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Abstract sub-categories [Crammer & Singer, 2000]: (1) given a set
of binary classifiers, find a code matrix that yields small
empirical loss; (2) given a code matrix, find a set of bi-
nary classifiers that result in small empirical loss; (3) find
both a set of binary classifiers and a code matrix simulta-
neously that produce small empirical loss. Since herein we
assume that binary classifiers are not known in advance,
we omit considerations of the first category. A majority of
the existing algorithms belongs to the second category in
which the underlying dependence between the constructed
binary classifiers and the fixed code matrix is not explic-
itly accounted for. This problem is discussed in [Allwein
et al., 2000], where five different output codes are com-
pared for a variety of datasets, with indecisive answers as
to which output code is the best. The results in [Allwein
et al., 2000] suggest that finding the optimal code matrix
and binary classifiers simultaneously is the best strategy.

In this paper, we present a new interpretation of
AdaBoost.ECC and AdaBoost.OC. We show that
AdaBoost.ECC performs stage-wise functional
gradient descent on a cost function, defined in the
domain of margin values, and that AdaBoost.OC
is a shrinkage version of AdaBoost.ECC. These
findings strictly explain some properties of the
two algorithms. The gradient-minimization for-
mulation of AdaBoost.ECC allows us to derive
a new algorithm, referred to as AdaBoost.SECC,
by explicitly exploiting shrinkage as regulariza-
tion in AdaBoost.ECC. Experiments on diverse
databases confirm our theoretical findings. Em-
pirical results show that AdaBoost.SECC per-
forms significantly better than AdaBoost.ECC
and AdaBoost.OC.
The third category, however, has been shown to be NP-
hard [Crammer & Singer, 2000]. To alleviate this prob-
1. Introduction lem, a number of sub-optimal algorithms have been pro-
posed in the literature, of which we are particularly inter-
A review of the literature indicates that the majority of ested in those formulated within the AdaBoost framework
available pattern classification algorithms are designed. more specifically, output-code AdaBoost (AdaBoost.OC)
only for binary classification problems. Some of them canSchapire, 1997], and error-correcting code AdaBoost
be easily generalized to solve multiclass problems (e-g-QAdaBoost.ECC) [Guruswami & Sahai, 1999]. Here, the
C4.5 [Quinlan, 1993]), while for others the extension is columns of the code matrix and binary hypothesis func-
not straightforward. Therefore, it is important to inves- tjons are generated alternatively, in a specified number of
tigate how to use well studied binary classification algo-jteration steps. Thereby, the underlying dependence be-

rithms for solving multiclass problems. One of the possi-yween the code matrix and binary classifiers is exploited
ble approaches is to first decompose a multiclass into seyp, 3 stage-wise manner.

eral binary problems by using a code matrix, then, to apply
binary classifiers to these binary problems, and finally tod@B0ost.OC and AdaBoost.ECC have been successfully
combine the binary outcomes toward the final classificaPPlied to a number of standard multiclass problems. For

tion. The outlined approach can be systematized into threB0th algorithms, the upper theoretical bounds of the train-
ing error have been derived. Yet, a mathematically rigorous

Appearing inProceedings of th@2™¢ International Conference formulation of how AdaBoost.OC and AdaBoost.ECC de-
on Machine LearningBonn, Germany, 2005. Copyright 2005 by crease the classification error has not to date been proposed
the author(s)/owner(s). In addition, the relationship between these two algorithms
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as well as the algorithms’ behavior in the case of noise2. Output Coding

corrupted data are not fully examined in the literature. In_, brief] lain th di hod f |
fact, current understanding of the two algorithms, as re—,F'rSt' we briefly explain the output coding method for solv-

ported in the literature, might even mislead practitioner§ng multiclags classification problems [Dietterigh & Baikir.
to choose a wrong algorithm between the two for a givent 22> Allwein et al., 2009\;' Suppose we are given a train-
application. For example, in [Guruswami & Sahai, 1999],'"9 dataseD={(xn, yn) o1 €X' x whered’is the pat-
AdaBoost.ECC is said to outperform AdaBoost.OC, which,l€™ Space and={1, .-, C} is the label space. To de-

as we show in this paper, is not true for many settingscompose the multiclascs pTrobIem into several binary ones,
) . ) T .
The aforementioned missing links in the theoretical devel-& 0de matridvie{=1}*" is introduced, wheré is the

opment of AdaBoost.OC and AdaBoost.ECC motivated uéeng?h of a code word. Herel/(c) denotes the-th row,
to conduct the research reported in this paper. that is, a code word for clags and M (¢, t) denotes an el-

ement of the code matrix. Each columnf defines a

We present a new interpretation of the two algorithmshinary partition of C classes over data samples — the parti-
based on the analogy of boosting to steepest-descent mifion on which a binary classifier is trained. AftErtraining
imization [Mason et al., 2000, Breiman, 1999, Friedmansteps, the output coding method produces a final classifier
et al., 2000]. More precisely, we show that AdaBoost.ECCf(x) = [f1(x), -, fr(x)]", wheref,(x) : x—R. When
performs stage-wise functional gradient descent on a cogfresented an unseen samglethe output coding method
function, defined in the domain of margin values. We predicts the labej*, such that the code word (y*) is the
further prove that AdaBoost.OC is a shrinkage versiorclosest” to the predictioffi(x), with respect to a specified

of AdaBoost.ECC. This theoretical analysis allows us todecoding strategy. In this paper, we use the loss-based de-
derive the following results. First, we formulate and coding strategy [Allwein et al., 2000], given by

strictly prove several properties of AdaBoost.ECC and

AdaBoost.OC, including the relationship between their y*=arg min,cy ZthleXp(—M(y,t)ft(X))- (1)
convergence training-error rates, and their performances

in noisy regimes. Second, we show how to simplify

the computation of AdaBoost.OC by avoiding the redun-3- AdaBoost.ECC and AdaBoost.OC

dant calculation of pseudo-loss. Third, we derive the

. . . It has been empirically observed that AdaBoost can effec-
shrinkage version of AdaBoost.ECC, which we refer to pincally v

; ! .__tively increase the margin [Schapire et al., 1998]. For this
as AdaBoost.SECC. This novel algorithm naturally arise eason, since the invention of AdaBoost, it has been conjec-

from the gradient-descent formulation of Ad"’IBOOS'['ECC'tured that in the limit AdaBoost achieves the same solution

vyhere a shrinkag_e paramgter can_be used as a reg“'afizé‘s‘ a Linear Programming (LP) problem in which the mar-
tion parameter, similar to introducing the learning rate |ngin is directly optimized [Grove & Schuurmans, 1998]. In
neural networks. the recent paper [Rudin et al., 2004], however, the equiv-
We also study the algorithms’ behavior in the presence ofilence of the two algorithms has been proven not to hold
mislabeled training data. Mislabeling noise is a critical always. Nevertheless, the two algorithms are connected in
problem for many applications, where preparing a goodhe sense that they try to maximize the margin. We make
training dataset is a challenging task. Indeed, human-inteuse of this connection, by employing the results obtained
preters are often faced with hard-to-classify cases, whichvithin the LP framework to define a cost function over the
may cause erroneous human supervision. As a result, trdomain of margin values, upon which AdaBoost.ECC per-
training set may contain a significant number of mislabeledforms a stage-wise gradient descent.

data. These considerations were also examined for tw

class AdaBoost in [Dietterich, 2000]. e begin by defining the sample margifx,,) as

The experimental results support our theoretical find-p(x,)= min  A(M(c),f(x,)) — A(M(yn), £(xn)),

ings. In a very likely event, when for example 10% {e€Vmetyn} @

?f trainpi\r;g gatterrllzsceére,\r; islabeled, A:aBoost.OC OfUtp?rWhere A(-) is a distance measure. Maximization of
orms AdaBoost. . Moreover, in the presence o mls-p(xn) in Eq. (2) can be interpreted as findirfgx,,)
labeling noise, AdaBoost.SECC converges fastest to thglose to the code word of the true label. while at the

smallest test error, as compared to AdaBoost.ECC and, . e distant from the code word of the most con-

AdaBoost.OC. fused class. For the purposes of this paper, we specify
A(M(c), £(x))=[ M (c)—£T(x)||?, yielding

ploca) = 2] (y)E(0e,) —  mas (M ()f(x,)}
©
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Hence, maximization gf(x,,) can be formulated as an op- -, ey, (M (yn)—M (c))Tem M wn) = M@)Fe -1 (xn),

timization problem: Similar to the derivation steps in [Friedman, 2001], it is
straightforward to show that; should be selected frot
mtax ]\Zv ¢ MO by maximizing its correlation with the-th component of
S.L n n) — n > p, —
(yn )£ (xn) {Ceg{gyn}{ @f(xn)} =2 p, (4) Ve 100G,
n=1,---,N.
Herein, we are particularly interested in findifig) of the hy=arg maX{Z Z (%) (M (yn, t)—M(c, 1))
following form: n=1c=1,c#yn
e—(]\l(yn)—JV[(c))Ft,l(xn)}.
f(X)Z [alhl(x)v ) aThT(X)]T _ F(X) (5) . ) ) (8)
EtT Lo ZtT Loy To facilitate the computation of Eq. (8), we introduce the

following terms:
where the weightst, «; > 0, and the hypothesis functions

hy(x) : z—{=£1}. From Egs. (4) and (5), we derive = I
t Vi(n)2 D M (1)~ M (e, 1) e M) =MD Geo),
max p, c=1,
T Aciyn N N
st = (M(yn,t) — M(e,t)he(x0) > p, %) = Valn)/ 305 Vi(n) = Vi(n)/ Ve
Pl DAY ) _ (9)
n=1,---,N, c=1,---,C, cty,, a>0. Note thatV;, given by Eq. (9), differs front/,, defined

(6) in Step (4) in Fig. 1, by a constant. Also, note that
In light of the connection between LP and AdaBoost, it (M (y»,t)—M/(c,t)) either equals zero, or has the same
appears reasonable to define a new cost function, which &ign asM (yy, t). It follows that

optimized by a multiclass AdaBoost algorithm, as follows: N .
ht:arg maxpeH Zn 1 ‘/t(n)SIQn(M(ynv t)) h(Xn),(].O)

N c

G2 N exp (—(M(ya) — M()F(xa)), —arg maxper Vi Yp_y de(n)M (yn, )h(x) ,  (11)

n;l {CC:Lc#vn} , =arg maxpey Us Z 1die(n)M (yn, t)h(x,) , (12)

:Z Z exp(— Z M (Yn, t)—M (c,t))hi(xy)). =arg minpen Zn:1 I(M(yn,t) # h(xn))de(n) , (13)

n=1 C;L t=1 =argminpey € , (24)
CFYn

(7) wheree is the training error. Onc#; is found,a; can be

|nd¢e_d, the following theorem_shows that AdaBOOSt'ECC(:omputed by minimizing the intermediate cost function
optimizes the above cost function.

The derivative of7; with respect tay; reads
Theorem 1. AdaBoost.ECC performs a stage-wise func-

BG

gclnvr;e:]l bgyraEdC;e?;)descent procedure on the cost function 9Gt *Zn X Z( oty (M (g, £) =M (e, 8)) by (%)

s =1 05 (M(yn,g)—M(c.))hy(xn)
Proof: In Fig. 1, we present the pseudo code of the sym- (15)
metric version of AdaBoost.ECC, as proposed in [Gu-Note that (M (y,,t)—M(c,t)) takes values in the set
ruswami & Sahai, 1999]. By comparing the expressions{og7 —2}. Also, recall that(M (y,,,t)—M(c,t)) has the
for: (i) the data-sampling distributiod; (Step (5)), and (i)  same sign ad/ (y,,t). From Eq. (9) we derive
the weightsy, (Step (8)), with those obtained from the min-
imization of G, we prove the theorem. For the time being,  p¢, N
we assume that the code math4 is given, the generation —@:W > de(n) M (yn, t) (x5
of which is discussed later. n=l1

)e_QQtM(ynvt)h’t (xn)
)

N
After (t—1) iteration steps, AdaBoost.ECC produces =V; (ZI (Yns t)=hi(xn))di (n)E 2
Fio1(xn) = [arhi(Xn), s ae—1he—1(x5),0,- -+ ,0]". n=1
In the t-th iteration step, the goal of the algo- B o
rithm is to compute thet-th entry of F(x), given ;I(M(y”’ O e (xn) )y ()€
by ash¢(x,), and to updateF(x) as Fi(x,) = a (16)

[arhi(xn), -+, arhi(x,),0,---,0]T. From Eq. (7), From Egs. (13) and (14), a7, /da;,=0 we obtain
the negative functional derivative af with respect to
F;_1(x), if x = x,, is computed as Vg, | ()Glx=x, = oy = tIn[(1 — &) /5], (17)
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AdaBoost.ECC be generated such thét is maximized.
(1) Initialization: givenD = {(x.,yn)}A—1 € X x Y, initialize
Di(n,c) = I(c#yn)/N(C—1), n = 1:N, c= 1:C; 3.1. Relationship between AdaBoost.OC and
set the maximum number of iteration stéps AdaBoost.ECC
@fort=1:T ) .
(3) Define thet-th column ofM: M., € {—1, +1}°%1; AdaBoost.ECC is derived from AdaBoost.OC on the algo-

N, — SN ¢ p LM (. £) £ M(c.£)): rithm level, as discussed in [Guruswami & Sahai, 1999].
U Z"flzg:1 el )I(Myn, 1) # M(c, ))_’ However, the relationship between the two algorithms is
() di(n) = 7 Yooy De(n, UM (yn, 1) # M (e, t)); not fully examined in the literature. The following theorem

(6) Train the base learner froM with respect to distribution  provides for a mathematical explanation of their relation-
d;, and computé (x); ship

() er=3n_ s I(M (yn, t) # he(xn))de(n);
(8) =1 In[(1 — &) /e0];
(9) Update weight®¢ 11 asDiy1(n,c) =
7. Di(n, ¢) exp(—ae (M (yn, t) =M (c, t)) he (xn)),
whereZ; is a normalizing constant;
(10)end
(11) Output: F(x) = [arhi(x),- -+ ,arhr(x)] .

Theorem 2. AdaBoost.OC is a shrinkage version of
AdaBoost.ECC.

Proof: We compare the expressions for the weights
and the data-sampling distributieh, to establish the re-
lationship between AdaBoost.OC and AdaBoost.ECC. The
pseudo code of AdaBoost.OC given in Fig. 2. In Step (7),
a pseudo hypothesis functioh,(x), is constructed as

Figure 1.Pseudo code of AdaBoost.ECC, as proposed in [Gu- -
ruswami & Sahai, 1999]. hi(x) ={c €Y : hi(x) = M(c,t)}. (18)

Using h, (x), a pseudo-losg;, is computed in Step (8) as

which is equal to the expression given in Step (8), Fig. 1.

L Nc 3 B
5, = 3 Z;Z;Dt(n,c) (I(yn¢ht(Xn))"‘I(CGht(x"))) )

Finally we check the update rule for data-sampling dis-6 -
tribution d;. By unravelling D;(n,c) in Step (9) in the (19)
pseudo code of AdaBoost.ECC (see Fig. 1), we derivewhereD;(n,c) is updated in Step (9). Note that:

Dy(n, €)= exp(—(M (y)~ M () Fr1(x)), if £y, ) ) |

andD;(n, ¢)=0, if c=y,, whereZ, is a normalization con-  L(yn&h¢(xn))+I(c€hi(xn))= (M(c’t)fM(Qy"“t))h‘ (¢n) 11,
stant. By pluggingD; (n, ¢) into Steps (4) and (5) in the (20)
pseudo code of AdaBoost.ECC, it is straightforward toTherefore, from Eq. (19), we have

show that the expressions fd; in Step (5) and Eq. (9)

N C
.1 1

are the samd B D0 D Duln, ) (M (e,t) = M{yn, ) he(x) +3

Now, we discuss how to generate the columns of the code n=1c=1

matrix, denoted ab1 ;. Recall that simultaneous optimiza- r

tion of bothM ; andh; is NP-hard. Both AdaBoost.OC :ir + % =7 =4(& — %) (21)

and AdaBoost.ECC perform in fact a two-stage optimiza-

tion in which M, is first generated by maximizing;, = Now, let us take a look at the pseudo code of
given in Step (4) in Fig. 1, and then is trained based on AdaBoost.ECC given in Fig. 1. The training errey, is
the binary partition defined Ayl ,. In [Schapire, 1997,Gu- computed in Step (7) as

ruswami & Sahai, 1999], this procedure is justified by N
showing that maximizing/, decreases the upper bound of et = Yy LM (yn,t) # hi(xn))di(n) ,
the training error. Maximizind/, is a special case of the = 1L A () My, ) he(x,) . (22)

“Max-Cut” problem, which is known to be NP-complete. o

Herewith, for computing the approximate solution of the From Step (5), in Fig. 1, we have
optimalM 4, in our experiments we use the same approach 1 SN SO Do) H(M () EM () M (gt e ()
as that used in [Schapire, 1997]. Et=3 20, =
. . 1 2l 3 Di(ne) (M (yn,t) =M (ct) e (xn) _

We point out that the proof of Theorem 1 provides for yet — 2 1 4U;

another interpretation of the outlined procedure. Ideally = 2 ™ 10, " -

in the ¢-th iteration step we want to finB1 ; and h; si-
multaneously to optimize the correlation in Eq. (8), which
however is NP-hard. Therefore, we resort to the two-stage 1 1 1

optimization. It is evident from Eq. (12) th& ; should fe=5 + E(St - 5) . (24)

(23)
By plugging Eg. (21) into Eg. (23), we get:
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AdaBoost.OC
(1) Initialization: givenD = {(xn, yn)}n=1 € X x Y, initialize
DW(n,c¢) =I(c # yn)N(C — 1), n = L:N, ¢ = 1.C,
set the maximum number of iteration steps
@fort=1:T
(3) Define thet-th column ofM: M., € {—1,+1}°>*!;
@) Ur = 32,0, 320, De(n, )L(M (yn, t) # M(c,t));
(5) de(n) = g Ly De(n, ) L(M (yn, 1) # M(c,1));
(6) Train the base learner frof with respect to distribution
d:, and computér; (x);
(7) Define pseudo hypothesis; (x)={ceY:h:(x)=M (¢, t)};
(8) Compute pseudo error: y y
=3 20’5 et Di(n, ) (Uyn@he(x0)) +L(cERe (xn)));
(9) d = 1 In[(1 —&)/&;
(10) Update weight®; 1 asDit1(n,c) =
2-Di(n, ¢) exp(2a: (X(yn ¢he (xn))+1(cEht(x0)))),
whereZ; is a normalizing constant;
(11)end

(12) Output: F(X) = [d1h1 (X)7 s ,dThT(X)] .

(2) In [Guruswami & Sahai, 1999], the authors prove that

AdaBoost.ECC has a better upper bound of the training er-
ror than AdaBoost.OC. They also experimentally observe
that the training error of AdaBoost.ECC converges faster
than that of AdaBoost.OC. However, the fact that the train-

ing error upper bound of one algorithm is better than that
of the other cannot explain the empirical evidence related
to the convergence rate. Theorem 2 provides for the strict
proof of the observed phenomenon.

(3) Shrinkage can be considered as a regularization method,
which has been reported to significantly improve classifica-
tion performance, especially in the case of noise corrupted
data [Friedman, 2001]. Introducing shrinkage in the steep-
est decent minimization of AdaBoost.ECC is analogous to
using a specified learning rate in neural networks. Con-
sequently, based on the above analysis in Theorem 2, one
can expect that, in the low noise regime, AdaBoost.ECC
may have some advantages over AdaBoost.OC. However,
in the noise-corrupted-data cases, one should anticipate

AdaBoost.OC to perform better than AdaBoost.ECC. This

) _ . provides a guideline for selecting the appropriate alparit
Figure 2.Pseudo code of AdaBoost.OC, as proposed in [Schaplrem etween the two

1997].

(4) Shrinkage as a regularization can be pursued explicitly
From Eq. (24), we observe thai < L if and only if in AdaBoost.ECC. We refer to the resulting new algorithm

2 -
z, < % which means that both algorithms provide the samS AdaBoost.SECC. The pseudo-codes of AdaBoost.SECC

conditions for the regular operation of AdaBoost. That is,anOI Ada_Boost.ECC are |de1nt|cal, except for Step ®),
1 - wherea, is computed as;=n; In[(1 —e;)/e;]. Herenis
whene, < 3 botha, > 0 anda, > 0. Furthermore, note oy oo 00 varameter that takes value@in
thatU; € [0,1], as defined in Step (4), in Fig. 1. From gep .
Eq. (24), it follows that, fog;, < 1,
1

- 1 -
=& =010—-—=)5-6)<0 = & =mno, (25
7,\2

1

4. Experiments

For the three boosting algorithms, we choose C4.5 as a base
learner. C4.5 is a decision-tree classifier with a long récor
wherer; < [0,1]. Eq. (25) asserts that under the sameyt gccessful implementation in many classification sys-
conditions, Ada!Boost.O_C tgkes a smaller step size thakems [Quinlan, 1993]. Although, in general, C4.5 can be
AdaBoost.ECC in the direction df; over the functional employed to classify multiple classes, in our experiments,
space. we use it as a binary classifier.

We finally check Step (5) in Figs. 1 and 2, that is, \we test AdaBoost.OC, AdaBoost.ECC, and
the updating rules for the data-sampling distributions ofp4aB00st. SECC on five databases, four of which
AdaBoost.OC and AdaBoost.ECC. By using Eq. (20), itiSgre publicly available at the UCI Benchmark Reposi-
straightforward to show that the updating rules of the tvvotory [Blake & Merz, 1998]. These are: (1) Car Evaluation
algorithms are the same. In conclusion, AdaBoost.OC is @ atabase (or shorthyCarg, (2) Image Segmentation
shrinkage version of AdaBoost.ECl. Database Ifnage3, (3) Letter Recognition Database
(Letterg, and (4) Pen-Based Recognition of Handwritten
Digits (PenDigit9. The fifth database is USPS Dataset of
1Handwritten CharacterdJSPS. For Cars andLetters all
data samples are grouped in a single file per each database,
while for Images PenDigitsand USPS the training and
(1) Itis possible to reduce the computational complexity oftest datasets are available. We divide each database into
AdaBoost.OC, by eliminating Steps (7) and (8) in Fig. 2.training, test, and cross-validation sets as detailed in
Instead ¢, can be directly calculated from Eq. (24), given Table 1. For databases where only a single data-file is pro-
e¢. Here, the simplification stems from the fact thats  vided, we form the training, cross-validation and test files
easier to compute, as in Eq. (13).

3.2. Remarks

The following remarks are immediate from Theorems
and 2.
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Table 1.The number of samples in each database

Table 2.0ptimaln™* values

database training cross-validation test noise level
Cars 865 (50%) 286 (15%) 577 (35%) database | 0% | 10% | 20% | 30%
Images 210 210 (10%) 1890 (90%) Cars 1 1 | 0.05] 0.05
Letters | 8039 (40%)| 3976 (20%) | 7985 (40%) Images | 0.5 | 0.05 | 0.05 | 0.05
PenDigits | 5621 (75%)| 1873 (25%) 3498 Letters | 0.2 | 0.05 | 0.05 | 0.05
USPS | 6931 (95%) 360 (5%) 2007 PenDigits | 1 0.5 0.5 0.2
USPS 05| 035 | 0.05| 0.05

by random selection of samples from that single file, suc
that a certain percentage of samples per class is Presefff marked in bold face. The optimal number of training s®&ps

in each of the three datasets. Foars andlLetters we o AdaBoost. SECC, if different from the predefined number, are
randomly choose cross-validation data from the trainingngicated in the parentheses.

hTable 3.Classification errors)) on the test data. The best results

dataset, and formages from the test dataset. In Table 1, database | noise | ECC | SECC oC
the number of percentages in parentheses indicates the R 0% 55 | 55 7.3
distribution of samples per each class in the corresponding S 10% | 125 | 125 13.3
dataset. FolJSPSdatabase, to reduce the run-time of our © 2802 58'2 g'g ggg gg'g
experiments, we projected each sample using PCA onto ' = =
. . 0 0% 45 | 4.2 4.5
a lower-dimensional feature space (256 featuresb4 . 10% | 8.6 | 7.6(70) 8.4
features) at the price of 10% of the representation error. g 20% | 15.1 | 11.5(160) | 14.0
To conduct experiments with mislabeling, noise is in- 30% | 225 | 182{150) | 22.9
troduced only to the training and cross-validation sets b 0% 93 | 80 8.3
. . . . ! ] 10% | 28.2 | 134 19.8
while the test set is kept intact. The level of noise rep- © 50% | 35.6 | 16.9 4.9
resents a percentage of randomly selected training data 30% | 41.9 | 233 315
(or cross-validation data) whose class labels are changed. 2 0% | 1290 | 129 13.9
The performance of AdaBoost.OC, AdaBoost.ECC, and a 10% | 15.2 | 147 148
AdaBoost.SECC is evaluated for several different noise & 20% | 17.7 | 163 17.1
levels, ranging from0% to 30%. Throughout, for < S0% [ 21.7 | 192 19.4
AdaBoost.SECC, the optimal shrinkage parameteand 0 10(;& ?g gé gg
the_ opt_lmal number of training _stefﬁ are f0L_Jr_1d b_y Cross- 9 50% 97 175 79
validation. We choose* for which the classification error 30% | 12.4 | 87 91

on the cross-validation data at tfi&-th step is minimum.

In all experiments, the maximum number of training steps
is preset tad’=>500. The classification error both on the test the absence of mislabeling noise (i.e., 0% of noise level),
and cross-validation sets is averaged averuns. we observe that AdaBoost.ECC performs slightly better
than AdaBoost.OC with respect to the test error. However,
with the increase of noise level, AdaBoost.OC outperforms
AdaBoost.ECC, as predicted in Section 3.2. Finally, regu-

ce, . .. ; ; .
because of limited space, in Fig. 3, we show the test-errofr%frlzatlon of AdaBoost.ECC, by introducing the shrinkage

plots for only four databases at three noise levels, whie th parameter, IMproves the performance; howev_er, It may
. . : .~ also lead to overfitting (se€ars andImage3, which can
classification results are summarized in Table 3. In Fig. 4

L ) be alleviated by using the early stopping method. Over-

we plot the training errors fdrettersas typical examples of .
. Y all, AdaBoost.SECC outperforms other two algorithms at
the algorithms’ training-error convergence rates. The op-

. . all noise levels above zero. In some cases, significant im-
timal »* values for AdaBoost.SECC, determined through gnit

o . provements are observed. For example, lfetters in a
cross-validation, are presented in Table 2.

likely event, when 10% of training patterns are mislabeled,
From the results we observe the following. First, con-AdaBoost.SECC improves the classification performance
vergence of the training error for AdaBoost.ECC is fasterof AdaBoost.ECC by abou0% (28% vs. 14%).

than for AdaBoost.OC and AdaBoost.SECC, which is in

agreement with Theorem 2. Also, the convergence rat® conclusions

of the training error of AdaBoost.SECC is the slowest,

which becomes very pronounced for high-level noise setin this paper, we have unified AdaBoost.OC and
tings, where typically a small value of the shrinkage pa-AdaBoost.ECC through the margin concept. We have
rametern* is used, as detailed in Table 2. Second, inshown that AdaBoost.ECC performs stage-wise functional

We point out that the algorithms behave similarly for the
noise level20% and30%. Also, results for the two ten-
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Figure 3.Classification errors on the test data.
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In some plots, the error curvéslaBoost. SECC are overlapped with those of

AdaBoost.ECC (i.e.y = 1, see Table 2). For AdaBoost.SECC, the optimal number of training §teps found by cross-validation
and indicated in the figures.
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Figure 4.Letters typical behavior of the three algorithms over all five datasets with rés$péioe convergence rate of the training error.
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