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Abstract     
We introduce a novel approach to incorporating 
domain knowledge into Support Vector 
Machines to improve their example efficiency.  
Domain knowledge is used in an Explanation 
Based Learning fashion to build justifications or 
explanations for why the training examples are 
assigned their given class labels. Explanations 
bias the large margin classifier through the 
interaction of training examples and domain 
knowledge. We develop a new learning 
algorithm for this Explanation-Augmented SVM 
(EA-SVM). It naturally extends to imperfect 
knowledge, a stumbling block to conventional 
EBL. Experimental results confirm desirable 
properties predicted by the analysis and 
demonstrate the approach on three domains. 

1.  Introduction 

Prior knowledge has the potential to greatly aid machine 
learning. A concept can be more confidently selected 
from a hypothesis space when evidence from the training 
set is combined with prior knowledge of the world. 

There are two sorts of prior knowledge. The first, which 
we call Solution Knowledge, concerns the target of the 
learning itself and is specific to the learning task at hand. 
The structure of a Bayes net, for example, directly 
influences which distributions can be acquired by the 
learner. The kernel function of a support vector machine, 
the topology of a neural network, and the vocabulary of 
splits from which a decision tree is to be built all 
exemplify solution knowledge. The other sort, which we 
call Domain Knowledge, describes objects of the world. 
Some of these objects may participate directly or 
indirectly in the learning task, but domain knowledge is 
not task specific. For example, one may believe when 
classifying images of handwritten letters that the input 
pixels arise from strokes of a writing implement, and that 
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the same person and the same writing implement made all 
of the strokes of a particular image. The emergent patterns 
formed by handwritten images would indeed be very 
different in a world where this knowledge did not hold. 
But the knowledge is not directly associated with any 
particular classification task. It does not affect, for 
example, whether a sample image should be classified as 
an “H” or “N.” 

Solution knowledge is easily integrated into the machine 
learning process as bias, but we believe its utility is 
limited compared to domain knowledge. Domain 
knowledge, while more difficult to employ, is generally 
more reliable and more easily articulated by a human 
expert. This is because the domain expert need not also 
possess expertise about the machine learning techniques 
or about the particular learning task at hand.  

The main contribution of our research is to illustrate a 
new approach that combines Explanation-Based Learning 
(EBL) with statistical learning to dynamically integrate 
domain knowledge, examples, and the learning 
mechanism. Our version of EBL can be viewed as a 
process of inferentially transforming examples and 
domain knowledge into solution knowledge tailored to the 
learning mechanism and the learning task at hand. By 
insulating the domain expert from the eccentricities of a 
particular task, the expert is no longer forced to distort his 
expertise into the bias vocabulary of the learning 
mechanism. More importantly, the process can import 
pre-existing knowledge bases into the learning task. 

In this paper, we demonstrate how to use EBL to 
incorporate domain knowledge into Support Vector 
Machines (SVM). An explanation in EBL explicitly 
specifies which properties of a training example are 
relevant and how those properties fit together to warrant 
the prescribed classification label. In conventional EBL 
an explanation is logically entailed; for us, it is only a 
statistical conjecture. In this study, we introduce a simple 
notion of generalized or explained examples to let SVMs 
treat them much as it treats conventional examples. In 
explained examples, only the important features are 
allowed to contribute to the kernel computation. Given an 
original example x, and a subset of important features 

xe ⊆  from an explanation, the explained example v is 
constructed thus:  
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The special symbol ‘*’ indicates that this feature does not 
participate in the inner product evaluation. With 
numerical features one can simply use the value zero.     

An explained example can be viewed as a generalization 
of an original example, in the sense that examples that 
satisfy the same explanations merit the same label for the 
same reasons and thus should be treated equivalently by 
the learner. Consider an SVM’s linear separator in its 
high-dimensional feature space (Vapnik, 1998). In the 
ideal case, an explanation is a lower dimensional linear 
surface to which the correct classifier should be parallel. 
To see why, consider the extensional definition of the 
explanation which is the set of all examples that satisfy 
the explanation’s requirements. Assuming the ideal case, 
the SVM’s feature space and linear separator are adequate 
to capture all of the relevant distinctions and relations. All 
of the examples that merit this label for the same reasons 
should be treated identically. In the high dimensional 
feature space they should have the same margin from the 
correct classifier. This means that they fall on a parallel 
linear surface. This surface will be of a lower dimension 
if there are any redundancies or irrelevancies in the high 
dimensional feature space with respect to this explanation. 
Such explanations constrain the correct classifier, and 
therefore, once discovered, can guide the learner.  

But the situation will likely never be ideal. Our simple 
explanations can only express relevance or irrelevance of 
input features. In addition, there may be noise in the 
training examples resulting in spurious explanations. The 
space, despite its high dimension, may not adequately 
capture all of the relevant distinctions. The domain 
knowledge itself will almost certainly be flawed so that 
the explanations will vary in their veracity and in their 
information content. This, incidentally, is a major 
limitation of the conventional formalizations of EBL 
(Mitchell, 1997; Russell & Norvig, 2003). The present 
research does not fit into these conventional views. While 
our explanations also carry evidence about classification 
labels, they are not forced to carry the overwhelming 
evidence of a logical proof. 

The constructed explanations are treated as preferences or 
soft constraints rather than hard constraints on the correct 
classifier. We blend their effect on the SVM classifier 
with the conventionally-treated training set. We call the 
result an Explanation-Augmented Support Vector 
Machine or EA-SVM. 

We show formally that even the simple notion of 
explanation advanced here leads to improved 
classification performance. The analysis of our 
formulation is analogous to (and quite compatible with) 
the treatment of soft margin SVMs. The analysis leads to 
three predictions: 1) explanations will help more in 
difficult learning problems than in easy ones; 2) 

improvement will be graduated, with more accurate 
domain knowledge helping more than less accurate 
domain knowledge; and 3) even entirely inaccurate 
domain knowledge should not result in EA-SVM 
behavior that is unduly worse than the performance of a 
conventional SVM with training examples alone. Through 
a series of experiments, we demonstrate these properties 
empirically using three domains.  

2.  Explanation-Augmented SVM Classification 

We first discuss the ideal case of perfect explanations and 
correctly labeled, separable data. Then we show that 
imperfect explanations can be realized using slack 
variables. These combine straightforwardly with standard 
slack variables from the treatment of non-separable data.  

2.1  Perfect Explanations 

Ideally, the learned classifier evaluates the original 
example and the generalized example to the same value: 

bvwbxw ii +⋅=+⋅  or equivalently 0)( =−⋅ ii vxw   

Geometrically, this requires the classifier hyper-plane to 
be parallel to the direction xi-vi. We call these parallel 
constraints. The SVM quadratic problem becomes: 
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This is a problem similar to the standard SVM 
optimization problem and can be solved by the method of 
Langrange multipliers. The primal Langrangian is: 

 ��� ⋅−⋅−++⋅−≡ i iiii ii iiiP vwxwbxwywL )()(
2
1 2 λαα  

Setting the derivatives w.r.t. the primal variables to zero, 
we have: 
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Substituting into Lp, the dual problem becomes 
maximizing (w.r.t. the αi, λi): 
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subject to: 0,0 =≥ �i iii yαα  

This is a standard form of the quadratic programming 
(QP) problem w.r.t the variable vector composed by 
αi, and λi. The quadratic term is no longer the original n x 
n kernel matrix but a 2n x 2n matrix in which we employ 
a single explanation for each training example. After 
computing this quadratic matrix, we can use a standard 
QP solver for the above optimization problem. 

 
�
�
�

=
∈=

otherwisev

exifxv

i

iii

,'*'
,



Explanation-Augmented SVM 
 

 

Notice that, if we fail to build an explanation for a 
particular example, all input features are treated as 
important, therefore, vi=xi, and vi-xi=0. In such case, the 
corresponding variable in the QP problem can be simply 
eliminated. With no explanations the problem reduces to a 
standard SVM. 

2.2  Imperfect Explanations 

If the domain knowledge is imperfect, the constraints 
cannot all be met. The explained examples should then be 
treated as a bias to be respected as much as possible. This 
is similar to the standard SVM algorithm for the non-
separable case (Vapnik, 1998). New slack variables (δi) 
measure the difference between the evaluations of the 
original examples and the generalized examples: 

 iiiiiiii vwxwvwxwi 0,, ≥≤⋅−⋅−≥⋅−⋅∀ δδδ  

To penalize violations of the constraints, we change the 
objective function from 2/|||| 2w  to �+ i iQw δ2/|||| 2 ; we 
call Q the confidence parameter. It reflects confidence in 
(or assessed quality of) the domain knowledge. It will be 
set automatically. A larger Q corresponds to better 
knowledge and a greater penalty for disagreeing with the 
explanations. Now our primal problem becomes: 
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Requiring that the gradient of LP with respect to w, b and 
δi vanish yields: 
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Substituting into the Langrangian formulation Lp, with 
iii γβλ −≡ we obtain the dual: 
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This is a QP problem with the same solution as the perfect 
explanation case, � � −+= i i iiiiii vxxyw )(λα , except the 

λi are now bounded by Q. If we have perfect explanations, 
then Q and the λi are unbounded, and the problem reduces 
to the ideal case. Conversely, if Q and the λi are 0, the 
problem ignores the explanations and reduces to a 
standard SVM. 

This is easily combined with slack variables for non-
separable data: slack variables ξi are introduced to 
penalize the errors: iibwxy iiii ∀≥∀−≥+⋅ ,0;,1)( ξξ ; the 

objective function now becomes: �� ++ i ii i CQw ξδ2/|||| 2 .  
The resulting maximization is identical except that the 
first constraint 0≥iα  becomes Ci ≤≤ α0 .  

EA-SVMs can be solved by the standard SVM methods 
since the QP problem is convex: 

Theorem 1: The EA-SVM QP problem is convex.  

Proof: It is sufficient that the expression LD of our EA-
SVM is quadratic and positive semi-definite:  

0

)()(
2
1

)()(,)()(
2
1

)()(
2
1

)(

2
1

2

,,

.

≥

−−=

−−−−=

−⋅−+−⋅−

⋅

��

����

��

�

j jjji iii

j jjji iiij jjji iii

ji jjiijiji jjiiii

ji jijiji

vxxy

vxxyvxxy

vxvxvxxy

xxyy

λα

λαλα

λλλα

αα

 

Where .,.  denotes the inner product.           �

2.3  Setting the Confidence Parameter Q 

In our implementation, the confidence parameter Q is set 
by cross validation. Note that Q bounds the extra 
variables λ in the solution. When Q is sufficiently small, 
λ are much smaller than α and an EA-SVM solution will 
be similar to standard SVM solution. Conversely, if Q is 
sufficiently large, λ is much larger than α and the 
explanations will dominate. Therefore, we choose the 
initial candidate set for Q with respect to value of α. In 
our comparisons, we first run the standard SVM to 
determine the average value of α. The candidate set for Q 
is a geometric series about this average value. 

3.  A Formal Analysis 

We now provide a formal justification for our 
explanation-augmented SVM using the fat-shattering 
dimension. We also identify qualitative predictions to be 
empirically tested which will insure that the formalization 
addresses significant and observable phenomena.  

3.1  EA-SVM with Hard Constraints 

The fat-shattering dimension measures the expressiveness 
of a hypothesis space. The parallel constraints from our 
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explanations should further restrict the expressiveness 
yielding an easier learning problem. Consider a class of 
linear functions F of norm less than or equal to B 
restricted to the examples in the sphere of radius R about 
the origin. The fat-shattering dimension of F is bounded 
by 2)/()( γγ BRfatF ≤ . See Bartlett and Shawe-Taylor 
(1999) for details. To this we add parallel constraints: 

Theorem 2 Fat-shattering of linear functions with 
parallel constraints. Consider a Hilbert space and one 
class of linear functions F of norm less than or equal to B 
satisfying the following constraints: )()(, ii vfxfi =∀ , 
where vi is the explained example of xi, let RV denote the 
radius of the ball that contains all vi, then the fat shattering 
dimension of F can be bounded by 2)/()( γγ VF BRfat ≤ . 

Proof: For every bxwfwhereFf +⋅=∈ , , we define a linear 
function }1,0{: �VGg ∈ where bvwvg +⋅=)( . The norm of 
functions Gg ∈  is the same as Ff ∈ , but they are 
restricted to the examples in the sphere of radius Rv. 
Bartlett and Shawe-Taylor tell us the fat-shattering 
dimension of G is bounded by 2)/()( γγ VG BRfat ≤ . 

Next we show that F has the same fat-shattering 
dimension as G. First observe that XV ⊆ , therefore if a 
set of points Vm={ v1,v2,…,vm} is shattered by G, they are 
also shattered by F. Therefore )()( γγ GF fatfat ≥ . Now 
consider the explanations as a many-to-one mapping 

VXm �: , then ))(()( xmgxf = . Therefore if a set of points 
Xm={x1,x2,…,xm}is shattered by F, then the set Vm={m(x1), 
m(x2),…, m(xm)} is shattered by G. Therefore 

)()( γγ GF fatfat ≤ ; )()( γγ GF fatfat ≥ and )()( γγ GF fatfat ≤  
imply )()( γγ GF fatfat = .             �

Applying the Theorem 3.12 in Shawe-Taylor et al. (1998) 
to linear classifiers with parallel constraints immediately 
yields the following theorem: 

Theorem 3 Generalization error bound on linear 
classifiers with parallel constraints. Let S={x1,x2,…,xm}  
be a training set of size m drawn from a fixed but 
unknown distribution over the input space X. Let vi be the 
explained example of xi, and let RV denote the radius of 
the sphere containing all vi. Then with probability 1-δ, the 
generalization error of a linear classifier (u, b) on X with 

1=u  that correctly classifies all examples in S with 

margin γ>0, and satisfies the parallel constraints 
)()(, ii vfxfi =∀ ,  is bounded by: 

( ) ( )( ) ,//8log)32(log/8log2),,( 222 mmmhemhhm δδε +=  

where � � emh ≤= 22
V /R5.64 γ . 

This bound is of the same form as the bound for standard 
SVM (Shawe-Taylor et al., 1998), with Rv playing the role 

of R. R measures the radius of the example sphere in the 
original space, while Rv measure the radius of the 
explained example sphere. Therefore, the explanations 
have most to offer when the ratio Rv/R is small. This is the 
case when the learning problem is difficult but the domain 
knowledge is informative.  

This yields our first two testable qualitative predictions: 
1) Holding the domain knowledge constant, explanation-
augmentation should benefit difficult learning problems 
more than easier ones. 2) Over the same learning 
problems, better knowledge should result in better EA-
SVM performance.  

3.2 EA-SVM with Soft Constraints 

When the constraints cannot all be satisfied, we want a 
classifier that is as consistent with the constraints as 
possible. We follow the analysis of Shawe-Taylor and 
Cristianini (2002) for soft margins. The input space X is 
mapped to a higher dimensional space so that the parallel 
constraints can be satisfied.  

Following Shawe-Taylor and Cristianini’s work, we use 
the notion of Lf(X) to represent the set of real valued 
functions f on X with inner product of )(, XLgf f∈ as 

� ∈= )( )()(, fppsux xgxfgf . We use f0 to denote a special 

function such that 0,0 ≡gf . 

Now we define a new inner product space )(XLX f× . For 

any fixed ∆>0, we embed X into )(XLX f×  with 

),(: 0fxx ∆∆ �τ , and embed V into )(XLX f×  

with ),(: vvv δτ ∆∆ � , where )(XL fv ∈δ  is defined by 

,1)( =zvδ  if z = v, and ,0)( =zvδ , otherwise.  

We augment a linear classifier (u, b) on X to a ),ˆ( bu on 
)(XLX f× , where ( )( )∆−⋅= � /)(,ˆ

i vii i
vxuuu δ . After some 

algebra, we observe that the augmented classifier ),ˆ( bu on 
)(XLX f×  classifies )(x∆τ  the same as ),( bu  classifiers x: 

bxubxu +⋅=+⋅ ∆ )(ˆ τ . Also ),ˆ( bu  satisfies parallel constraints 
defined by )( ix∆τ  and )( iv∆τ : ( ) 0)()(ˆ =−⋅ ∆∆ ii vxu ττ . 
Therefore, Theorem 2 provides a bound on its fat-
shattering dimension, and Theorem 3 yields the bound on 
its error rate, which is the same as the error rate of the 
original classifier (u,b).  

To examine the fat-shattering dimension of the 
augmented classifier ),ˆ( bu , we first observe that the 
additional component in û  increases the square of the 

norm of the classifier to 2222
/ˆ ∆+= Duu , where 

( )� −⋅≡ i ii vxuD 2)( . Also the explained examples are 
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embedded in )(XLX f×  by the mapping ),(: vvv δτ ∆∆ � , 

which makes 22222 ,)( ∆+=∆+=∆ vvv vv δδτ . 

Taking these adjustments into account, Theorems 2 and 3 
yield the following result: 

Theorem 4 Generalization error bound of linear 
classifiers with soft constraints. Fix Rb ∈>∆ ,0 . 
Randomly draw training set S={x1,x2,…,xm}  of size m 
with a fixed but unknown probability distribution on the 
input space X. Let vi be the explained example of xi, and 
RV denote the radius of the sphere containing all vi. Then 
with probability 1-δ, the generalization error of a linear 
classifier (u, b) on X with 1=u  that correctly classifies 

all examples in S with margin γ>0 is bounded by: 

( ) ( )( ) ,//8log)32(log/8log2),,( 222 mmmhemhhm δδε +=  where 

em
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3.3 Finding Linear Classifier with Soft Constraints in 
the Expanded Space 

The preceding analysis provides a way to transform an 
optimization problem with non-satisfiable constraints into 
one with satisfiable constraints. The mapping ∆τ  used in 
the transformation implicitly defines a kernel as follows: 
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By using these kernels in the expanded space )(XLX f× , 

the optimization problems becomes: 
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Now we show that the above is exactly the dual QP 
problem that one would obtain by solving the following 
optimization problem with )2/(1 2∆=Q : 
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To see this, we apply the Lagrangian variables to obtain 
the dual problem: 
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The algorithm we described in the section 2 actually 

solves a closely related optimization problem, where we 
use 1-norm instead of 2-norm in the extra penalty term. 

3.4 More on the Confidence Parameter Q 

The bound in the Theorem 4 depends on a parameter ∆ 
that we use to define the mapping. For different ∆, the 
bound stated in Theorem 4 holds, but the tightness of the 
bound varies. Note that the minimum of the expression 
for h (ignoring the constant and suppressing the 
denominator γ2) is (R + D)2 attained when RD=∆ . 
Therefore, we need to not only search for the hyper-plane, 
but also adjust ∆ to minimize the error bound.  

One way to adjust ∆ is to choose a discrete set of values 
for it, and evaluate the best hyper-plane we could find 
given each value. This is exactly the cross-validation 
algorithm we used in our algorithm. To verify this, notice, 
as shown in section 4.3, that the parameter Q used in our 
algorithm and ∆ from the analysis are related: )2/(1 2∆=C . 
Changing Q in our algorithm is just mapping examples to 
the expanded space using a different ∆.  

Since )2/(1 2∆=Q , if the optimal Q (found by cross 
validation) is large, the optimal ∆ minimizing h in 
Theorem 4 is small. Since this optimal value is obtained 
when RD=∆ , it suggests that the linear classifier has a 
small D with respect to explanations. According to 
Theorem 4, such a classifier is likely to have a low error 
rate. Thus, Q is a measure of the domain knowledge 
quality and, from cross validation, it is unlikely that poor 
knowledge will be confused with good knowledge. This is 
our third qualitative prediction. 

4.  Empirical Results 

We devised four empirical investigations to validate the 
EA-SVM method and test the predicted qualitative 
behaviors. 

The first three experiments employ the domain of 
distinguishing handwritten Chinese characters. 
Experiment 1 demonstrates the relative advantage of the 
EA-SVM over an otherwise-identical conventional SVM. 
Experiment 2 tests the first prediction, demonstrating that 
explanation-augmentation helps more as problems 
become more difficult. Experiment 3 confirms the two 
predictions that EA-SVM performance improves with the 
quality of the domain knowledge and that even extremely 
misleading domain knowledge does not harm EA-SVM 
performance significantly measured against an identical 
conventional SVM. Experiment 4 demonstrates that the 
EA-SVM method is broadly applicable. EA-SVM 
improvement is shown on protein super-family 
classification and categorization of Reuters news articles. 
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We implemented the SVM and EA-SVM with Matlab 
using PR_LOQO as the QP solver. The confidence 
parameter Q in the algorithm is set automatically by 5-
fold cross-validation. The candidate set for Q, as 
explained in section 3.3, is chosen according to the 
average SVM α. The soft SVM slack variable 
misclassification penalty, C, is set to 0.1 for all 
experiments. 

Our primary domain concerns classifying pairs of 
handwritten Chinese characters. With greater than 3,000 
commonly used characters the most complete database we 
could find (Saito et al 1985), contains just 200 examples 
for each character. We expect knowledge can be greatly 
helpful for such domains with limited training data. 

Domain knowledge is specified at the level of stroke 
descriptions. For each character, we provide a prototype 
that describes how many strokes are in the character, 
whether the strokes are horizontal, vertical or slanted, 
from this we derive whether strokes will be connected, 
crossed, etc. We approximate each stroke with a line 
segment, and use Hough transformation to determine the 
significant lines in the images. This gives us with some 
approximate information on associating pixels with 
strokes. More details on building such association appear 
in (Sun & DeJong, 2005) which describes how 
specialized kernel functions can be learned using prior 
knowledge. With such association, building explanations 
is simply to select those pixels that realize the set of 
strokes that are essential to distinguish two training 
characters. The explained examples are also images with 
some pixels (automatically) removed. In this work, 
human experts provide the knowledge of which strokes 
are important for classification. This information can be 
derived from a vector font and we are currently pursuing 
this line.  

We chose 10 characters from 3 related groups, as shown 
in Figure 1. The characters in the same group are highly 
similar, while characters between groups have little in 
common. This yields 45 classification problems of 
varying difficulties. Both learners use a conventional 3rd 
degree polynomial kernel function of pixel intensities. 
The performance is evaluated using 5-fold cross 
validation.  

 
Figure 1. The Chinese characters used in the experiments 

Experiment 1: Does Explanation-Augmentation Help? 
In our first experiment, we compared EA-SVM with three 
conventional SVMs, which are trained on original 
examples, explained example and original+explained 

examples respectively. The last two control conditions 
can viewed as naïve approaches to use explained 
example. The main thrust of EBL generally, and this 
research particularly, concerns the advantage of 
interaction between training examples and knowledge. A 
better control would be one that directly inputs knowledge 
instead of explanations to SVM training examples. Yet, it 
is not clear how to design such control condition; domain 
knowledge is the kind of knowledge that cannot be 
directly used by a statistical learner. The control 
conditions used in this experiments, nevertheless, 
illustrates the advantage of EA-SVM. 

originaloriginal  

Figure 2. Comparison of SVM and EA-SVM performance 
on handwritten test recognition tasks.  

Figure 2 shows the comparison of the average error rates 
in all forty-five tasks over a randomly selected training set 
of 320 examples; the remaining examples are used as the 
test set. The results are shown as a scatter plot where the 
horizontal axis is the conventional SVM trained on 
original examples, so that points falling below the 45 
degree line correspond to learning problems for which 
EA-SVM or control SVMs outperforms the standard 
SVM.  

The results in figure 2 show that the success of EA-SVM 
is due to the appropriate use of explained examples. Using 
only explained examples is similar to setting confidence 
parameter to infinity, while using both equally 
corresponds roughly to setting the confidence parameter 
to 1. EA-SVM uses cross-validation to automatically set 
confidence parameter using training examples. This gives 
us the robustness. We will briefly discuss this later. 

Experiment 2: Do Difficult Problems Benefit More?  
In Figure 2, explanations seem to be more helpful in 
difficult classification tasks. To further investigate this, 
we divided the 45 classification tasks into two difficulty 
conditions. In the easy condition, characters to be 
distinguished are drawn from different groups (33 tasks). 
In the difficult condition, characters from the same group 
must be distinguished (12 tasks). Figure 3 shows the 
average learning curves of these two conditions. The 
improvement on difficult problems is greater than easy 
ones at all training levels. EA-SVM and SVM 
performance on the easy tasks is almost indistinguishable. 
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Figure 3. EA-SVM / SVM performance on easy and 
difficult tasks.  

Next we applied Kendall’s Tau (Conover, 1980) to 
perform nonparametric test for the agreement between 
two rankings: problem difficulty and improvement 
afforded by EA-SVM. The Kendall’s Tau measure over 
these two variables is 0.798, which suggests a high 
correlation. More importantly, the hypothesis is accepted 
with greater than 99.99% confidence. We repeated the test 
with a number of other measures of problem difficulty 
and improvement. All tests show that the hypothesis is 
accepted at or above the 99.93% level. 

Experiment 3: The Effect of Knowledge Quality 
Good but imperfect knowledge improves EA-SVM 
behavior over conventional SVMs. But does behavior 
degrade gracefully with poorer knowledge? To answer 
this question, we built two additional kinds of 
explanations: 1) in the random condition, random sets of 
pixels set to 0 with no regard to the original domain 
knowledge; 2) in the opposite condition, the complement 
of the original explanation is used so that important pixels 
are now unimportant and vice versa. Figure 4 shows the 
scatter plots of errors made by standard SVM and EA-
SVM in these conditions. Random explanations almost 
never harm the performance, with some marginal 
improvement in certain tasks probably due to chance. It is 
clear that even opposite explanations do not significantly 
harm performance. 
 
Experiment 4: Performance on Protein Super-Family 
and Text Categorization. How general is our approach? 
Is there some fortuitous match between the workings of 

EA-SVMs and the task of distinguishing handwritten 
characters? To address this question, we examined two 
additional learning domains: protein super-family 
prediction, and topic categorization of text articles. In 
each domain we adopt the most standard kernel from the 
literature in order to exercise our approach under different 
kernel functions. We also adopt the accepted scoring 
criteria for each domain. Domain knowledge for these 
two domains is taken directly from available databases 
(the Prosite motif database and WordNet).  

DOMAIN 1: Proteins are assigned to functional and 
structural classes called super-families based on their 
amino acid sequences. We use the Structural 
Classification of Proteins (SCOP), a database of known 
3D structures of proteins, as the data set. It contains 54 
super-families and 7329 example protein sequences. We 
adopt the same test and training set splits, and use the 
same mismatch kernel function as (Leslie & Kuang, 
2003). The performance of the classifiers is presented 
using the Receiver Operating Characteristic (ROC) score.  

Our (rather flawed) domain knowledge is that a protein’s 
super-family is determined only by motif sequences. In 
reality this seems to be only a part of the answer. To build 
an explanation for a training example, we use its sequence 
to search for known motifs in the Prosite motif database. 
The search is performed using the tools offered by 
Biology WorkBench (http://workbench.sdsc.edu). Only 
motif sequence in the training examples are participated 
in kernel computation. This is similar to removing pixels 
from handwritten character recognition.  

Figure 5A shows the scatter plot of ROC scores 
comparing SVM and EA-SVM performance in all 54 
classification problems of the SCOP database. The higher 
the score, the better the performance. The points above 
the equal-line indicate that EA-SVM out-performs SVM 
in almost all cases.  

Domain 2: The Reuters-21578 data set assigns category 
labels to Reuters news articles. To obtain a training and 
test set, we use the Modified Apte (“ModApte”) split, 
which leads to a corpus of 9603 training documents and 
3299 test documents.  
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Figure 4. Effect of knowledge quality on performance of EA-SVM.
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Figure 4. Effect of knowledge quality on performance of EA-SVM.
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Our domain knowledge, provided by WordNet, is that 
words semantically related to the label of a category are 
likely to be more informative than others about an 
article’s category. Words that are one-distance away in 
the WordNet from synonyms of topic words are taken as 
important; an explained example is the bag of important 
words occurring in the training example. Only those 
words will participate in kernel function computation. 
Again, this is similar to selecting important pixels in the 
handwritten character images.  

Our experimental setup follows (Christianini et al., 2001). 
Learning is performed on the top 5 Reuters categories: 
“earn”, “acquire”, “money”, “grain”, and “crude.” The 
kernel function is defined as a linear function over the 
article’s bag-of-words. For evaluation of classifiers, we 
used the F1 performance measure.  

The results are shown in Figure 5B.  Again, a higher score 
indicates better performance; the points above the equal-
line indicate that EA-SVM consistently out-performs the 
SVM control. EA-SVM is sometimes significantly better 
and never worse than SVM. 
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Figure 5. EA-SVM improves classification performance 
in the protein and text categorization domains. 

5.  Conclusion 

The Explanation Based approach can be naturally 
extended to state-of-the-art statistical machine learners. 
Indeed it has much to offer by tapping additional source 
of information. The inferential interaction between 
domain knowledge and training examples sets it apart 
from other SVM approaches to prior knowledge (e.g., 
Decoste & Schoelkopf, 2002 and Fung & Shavlik, 2003). 
In our view, the purpose of domain knowledge is to 
introduce a high-level high-information vocabulary of 
pre-existing abstract features (such as “strokes” for 
handwritten characters). The explanation process, guided 
by the training examples, relates these high-level 
organizing features to input features. In this way, the 
classification patterns need not emerge purely 
empirically. Our experiments demonstrate significant 
improvements even though the explanations are simple 
and the domain knowledge is approximate and not 
specifically engineered for the task. This work takes a 
first step refocusing machine learning on the principled 
incorporation of prior domain knowledge.  
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