing the learning rate in
neural networks.

We also study the algorithms’ behavior in the presence of
mislabeled training data. Mislabeling noise is a critical
problem for many applications, where preparing a good
training dataset is a challenging task. Indeed, human inter-
preters are often faced with hard-to-classify cases, which
may cause erroneous human supervision. As a result, the
training set may contain a significant number of mislabeled
data. These considerations were also examined for two-
class AdaBoost in [Dietterich, 2000].

The experimental results support our theoretical find-
ings. In a very likely event, when for example 10%
of training patterns are mislabeled, AdaBoost.OC outper-
forms AdaBoost.ECC. Moreover, in the presence of mis-
labeling noise, AdaBoost.SECC converges fastest to the
smallest test error, as compared to AdaBoost.ECC and
AdaBoost.OC.

2. Output Coding

First, we briefly explain the output coding method for solv-
ing multiclass classification problems [Dietterich & Bakiri,
1995, Allwein et al., 2000]. Suppose we are given a train-
ing datasetD={(xn, yn)}N

n=1∈X×Y whereX is the pat-
tern space andY={1, · · · , C} is the label space. To de-
compose the multiclass problem into several binary ones,
a code matrixM∈{±1}C×T is introduced, whereT is the
length of a code word. Here,M(c) denotes thec-th row,
that is, a code word for classc, andM(c, t) denotes an el-
ement of the code matrix. Each column ofM defines a
binary partition of C classes over data samples – the parti-
tion on which a binary classifier is trained. AfterT training
steps, the output coding method produces a final classifier
f(x) = [f1(x), · · · , fT (x)]T, whereft(x) : x→R. When
presented an unseen samplex, the output coding method
predicts the labely∗, such that the code wordM(y∗) is the
“closest” to the predictionf(x), with respect to a specified
decoding strategy. In this paper, we use the loss-based de-
coding strategy [Allwein et al., 2000], given by

y∗=arg miny∈Y

∑T

t=1 exp (−M(y, t)ft(x)) . (1)

3. AdaBoost.ECC and AdaBoost.OC

It has been empirically observed that AdaBoost can effec-
tively increase the margin [Schapire et al., 1998]. For this
reason, since the invention of AdaBoost, it has been conjec-
tured that in the limit AdaBoost achieves the same solution
as a Linear Programming (LP) problem in which the mar-
gin is directly optimized [Grove & Schuurmans, 1998]. In
the recent paper [Rudin et al., 2004], however, the equiv-
alence of the two algorithms has been proven not to hold
always. Nevertheless, the two algorithms are connected in
the sense that they try to maximize the margin. We make
use of this connection, by employing the results obtained
within the LP framework to define a cost function over the
domain of margin values, upon which AdaBoost.ECC per-
forms a stage-wise gradient descent.

We begin by defining the sample marginρ(xn) as

ρ(xn), min
{c∈Y,c 6=yn}

∆(M(c), f(xn))−∆(M(yn), f(xn)),

(2)
where ∆(·) is a distance measure. Maximization of
ρ(xn) in Eq. (2) can be interpreted as findingf(xn)
close to the code word of the true label, while at the
same time distant from the code word of the most con-
fused class. For the purposes of this paper, we specify
∆(M(c), f(x)),‖M(c)−f

T(x)‖2, yielding

ρ(xn) = 2M(yn)f(xn) − max
{c∈Y,c 6=yn}

{2M(c)f(xn)} .

(3)

Unifying the Error-Correcting and Output-Code AdaBoost

Hence, maximization ofρ(xn) can be formulated as an op-
timization problem:

max ρ ,
s.t. M(yn)f(xn) − max

{c∈Y,c 6=yn}
{M(c)f(xn)} ≥ ρ,

n = 1, · · · , N.

(4)

Herein, we are particularly interested in findingf(x) of the
following form:

f(x)=
[α1h1(x), · · ·, αT hT (x)]

T

∑T

t=1 αt

=
F(x)
∑T

t=1 αt

, (5)

where the weights∀t, αt ≥ 0, and the hypothesis functions
ht(x) : x→{±1}. From Eqs. (4) and (5), we derive

max ρ ,

s.t.
T∑

t=1

αt
∑T

t′=1 αt′

(M(yn, t) − M(c, t))ht(xn) ≥ ρ,

n = 1, · · · , N, c=1, · · · , C, c6=yn, α≥0.
(6)

In light of the connection between LP and AdaBoost, it
appears reasonable to define a new cost function, which is
optimized by a multiclass AdaBoost algorithm, as follows:

G,

N∑

n=1

C∑

{c=1,c 6=yn}

exp (−(M(yn) − M(c))F(xn)) ,

=

N∑

n=1

C∑

c=1,
c 6=yn

exp(−

T∑

t=1

αt(M(yn, t)−M(c, t))ht(xn)).

(7)
Indeed, the following theorem shows that AdaBoost.ECC
optimizes the above cost function.

Theorem 1. AdaBoost.ECC performs a stage-wise func-
tional gradient descent procedure on the cost function
given by Eq. (7).

Proof: In Fig. 1, we present the pseudo code of the sym-
metric version of AdaBoost.ECC, as proposed in [Gu-
ruswami & Sahai, 1999]. By comparing the expressions
for: (i) the data-sampling distributiondt (Step (5)), and (ii)
the weightsαt (Step (8)), with those obtained from the min-
imization ofG, we prove the theorem. For the time being,
we assume that the code matrixM is given, the generation
of which is discussed later.

After (t−1) iteration steps, AdaBoost.ECC produces
Ft−1(xn) = [α1h1(xn), · · · , αt−1ht−1(xn), 0, · · · , 0]T.
In the t-th iteration step, the goal of the algo-
rithm is to compute thet-th entry of F(x), given
by αtht(xn), and to updateF(x) as Ft(xn) =
[α1h1(xn), · · · , αtht(xn), 0, · · · , 0]T. From Eq. (7),
the negative functional derivative ofG with respect to
Ft−1(x), if x = xn, is computed as−∇Ft−1(x)G|x=xn

=

∑C

c=1,c 6=yn
(M(yn)−M(c))Te−(M(yn)−M(c))Ft−1(xn).

Similar to the derivation steps in [Friedman, 2001], it is
straightforward to show thatht should be selected fromH
by maximizing its correlation with thet-th component of
−∇Ft−1(x)G

∣
∣
x=xn

as

ht= arg max
h∈H

{

N∑

n=1

C∑

c=1,c 6=yn

h(xn)(M(yn, t)−M(c, t))

·e−(M(yn)−M(c))Ft−1(xn)}.
(8)

To facilitate the computation of Eq. (8), we introduce the
following terms:

Vt(n),

C∑

c=1,
c 6=yn

|M(yn, t)−M(c, t)|e−(M(yn)−M(c))Ft−1(xn),

dt(n) , Vt(n)/
∑N

n=1 Vt(n) , Vt(n)/Vt .
(9)

Note thatVt, given by Eq. (9), differs fromUt, defined
in Step (4) in Fig. 1, by a constant. Also, note that
(M(yn, t)−M(c, t)) either equals zero, or has the same
sign asM(yn, t). It follows that

ht=arg maxh∈H

∑N

n=1 Vt(n)sign(M(yn, t)) h(xn),(10)

=arg maxh∈H Vt

∑N

n=1 dt(n)M(yn, t)h(xn) , (11)

=arg maxh∈H Ut

∑N

n=1 dt(n)M(yn, t)h(xn) , (12)

=arg minh∈H

∑N

n=1 I(M(yn, t) 6= h(xn))dt(n) , (13)

=arg minh∈H ε , (14)

whereε is the training error. Onceht is found,αt can be
computed by minimizing the intermediate cost functionGt.
The derivative ofGt with respect toαt reads

∂Gt

∂αt

=−
∑N

n=1

∑C

c=1,c 6=yn
(M(yn, t)−M(c, t))ht(xn)

· e−
Pt

j=1
αj(M(yn,j)−M(c,j))hj(xn).

(15)
Note that (M(yn, t)−M(c, t)) takes values in the set
{0, 2,−2}. Also, recall that(M(yn, t)−M(c, t)) has the
same sign asM(yn, t). From Eq. (9) we derive

−
∂Gt

∂αt

=Vt

N∑

n=1

dt(n)M(yn, t)ht(xn)e−2αtM(yn,t)ht(xn),

=Vt

(
N∑

n=1

I(M(yn, t)=ht(xn))dt(n)e−2αt

−

N∑

n=1

I(M(yn, t)6=ht(xn))dt(n)e2αt

)

.

(16)
From Eqs. (13) and (14), and∂Gt/∂αt=0 we obtain

αt = 1
4 ln[(1 − εt)/εt] , (17)

Unifying the Error-Correcting and Output-Code AdaBoost

AdaBoost.ECC

(1) Initialization: givenD = {(xn, yn)}N
n=1 ∈ X ×Y, initialize

D1(n, c) = I(c6=yn)/N(C−1), n = 1:N , c = 1:C;
set the maximum number of iteration stepsT .

(2) for t = 1 : T

(3) Define thet-th column ofM: M·t ∈ {−1, +1}C×1;

(4) Ut =
PN

n=1

PC

c=1 Dt(n, c)I(M(yn, t) 6= M(c, t));

(5) dt(n) = 1
Ut

PC

c=1 Dt(n, c)I(M(yn, t) 6= M(c, t));

(6) Train the base learner fromD with respect to distribution
dt, and computeht(x);

(7) εt=
PN

n=1 I(M(yn, t) 6= ht(xn))dt(n);

(8) αt=
1
4

ln[(1 − εt)/εt];
(9) Update weightsDt+1 asDt+1(n, c) =

1
Zt

Dt(n, c) exp(−αt(M(yn, t)−M(c, t))ht(xn)),
whereZt is a normalizing constant;

(10) end
(11) Output: F(x) = [α1h1(x), · · · , αT hT (x)] .

Figure 1.Pseudo code of AdaBoost.ECC, as proposed in [Gu-
ruswami & Sahai, 1999].

which is equal to the expression given in Step (8), Fig. 1.

Finally we check the update rule for data-sampling dis-
tribution dt. By unravellingDt(n, c) in Step (9) in the
pseudo code of AdaBoost.ECC (see Fig. 1), we derive:
Dt(n, c)= 1

Zt
exp(−(M(yn)−M(c))Ft−1(xn)), if c6=yn,

andDt(n, c)=0, if c=yn whereZt is a normalization con-
stant. By pluggingDt(n, c) into Steps (4) and (5) in the
pseudo code of AdaBoost.ECC, it is straightforward to
show that the expressions fordt in Step (5) and Eq. (9)
are the same.�

Now, we discuss how to generate the columns of the code
matrix, denoted asM·t. Recall that simultaneous optimiza-
tion of bothM.t andht is NP-hard. Both AdaBoost.OC
and AdaBoost.ECC perform in fact a two-stage optimiza-
tion in which M.t is first generated by maximizingUt,
given in Step (4) in Fig. 1, and thenht is trained based on
the binary partition defined byM.t. In [Schapire, 1997,Gu-
ruswami & Sahai, 1999], this procedure is justified by
showing that maximizingUt decreases the upper bound of
the training error. MaximizingUt is a special case of the
“Max-Cut” problem, which is known to be NP-complete.
Herewith, for computing the approximate solution of the
optimalM.t, in our experiments we use the same approach
as that used in [Schapire, 1997].

We point out that the proof of Theorem 1 provides for yet
another interpretation of the outlined procedure. Ideally,
in the t-th iteration step we want to findM.t and ht si-
multaneously to optimize the correlation in Eq. (8), which
however is NP-hard. Therefore, we resort to the two-stage
optimization. It is evident from Eq. (12) thatM.t should

be generated such thatUt is maximized.

3.1. Relationship between AdaBoost.OC and
AdaBoost.ECC

AdaBoost.ECC is derived from AdaBoost.OC on the algo-
rithm level, as discussed in [Guruswami & Sahai, 1999].
However, the relationship between the two algorithms is
not fully examined in the literature. The following theorem
provides for a mathematical explanation of their relation-
ship.

Theorem 2. AdaBoost.OC is a shrinkage version of
AdaBoost.ECC.

Proof: We compare the expressions for the weightsαt,
and the data-sampling distributiondt, to establish the re-
lationship between AdaBoost.OC and AdaBoost.ECC. The
pseudo code of AdaBoost.OC given in Fig. 2. In Step (7),
a pseudo hypothesis function,h̃t(x), is constructed as

h̃t(x) = {c ∈ Y : ht(x) = M(c, t)}. (18)

Usingh̃t(x), a pseudo-loss,̃εt, is computed in Step (8) as

ε̃t =
1

2

N∑

n=1

C∑

c=1

Dt(n, c)
(

I(yn /∈h̃t(xn))+I(c∈h̃t(xn))
)

,

(19)
whereDt(n, c) is updated in Step (9). Note that:

I(yn /∈h̃t(xn))+I(c∈h̃t(xn))= (M(c,t)−M(yn,t))ht(xn)
2 +1.

(20)
Therefore, from Eq. (19), we have

ε̃t=
1

4

N∑

n=1

C∑

c=1

Dt(n, c)(M(c, t) − M(yn, t))ht(xn)

︸ ︷︷ ︸

r

+
1

2

= 1
4r + 1

2 ⇒ r = 4(ε̃t −
1
2) (21)

Now, let us take a look at the pseudo code of
AdaBoost.ECC given in Fig. 1. The training error,εt, is
computed in Step (7) as

εt =
∑N

n=1 I(M(yn, t) 6= ht(xn))dt(n) ,

= 1
2 − 1

2

∑N

n=1 dt(n)M(yn, t)ht(xn) . (22)

From Step (5), in Fig. 1, we have

εt=
1
2−
PN

n=1

PC
c=1

Dt(n,c)I(M(yn,t) 6=M(c,t))M(yn,t)ht(xn)

2Ut
=

= 1
2−
PN

n=1

PC
c=1

Dt(n,c)(M(yn,t)−M(c,t))ht(xn)

4Ut
=

= 1
2 + 1

4Ut
r .

(23)
By plugging Eq. (21) into Eq. (23), we get:

εt =
1

2
+

1

Ut

(ε̃t −
1

2
) . (24)

Unifying the Error-Correcting and Output-Code AdaBoost

AdaBoost.OC

(1) Initialization: givenD = {(xn, yn)}N
n=1 ∈ X ×Y, initialize

D(1)(n, c) = I(c 6= yn)N(C − 1), n = 1:N , c = 1:C;
set the maximum number of iteration stepsT ;

(2) for t = 1 : T

(3) Define thet-th column ofM: M·t ∈ {−1, +1}C×1;

(4) Ut =
PN

n=1

PC

c=1 Dt(n, c)I(M(yn, t) 6= M(c, t));

(5) dt(n) = 1
Ut

PC

c=1 Dt(n, c)I(M(yn, t) 6= M(c, t));

(6) Train the base learner fromD with respect to distribution
dt, and computeht(x);

(7) Define pseudo hypothesis:h̃t(x)={c∈Y:ht(x)=M(c, t)};
(8) Compute pseudo error:

ε̃t=
1
2

PN,C

n=1,c=1 Dt(n, c)(I(yn /∈h̃t(xn))+I(c∈h̃t(xn)));

(9) α̃t = 1
4

ln[(1 − ε̃t)/ε̃t];
(10) Update weightsDt+1 asDt+1(n, c) =

1
Zt

Dt(n, c) exp(2α̃t(I(yn /∈h̃t(xn))+I(c∈h̃t(xn)))),
whereZt is a normalizing constant;

(11) end
(12) Output: F(x) = [α̃1h1(x), · · · , α̃T hT (x)] .

Figure 2.Pseudo code of AdaBoost.OC, as proposed in [Schapire,
1997].

From Eq. (24), we observe thatεt ≤ 1
2 if and only if

ε̃t ≤
1
2 , which means that both algorithms provide the same

conditions for the regular operation of AdaBoost. That is,
whenεt ≤ 1

2 bothαt ≥ 0 andα̃t ≥ 0. Furthermore, note
that Ut ∈ [0, 1], as defined in Step (4), in Fig. 1. From
Eq. (24), it follows that, for̃εt ≤

1
2 ,

εt − ε̃t = (1 −
1

Ut

)(
1

2
− ε̃t) ≤ 0 ⇒ α̃t = ηtαt , (25)

whereηt ∈ [0, 1]. Eq. (25) asserts that under the same
conditions, AdaBoost.OC takes a smaller step size than
AdaBoost.ECC in the direction ofht over the functional
spaceH.

We finally check Step (5) in Figs. 1 and 2, that is,
the updating rules for the data-sampling distributions of
AdaBoost.OC and AdaBoost.ECC. By using Eq. (20), it is
straightforward to show that the updating rules of the two
algorithms are the same. In conclusion, AdaBoost.OC is a
shrinkage version of AdaBoost.ECC.�

3.2. Remarks

The following remarks are immediate from Theorems 1
and 2.

(1) It is possible to reduce the computational complexity of
AdaBoost.OC, by eliminating Steps (7) and (8) in Fig. 2.
Instead,̃εt can be directly calculated from Eq. (24), given
εt. Here, the simplification stems from the fact thatεt is
easier to compute, as in Eq. (13).

(2) In [Guruswami & Sahai, 1999], the authors prove that
AdaBoost.ECC has a better upper bound of the training er-
ror than AdaBoost.OC. They also experimentally observe
that the training error of AdaBoost.ECC converges faster
than that of AdaBoost.OC. However, the fact that the train-
ing error upper bound of one algorithm is better than that
of the other cannot explain the empirical evidence related
to the convergence rate. Theorem 2 provides for the strict
proof of the observed phenomenon.

(3) Shrinkage can be considered as a regularization method,
which has been reported to significantly improve classifica-
tion performance, especially in the case of noise corrupted
data [Friedman, 2001]. Introducing shrinkage in the steep-
est decent minimization of AdaBoost.ECC is analogous to
using a specified learning rate in neural networks. Con-
sequently, based on the above analysis in Theorem 2, one
can expect that, in the low noise regime, AdaBoost.ECC
may have some advantages over AdaBoost.OC. However,
in the noise-corrupted-data cases, one should anticipate
AdaBoost.OC to perform better than AdaBoost.ECC. This
provides a guideline for selecting the appropriate algorithm
between the two.

(4) Shrinkage as a regularization can be pursued explicitly
in AdaBoost.ECC. We refer to the resulting new algorithm
as AdaBoost.SECC. The pseudo-codes of AdaBoost.SECC
and AdaBoost.ECC are identical, except for Step (8),
whereαt is computed asαt=η 1

4 ln[(1− εt)/εt]. Here,η is
a shrinkage parameter that takes values in(0, 1].

4. Experiments

For the three boosting algorithms, we choose C4.5 as a base
learner. C4.5 is a decision-tree classifier with a long record
of successful implementation in many classification sys-
tems [Quinlan, 1993]. Although, in general, C4.5 can be
employed to classify multiple classes, in our experiments,
we use it as a binary classifier.

We test AdaBoost.OC, AdaBoost.ECC, and
AdaBoost.SECC on five databases, four of which
are publicly available at the UCI Benchmark Reposi-
tory [Blake & Merz, 1998]. These are: (1) Car Evaluation
Database (or shortlyCars), (2) Image Segmentation
Database (Images), (3) Letter Recognition Database
(Letters), and (4) Pen-Based Recognition of Handwritten
Digits (PenDigits). The fifth database is USPS Dataset of
Handwritten Characters (USPS). For Cars andLetters, all
data samples are grouped in a single file per each database,
while for Images, PenDigitsand USPS, the training and
test datasets are available. We divide each database into
training, test, and cross-validation sets as detailed in
Table 1. For databases where only a single data-file is pro-
vided, we form the training, cross-validation and test files

Unifying the Error-Correcting and Output-Code AdaBoost

Table 1.The number of samples in each database
database training cross-validation test

Cars 865 (50%) 286 (15%) 577 (35%)
Images 210 210 (10%) 1890 (90%)
Letters 8039 (40%) 3976 (20%) 7985 (40%)

PenDigits 5621 (75%) 1873 (25%) 3498
USPS 6931 (95%) 360 (5%) 2007

by random selection of samples from that single file, such
that a certain percentage of samples per class is present
in each of the three datasets. ForCars, andLetters, we
randomly choose cross-validation data from the training
dataset, and forImages, from the test dataset. In Table 1,
the number of percentages in parentheses indicates the
distribution of samples per each class in the corresponding
dataset. ForUSPSdatabase, to reduce the run-time of our
experiments, we projected each sample using PCA onto
a lower-dimensional feature space (256 features→ 54
features) at the price of 10% of the representation error.

To conduct experiments with mislabeling, noise is in-
troduced only to the training and cross-validation sets,
while the test set is kept intact. The level of noise rep-
resents a percentage of randomly selected training data
(or cross-validation data) whose class labels are changed.
The performance of AdaBoost.OC, AdaBoost.ECC, and
AdaBoost.SECC is evaluated for several different noise
levels, ranging from0% to 30%. Throughout, for
AdaBoost.SECC, the optimal shrinkage parameterη∗ and
the optimal number of training stepsT ∗ are found by cross-
validation. We chooseη∗ for which the classification error
on the cross-validation data at theT ∗-th step is minimum.
In all experiments, the maximum number of training steps
is preset toT=500. The classification error both on the test
and cross-validation sets is averaged over10 runs.

We point out that the algorithms behave similarly for the
noise levels20% and30%. Also, results for the two ten-
class datasets PenDigits and USPS are very similar. Hence,
because of limited space, in Fig. 3, we show the test-error
plots for only four databases at three noise levels, while the
classification results are summarized in Table 3. In Fig. 4,
we plot the training errors forLettersas typical examples of
the algorithms’ training-error convergence rates. The op-
timal η∗ values for AdaBoost.SECC, determined through
cross-validation, are presented in Table 2.

From the results we observe the following. First, con-
vergence of the training error for AdaBoost.ECC is faster
than for AdaBoost.OC and AdaBoost.SECC, which is in
agreement with Theorem 2. Also, the convergence rate
of the training error of AdaBoost.SECC is the slowest,
which becomes very pronounced for high-level noise set-
tings, where typically a small value of the shrinkage pa-
rameterη∗ is used, as detailed in Table 2. Second, in

Table 2.Optimalη∗ values
noise level

database 0% 10% 20% 30%
Cars 1 1 0.05 0.05

Images 0.5 0.05 0.05 0.05
Letters 0.2 0.05 0.05 0.05

PenDigits 1 0.5 0.5 0.2
USPS 0.5 0.35 0.05 0.05

Table 3.Classification errors (%) on the test data. The best results
are marked in bold face. The optimal number of training stepsT ∗

of AdaBoost.SECC, if different from the predefined number, are
indicated in the parentheses.

database noise ECC SECC OC

C
a

rs

0% 5.5 5.5 7.3
10% 12.5 12.5 13.3
20% 20.8 17.0 (70) 20.0
30% 30.2 22.9 (90) 28.3

Im
ag

e
s 0% 4.5 4.2 4.5

10% 8.6 7.6 (70) 8.4
20% 15.1 11.5 (160) 14.0
30% 22.5 18.2 (150) 22.9

L
e

tt
e

rs 0% 9.3 8.0 8.3
10% 28.2 13.4 19.8
20% 35.6 16.9 24.9
30% 41.9 23.3 31.5

P
e

n
D

ig
its 0% 12.9 12.9 13.9

10% 15.2 14.7 14.8
20% 17.7 16.3 17.1
30% 21.7 19.2 19.4

U
S

P
S 0% 6.3 6.2 6.5

10% 7.3 6.6 6.9
20% 9.7 7.5 7.9
30% 12.4 8.7 9.1

the absence of mislabeling noise (i.e., 0% of noise level),
we observe that AdaBoost.ECC performs slightly better
than AdaBoost.OC with respect to the test error. However,
with the increase of noise level, AdaBoost.OC outperforms
AdaBoost.ECC, as predicted in Section 3.2. Finally, regu-
larization of AdaBoost.ECC, by introducing the shrinkage
parameterη, improves the performance; however, it may
also lead to overfitting (seeCars and Images), which can
be alleviated by using the early stopping method. Over-
all, AdaBoost.SECC outperforms other two algorithms at
all noise levels above zero. In some cases, significant im-
provements are observed. For example, forLetters, in a
likely event, when 10% of training patterns are mislabeled,
AdaBoost.SECC improves the classification performance
of AdaBoost.ECC by about50% (28% vs. 14%).

5. Conclusions

In this paper, we have unified AdaBoost.OC and
AdaBoost.ECC through the margin concept. We have
shown that AdaBoost.ECC performs stage-wise functional

Unifying the Error-Correcting and Output-Code AdaBoost

100 200 300 400 500
0.05

0.06

0.07

0.08

0.09

0.1

0.11
Test Error for Cars Database: Label Noise 0%

number of iterations

C
la

ss
if

ic
at

io
n

 E
rr

o
r

AdaBoost.ECC
AdaBoost.OC
AdaBoost.SECC

100 200 300 400 500
0.12

0.125

0.13

0.135

0.14

0.145

0.15

0.155

0.16
Test Error for Cars Database: Label Noise 10%

number of iterations
C

la
ss

if
ic

at
io

n
 E

rr
o

r

AdaBoost.ECC
AdaBoost.OC
AdaBoost.SECC

100 200 300 400 500
0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.38
Test Error for Cars Database: Label Noise 30%

number of iterations

C
la

ss
if

ic
at

io
n

 E
rr

o
r

AdaBoost.ECC
AdaBoost.OC
AdaBoost.SECC

100 200 300 400 500
0.03

0.04

0.05

0.06

0.07

0.08
Test Error for ImageSeg Database: Label Noise 0%

number of iterations

C
la

ss
if

ic
at

io
n

 E
rr

o
r

AdaBoost.ECC
AdaBoost.OC
AdaBoost.SECC

100 200 300 400 500

0.08

0.09

0.1

0.11

0.12

0.13

0.14
Test Error for ImageSeg Database: Label Noise 10%

number of iterations

C
la

ss
if

ic
at

io
n

 E
rr

o
r

AdaBoost.ECC
AdaBoost.OC
AdaBoost.SECC

100 200 300 400 500

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

Test Error for ImageSeg Database: Label Noise 30%

number of iterations

C
la

ss
if

ic
at

io
n

 E
rr

o
r

AdaBoost.ECC
AdaBoost.OC
AdaBoost.SECC

100 200 300 400 500

0.08

0.1

0.12

0.14

0.16

0.18
Test Error for Letters Database: Label Noise 0%

number of iterations

C
la

ss
if

ic
at

io
n

 E
rr

o
r

AdaBoost.ECC
AdaBoost.OC
AdaBoost.SECC

100 200 300 400 500

0.15

0.2

0.25

0.3

0.35

0.4

Test Error for Letters Database: Label Noise 10%

number of iterations

C
la

ss
if

ic
at

io
n

 E
rr

o
r

AdaBoost.ECC
AdaBoost.OC
AdaBoost.SECC

100 200 300 400 500
0.2

0.3

0.4

0.5

0.6

0.7
Test Error for Letters Database: Label Noise 30%

number of iterations

C
la

ss
if

ic
at

io
n

 E
rr

o
r

AdaBoost.ECC
AdaBoost.OC
AdaBoost.SECC

100 200 300 400 500
0.06

0.07

0.08

0.09

0.1

0.11
Test Error for PCAUSPS Database: Label Noise 0%

number of iterations

C
la

ss
if

ic
at

io
n

 E
rr

o
r

AdaBoost.ECC
AdaBoost.OC
AdaBoost.SECC

100 200 300 400 500
0.06

0.08

0.1

0.12

0.14

0.16
Test Error for PCAUSPS Database: Label Noise 10%

number of iterations

C
la

ss
if

ic
at

io
n

 E
rr

o
r

AdaBoost.ECC
AdaBoost.OC
AdaBoost.SECC

100 200 300 400 500

0.1

0.15

0.2

0.25

0.3

0.35
Test Error for PCAUSPS Database: Label Noise 30%

number of iterations

C
la

ss
if

ic
at

io
n

 E
rr

o
r

AdaBoost.ECC
AdaBoost.OC
AdaBoost.SECC

Figure 3.Classification errors on the test data. In some plots, the error curves ofAdaBoost.SECC are overlapped with those of
AdaBoost.ECC (i.e.,η = 1, see Table 2). For AdaBoost.SECC, the optimal number of training stepsT ∗ is found by cross-validation
and indicated in the figures.

Unifying the Error-Correcting and Output-Code AdaBoost

10 15 20 25 30 35
0

0.02

0.04

0.06

0.08

0.1
Training Error for Letters Database: Label Noise 0%

number of iterations

C
la

ss
if

ic
at

io
n

 E
rr

o
r

AdaBoost.ECC
AdaBoost.OC
AdaBoost.SECC

10
2

0

0.02

0.04

0.06

0.08

0.1
Training Error for Letters Database: Label Noise 10%

number of iterations

C
la

ss
if

ic
at

io
n

 E
rr

o
r

AdaBoost.ECC
AdaBoost.OC
AdaBoost.SECC

10
2

0

0.02

0.04

0.06

0.08

0.1
Training Error for Letters Database: Label Noise 30%

number of iterations

C
la

ss
if

ic
at

io
n

 E
rr

o
r

AdaBoost.ECC
AdaBoost.OC
AdaBoost.SECC

Figure 4.Letters: typical behavior of the three algorithms over all five datasets with respect to the convergence rate of the training error.

gradient descent on a cost function, defined in the do-
main of margin values, and that AdaBoost.OC is a shrink-
age version of AdaBoost.ECC. Based on this analy-
sis, we have formulated and explained several proper-
ties of AdaBoost.ECC and AdaBoost.OC, and derived
the shrinkage version of AdaBoost.ECC, referred to as
AdaBoost.SECC.

We have also reported experiments, conducted on five
datasets, with training data corrupted by various levels of
mislabeling noise. The empirical results confirm our the-
oretical findings: (1) AdaBoost.ECC is the fastest, and
AdaBoost.SECC is the slowest, with respect to the conver-
gence rate of the training error; (2) in the absence of misla-
beling noise, AdaBoost.ECC yields a slightly smaller test
error than AdaBoost.OC; (3) for noise levels above zero,
AdaBoost.SECC performs significantly better than the sec-
ond place AdaBoost.OC and the worst AdaBoost.ECC,
with respect to the test error.

References

Allwein, E. L., Schapire, R. E., & Singer, Y. (2000). Reduc-
ing multiclass to binary: A unifying approach for margin
classifiers.J. Machine Learning Research, 1, 113–141.

Blake, C., & Merz, C. (1998). UCI repository of machine
learning databases.

Breiman, L. (1999). Prediction games and arcing algo-
rithms. Neural Computation, 11, 1493–1517.

Crammer, K., & Singer, Y. (2000). On the learnability and
design of output codes for multiclass problems.Compu-
tational Learing Theory(pp. 35–46).

Dietterich, T. G. (2000). An experimental comparison of
three methods for constructing ensembles of decision
trees: Bagging, boosting, and randomization.Machine
Learning, 40, 139–157.

Dietterich, T. G., & Bakiri, G. (1995). Solving multiclass

learning problems via error-correcting output codes.J.
Artificial Intelligence Research, 2, 263–286.

Friedman, J. (2001). Greedy function approximation: a
gradient boosting machine.The Annals of Statistics, 29,
1189–1232.

Friedman, J., Hastie, T., & Tibshirani, R. (2000). Additive
logistic regression: a statistical view of boosting.The
Annals of Statistics, 28, 337–407.

Grove, A. J., & Schuurmans, D. (1998). Boosting in
the limit: maximizing the margin of learned ensem-
bles. Proc. 15th Nat’l Conf. on Artificial Intelligence
(pp. 692–699). Madison, WI.

Guruswami, V., & Sahai, A. (1999). Multiclass learning,
boosting, and error-correcting codes.Proc. 12th Annual
Conf. Computational Learning Theory(pp. 145–155).
Santa Cruz, California.

Mason, L., Bartlett, J., Baxter, P., & Frean, M. (2000).
Functional gradient techniques for combining hypothe-
ses. In B. Scholkopf, A. Smola, P. Bartlett and D. Schu-
urmans (Eds.),Advances in Large Margin Classifiers,
221–247. MIT Press.

Quinlan, J. R. (1993).C4.5: Programs for Machine Learn-
ing. Morgan Kaufmann.

Rudin, C., Daubechies, I., & Schapire, R. E. (2004). The
dynamics of adaboost: Cyclic behavior and convergence
of margins. Journal of Machine Learning Research, 5,
1557 – 1595.

Schapire, R. E. (1997). Using output codes to boost multi-
class learning problems.Proc. 14th Int’l Conf. Machine
Learning(pp. 313–321). Nashville, TN, USA.

Schapire, R. E., Freund, Y., Bartlett, P., & Lee, W. S.
(1998). Boosting the margin: a new explanation for the
effectiveness of voting methods.The Annals of Statistics,
26, 1651–1686.

