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Abstract

Several algorithms for learning near-optimal
policies in Markov Decision Processes have
been analyzed and proven efficient. Empiri-
cal results have suggested that Model-based
Interval Estimation (MBIE) learns efficiently
in practice, effectively balancing exploration
and exploitation. This paper presents the
first theoretical analysis of MBIE, proving its
efficiency even under worst-case conditions.
The paper also introduces a new performance
metric, average loss, and relates it to its less
“online” cousins from the literature.

1. Introduction

In the reinforcement-learning problem, agents learn
by experimentation to maximize a performance objec-
tive. The underlying mathematical framework gen-
erally used is that of Markov Decision Processes or
MDPs (Puterman, 1994). This paper considers dis-
counted infinite-horizon MDPs with stochastic reward
and transition functions.

While there are many learning algorithms for MDPs,
only a few have been shown to produce near-optimal
policies, with high probability, after a polynomial
amount of experience. Such algorithms are said to
be probably approzimately correct (PAC). The E3 al-
gorithm (Kearns & Singh, 2002) and the conceptu-
ally simpler Rmax (Brafman & Tennenholtz, 2002) are
two state-of-the-art PAC reinforcement-learning algo-
rithms. They have similar worst-case bounds.

Model-based Interval Estimation (MBIE) is another
learning algorithm that builds a model to construct
an exploration policy (Wiering & Schmidhuber, 1998;
Strehl & Littman, 2004). In contrast to Rmax and E?,
MBIE incorporates acquired experience more quickly
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and smoothly into its internal model. However, the
rate at which MBIE learns had not been analyzed
in the PAC framework. This paper first presents an
overview of the different definitions of efficient learn-
ing that have been used in analyses. Another, more
“online”, and therefore more realistic, definition is in-
troduced and related to the sample complexity notion
of Kakade (2003). Then, a PAC analysis of MBIE’s
sample complexity is performed, producing a worst-
case result comparable to that of Rmax, complement-
ing MBIE’s strong empirical performance.

2. Notation

This section introduces the Markov Decision Process
(MDP) notation used throughout the paper; see Sut-
ton and Barto (1998) for an introduction. An MDP
M is a five tuple (S, A, T, R,~), where S is the state
space, A is the action space, T : S x A x S — R
is a transition function, R : S x A — R is a reward
function, and 0 < v < 1 is a discount factor on the
summed sequence of rewards. From state s under ac-
tion a, the agent receives a sample reward from a dis-
tribution with mean R(s, a) and is transported to state
s' with probability T'(s,a,s’). We assume that there
are a finite number of possible rewards, all of which
lie between 0 and a positive real number Ryax.' For
a stationary policy m, let V™ (s) (Q™(s,a)) denote the
value (action-value) function for 7 in M (which may be
omitted from the notation) from state s. For simplic-
ity, all policies in this paper are assumed to be deter-
ministic (it’s possible to extend our results to stochas-
tic policies). The optimal policy is denoted 7* and has
value functions V} (s) and Q%,(s,a). Note that a pol-
icy cannot have a value greater than vy.x 1= m‘”‘ CIf
T is a positive integer, let V7 (s,T) denote the T step
value function of policy 7. If 7 is non-stationary, then
s is replaced by a partial path ¢; = s1,a1,71,. .., St,
in the previous definitions. Specifically, let s; and
r; be the tth encountered state and received reward,

IThis finite-reward assumption generalizes the notion of
deterministic rewards used in prior analytic work.
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respectively, resulting from execution of policy 7 in
some MDP M. Then, Vij(c;) = E[3272, 7/ re4,] and
Vi(e,, T)=EFE [ZJ.T;Ol Y1t i]. These expectations are
with respect to some fixed prefix sequence ¢; and are
taken over all possible infinite paths the agent might
follow from the tth step and onward. Note that we
may omit the actions a; and refer to ¢; as a partial
sequence where ¢; = $1,71,...,S¢. In our analysis, we
only consider deterministic learning algorithms and,
thus, these two definitions are equivalent.

3. Performance Metrics

A reasonable notion of learning efficiency in an MDP
is to require an efficient algorithm to achieve near-
optimal (expected) performance with high probability.
An algorithm that satisfies such a condition can be
said to be probably approzimately correct or PAC. The
PAC notion was developed in the supervised learning
community, where a classifier, while learning, does not
influence the distribution of training instances it re-
ceives. In reinforcement learning, learning and behav-
ing are intertwined, with the decisions made during
learning profoundly affecting the available experience.

In applying the PAC notion in the reinforcement-
learning setting, researchers have examined definitions
that vary in the degree to which the natural mixing of
learning and evaluation is restricted for the sake of
analytic tractability. We survey these notions next.

Fiechter (1997) explored a set of PAC-learning defini-
tions that assumed that learning is conducted in trials
of constant length from a fixed start state. Under this
reset assumption, the task of the learner is to find a
near-optimal policy from the start state given repeated
visits to this state.

Kearns and Singh (2002) observed that the reset as-
sumption is not strictly necessary. In any sufficiently
long run, there must be some state that is repeatedly
visited and can therefore serve as a kind of post hoc
starting state for analysis. They showed that a PAC
result could be derived for trajectory-based learning
instead of assuming independent trials.

In this setting, a learning algorithm is judged by
whether it is guaranteed to reach a state, after a poly-
nomial number of steps, for which it can output an
e-optimal policy (from that state) with probability at
least 1 — §. Kearns and Singh (2002) provided an al-
gorithm they called E? that satisfies this PAC notion.

Kakade (2003) introduced a PAC performance met-
ric that is more “online” in that it evaluates the be-
havior of the learning algorithm itself as opposed to

a separate policy that it outputs. As in Kearns and
Singh’s definition, learning takes place over one long
path through the MDP. At time ¢, the partial path
¢t = 81,a1,71...,5¢ is used to determine a next ac-
tion a;. The algorithm itself can be viewed as a non-
stationary policy. In our notation, this policy has ex-
pected value V4(c;), where A is the learning algo-
rithm.

Definition 1 (Kakade, 2003) The sample com-
plexity of exploration of an algorithm A is the num-
ber of timesteps t such that VA(cy) < V*(s;) — e.

In other words, the sample complexity is the number
of timesteps, over the course of any run, for which the
learning algorithm A4 is not executing an e-optimal pol-
icy from its current state. A is PAC in this setting if its
sample complexity can be bounded by a number poly-
nomial in the relevant quantities with high probability.
Kakade showed that the Rmax algorithm (Brafman &
Tennenholtz, 2002) satisfies this condition.

Although sample complexity demands a tight integra-
tion between behavior and evaluation, the evaluation
itself is still in terms of the near-optimality of expected
values over future policies as opposed to the actual re-
wards the algorithm achieves while running. We intro-
duce a new performance metric, average loss, defined
in terms of the actual rewards received by the algo-
rithm while learning. In the remainder of the section,
we define average loss formally. In the next section, we
show that efficiency in the sample-complexity setting
implies efficiency in the average-loss setting.

Definition 2 Suppose a learning algorithm is run for
one trial of T steps in an MDP M. Let s; be the
state encountered on step t and let vy be the tth reward
received. Then, the instantaneous loss of the agent
is il(t) = V*(st) — ZZ—T:t vi=tr;, the difference between
the optimal value function at state s; and the actual
discounted return of the agent from time t until the end
of the trial. The quantity | = 7 Zthl 1l(t) is called the
average loss over the sequence of states encountered.

In this setting, a learning algorithm is PAC if, for any
€ and J, we can choose a value T', polynomial in the
relevant quantities (1/¢,1/6,|S],|4],1/(1 — ), Rmax);
such that the average loss of the agent (following the
learning algorithm) on a trial of T steps is guaranteed
to be less than e with probability at least 1 — 4.

4. Average Loss & Sample Complexity

This section shows that a PAC algorithm in the
sample-complexity framework is also PAC under av-
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erage loss. Since average loss is arguably a more nat-
ural performance metric for learning in MDPs, while
sample complexity admits a cleaner and more direct
analysis, this result provides the best of both worlds.

4.1. Properties of Adjusted Average Loss

Two properties of Definition 2 present some bookkeep-
ing difficulties. First, instantaneous loss compares the
expected return of the optimal policy over an infinite
length sequence (V*(s;)) to the return of the learn-
ing algorithm over a finite length path T'. Second, the
length of the finite sequence is variable and depends on
the current time. The complexity of these properties
is mitigated by the following definitions.

Definition 3 Suppose a learning algorithm is run for
one sequence of Ty + To — 1 steps. Let ¢; be the
partial sequence $1,71,...,St—1,"t—1,St.- For any pol-

icy m and integer t such that t < Ty, let RY, (t) :=

Pl =ty 4 AT2V ™ (¢4 1) be the adjusted re-

turn. Let IF, (t) := V™ (ct) — RT,(t) be the adjusted
instantaneous loss. Let LT, 5, = T% Zf;l I7,(t) be
the adjusted average loss.

Adjusted return is the actual discounted sum of re-
wards starting at step t over the next To steps, plus
the discounted expected return m would receive start-
ing from the state reached T5 steps in the future. Ad-
justed instantaneous loss is the true return for policy
7 from time ¢ minus the adjusted return—how much
was lost relative to simply following 7. Adjusted av-
erage loss is the average of the adjusted instantaneous
losses over the first T steps of the run. In these defi-
nitions, the policy 7 is not required to be the same as
the policy followed by the algorithm.

For any (possibly nonstationary) policy 7, MDP M,
and integer T, we can run 7 in M for T steps. Let the
partial sequence cr be the list of states and rewards en-
countered by the agent along this run. Each time this
experiment is performed, a different sequence might
be generated. Thus, we say that cr is to be generated
by 7, to emphasize the fact that ¢y is a random par-
tial sequence. Note that the adjusted instantaneous
loss and adjusted average loss quantities are random
variables dependent on the relevant partial sequence.
We will find it useful to define the following additional
random variables, Y, := V™ (¢;) — (r+ + YV ™ (¢t41)),
for all ¢ < T. As usual, in this definition, ¢; is the
partial sequence consisting of the prefix of ¢y ending
at state s; (the tth state encountered). It follows from
our definition that as long as the agent follows 7, the
expectation of Y;" is zero—it is the Bellman error in
the value-function update for .

Consider the sequence Z :=Y{",Y;" ..., Y] of random
variables up to time 7. Next, we will show that any
subsequence g of Z is a martingale difference sequence,
meaning that the each term in ¢ has expectation zero
even when conditioned on all previous terms of gq.

Lemma 1 Let w be a policy, and suppose the se-
quence S1,T1,52,T2,...,ST, 7T 1S to be generated by
m Ifl1 < ¢ < g2 < -+ < q <t < T, then
EY YY) ..., Y]] =0.

Proof: Let [Y;"|ct+1] be the value of the random vari-
able Y," given the fixed partial sequence c¢;y1. Then,

EY7] =Y Prlcer)[Y/ |er]

Ct+1

= Y _Pr(cs) Y Pr(re,sealed) Y7 |er, re, sepal-

Tt,St41

The sum in the first line above is over all possible se-
quences Cyy1 = S1,7T1,...,S¢+1 resulting from ¢ action
choices by an agent following policy 7.

In the term above, we note that conditioning Y," on the
sequence of random variables YT, Y7 ... Y7 can cer-
tainly affect the probabilities Pr(c;), by making some
sequences more likely and others less likely. However,
the term >, Pr(c;) will always be one. Notice that
fixed values of YT, Y7 ..., Y7 cannot influence the in-

q1’
nermost sum. Now, we have that

Z Pr(re, sevales) Yy s, 7, se41]

TtySt+1

= V™(e) = D Pr(ry,sipale)(re + 9V (crrn)).

Tt,St+1
By the definition of V™ (¢;), this last term is zero. O

Adjusted instantaneous loss can now be reformulated
as the discounted sum of these random variables.

Lemma 2 If t < Ty is a positive integer, then
tHTo—1_4/—
I,;r.,z (t) = t’:t2 ,.Yt t}/tzr

4.2. Adjusted and Average Loss

This section shows that the quantities 77 and T, the
number and length of the trials in Definition 3, may
be only polynomially large and still ensure that results
about adjusted loss apply to average loss.

Proposition 1 Suppose that | > 0. If Ty

> 2,I‘2 Rmax
and Ty > 1n(%)/ln(’y), then 1 — L?j)TQ <e.
The importance of the result, proven elsewhere (Strehl
& Littman, 2005), is that we can bound the average
loss [ by bounding the adjusted loss LT, r,.
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4.3. Reduction to Sample Complexity

Our main objective here is to relate sample complex-
ity and average loss. We now show that the num-
ber of trials 77 used in the adjusted definition of av-
erage loss can be made large enough (but not more
than polynomially large) so that, with high probabil-
ity, any algorithm’s average loss can be made arbitrar-
ily small given that the algorithm’s sample complexity
is bounded with high probability.

Proposition 2 Suppose Ty and C are two positive in-
tegers. If C is a bound on the sample complexity of
some algorithm A with respect to e, which holds with
probability at least 1 — 6, then Ty can be chosen so that
the adjusted average loss L§:7T2 < 3e, with probability
at least 1 — 20.

Proof: We consider running algorithm .4, which can
be viewed as a non-stationary policy, in the MDP for
T :=T1+T5—1 steps. Partition the generated partial
sequence S1,71,...,5Ty,TTy, into those timesteps ¢ €
Sp such that A is not e-optimal, and those timesteps
t € Sg such that it is. Now,

T

« 1
L;17T2 = ?1 Z Z IT2

t=1 tGSG

Z ITz

tESB

By the sample-complexity bound, with high probabil-
ity, [Sp| < C. Combining this fact with the fact that
Iﬁ can be at most vmax (Which must be nonnegative
due to our assumption of nonnegative rewards) yields:

A

tESG

'+ (7). @)

T1 T2 —

Restricting to t,¢ € Sg, Lemma 2 reveals that

t+T5—1
.A t'—t
E I, (t) E E v Y;,
t t'=t
T—1 t’ Th+T2+1
’ ’
:557”1@+§ E oA
t'=1 t=1 =T> t=t'—T>+1
T—1 T1+T2 1 t —Ty
< Qv Z — T
—1
t'=1

The second line above results from switching the
order of the summands, which allows us to evalu-
ate the innermost sums of that line. The last line
reveals that >, . I#(t) is the sum of a martin-
gale difference sequence, where each term is bounded
by  Umax/(1 — 7). Therefore, applying Azuma’s

Lemma (Strehl & Littman, 2005) yields

—a*(1—9)*
P Zfﬁ(t)>a>§exp< 5 .
(teSo 2Umax (Tl + Ty — 1)

(2)
For all t € Sg, I%; (t) — If (t) < € holds since A(c;)
is e-optimal. By Equation 2, 2 7,.q, I7, (t) < 2€
7T1252(177)2 ) < 5
2Umax? (T1+T2—1) )] = 7°

This condition is equivalent to the following:

with high probability when exp (

Ti(Tie*(1 — )% = 210 (1/6)vmax?)
> 2In(1/0)vmax>(To — 1). (3)
Equation 3 is satisfied when the following holds:

1+2In(1/6)vmax>
(1 —n)?

, 210 (1/8)vmax (T2 — 1)}
(4)

Finally, to ensure that the second term of Equation 1 is

no more than e, it is sufficient to enforce the following
inequality:

T > max{

—_

T1 > —(C)(Vmax)- ()

M

Note that T} can satisfy Equations 4 and 5, yet still
be no more than polynomial in the relevant quantities
1/6, 1/€, Umax, 1/(1 —7), C, and Ty. O

In summary, low sample complexity implies low aver-
age loss since the algorithm does not have to run too
long before the number of near-optimal trials is suffi-
cient to make the average loss low.

5. Model-Based Interval Estimation

The core idea of MBIE was first introduced by Wier-
ing and Schmidhuber (1998); however the form of the
confidence intervals were ad hoc and problematic for
analysis. We will analyze a more statistically justified
approach due to Strehl and Littman (2004). This sec-
tion provides a detailed description of the inner work-
ings of MBIE, while Section 7 provides the first proof
that MBIE is PAC in the sample-complexity frame-
work. From Proposition 2, this result implies that
MBIE is also PAC by the average-loss metric.

5.1. Description of the MBIE Algorithm

MBIE is a generalization of the Interval Estimation
(IE) algorithm for the k-armed bandit problem (Kael-
bling, 1993). MBIE, like IE, works by constructing
confidence intervals on possible models based on expe-
rience. It then assumes that the most optimistic model
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consistent with the data is true and behaves optimally
according to this model.? If the agent’s model is accu-
rate, near-optimal reward (in expectation) is achieved.
Otherwise, new experience is obtained and used to up-
date the model.

More specifically, at each step, MBIE uses the available
experience to determine an MDP M with transition
function T and reward function R. This internal model
has value function Q and at least one optimal policy
7, which MBIE uses to choose its next action. Of
course, with only a finite amount of experience, MBIE
cannot hope to model the environment with complete
accuracy. MBIE quantifies its certainty by maintain-
ing confidence intervals for each possible source of un-
certainty. At any given stage during training, there
are many possible MDPs consistent with MBIE’s con-
fidence intervals. Among these, MBIE chooses to act
according to a model for which the agent can achieve
maximum possible reward.

MBIE uses its experience very naturally in that its
model is updated immediately as new experience ar-
rives. In contrast, the PAC reinforcement-learning al-
gorithms Rmax and E3 only allow a fixed number of
model updates, so at any given step in the algorithm
much of the agent’s experience is ignored.

In the following sections, we describe the precise
form of the confidence intervals that MBIE maintains
and how they are combined to produce an efficient
reinforcement-learning algorithm.

5.2. The Reward Confidence Interval

For a fixed state-action pair (s,a), let R(s,a) be the
sample mean of the observed rewards and n(s,a) be
the number of times action a has been chosen in state
s. The reward assumed by MBIE’s model is R(s,a) =

R(s, a)—l—ef(sﬁa), where Eg(s,a) = 1/%. This

expression gives us the upper confidence interval on
the mean reward by a straightforward application of
the Hoeffding bound.

5.3. The Transition Confidence Interval

For a fixed state-action pair (s, a), let T'(s,a,-) be the
true transition probability vector and T(s, a,-) the em-
pirical distribution. With probability at least 1 — dp,
the Ly distance between T'(s, a,-) and T(s, a, -) will be

2We call this idea the Pangloss assumption—assume we
are in the best of all possible worlds. The name comes from
Dr. Pangloss, a character from Candide by Voltaire (1759),
who proved this assumption “to admiration” in spite of
being the victim of a series of highly unfortunate events.

at most

_—_— \/2[ln(2|s| —9) — In(d7)]

€n(s,a) = TL(S,CL)

This result (Weissman et al., 2003) yields a confidence
interval of

Cl= {T(Svaa ) | ||T(S,CL, ) - T(S,CL, )||1 < 6Z(s,a)}'

5.4. Combining the Confidence Intervals

Now, for each state-action pair, MBIE finds the prob-
ability distribution T'(s,a,-) within CT that leads to
the policy with the largest value. This quantity is for-
malized by the Bellman equations

Q(Sva) = (6)

R(s,a)+ max ”yZT(s,a,s/)mz}XQ(s/,a').

T(s,a,)eCI o

Note that this expression effectively combines the un-
certainty in the rewards and transitions to provide the
MDP model used by MBIE. Equation 6 can be solved
efficiently using value iteration (Strehl & Littman,
2004). Once Equation 6 is solved, a greedy policy 7
with respect to Q is used by MBIE to choose the next
action.

As the MBIE agent gathers experience, it is continu-
ously updating and solving its model of the world ac-
cording to Equation 6. Let C' be any confidence inter-
val computed by MBIE. We say that C' is consistent if
it contains the mean of the distribution that produced
the samples for which C' was computed from. For
our following analysis, we require that all confidence
intervals—reward and transition—be consistent for all
state-action pairs over every time-step, with high prob-
ability. This condition cannot be guaranteed for fixed
values of 6 and é7, as we have to allow for a possibly
infinite number of time steps. However, the problem
can be fixed by allowing the confidence intervals for
each state-action pair (s,a) to depend on the number
of times n(s, a) the state-action pair has been experi-
enced. In fact, setting g = dr = m is
sufficient to ensure that every confidence interval com-
puted by MBIE (on a given run) is consistent with
probability at least 1 — §/2 (Fong, 1995). Note that
7 here refers to the ratio of a circle’s circumference to
diameter, not a policy.

6. Basic Properties of MBIE

Several lemmas and basic properties of MBIE are now
developed. First, for long enough time intervals, trun-
cating the value function doesn’t change it very much.
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Lemma 3 If T > ¢l lngmes then [V7(s,T) —

V7 (s)| < e for all policies m and states s.

Proof: See Lemma 2 of Kearns and Singh (2002). O

The following lemma, whose proof is omitted, helps de-
velop Lemma 5, a slight improvement over the “Sim-
ulation Lemma” of Kearns and Singh (2002) for the
discounted case.

Lemma 4 Let My = (S,A,T1,R1,7v) and My =
(S, A, T, Ra,v) be two MDPs with non-negative re-
wards bounded by Ruyax. If |[Ri(s,a) — Ra(s,a)| < «
and ||T1(s,a,-) —Ta(s,a,-)||1 <28 for all states s and
actions a, then the following condition holds for all
states s, actions a and stationary policies m:

(1 - FY)O‘ + 7B Rmax
1

Q1(s:0) = Q2. a)l = T—ya = T 57"

Algorithms like MBIE act according to an internal
transition and reward model. The following lemma
shows that two MDPs with similar transition and re-
ward functions have similar value functions. Thus, an
agent need only ensure accuracy in the transitions and
rewards of its model to guarantee near-optimal behav-
ior. Using Lemma 4, we can prove the following result.

Lemma 5 Let M, and Ms be two MDPs as in
Lemma 4. For any e > 0 and stationary policy m, there

is a constant C such that if o = 283 = C(—(li,l)je)
then

Q1 (s,0) = Q3(s,a)] <e (7)

The next lemma quantifies the amount of experience,
for each state-action pair, required by MBIE to accu-
rately model the dynamics of the environment.

Lemma 6 Let (s,a) be a fized state-action pair and
suppose that all confidence intervals computed by
MBIE are consistent. Then, there exists a positive
integer b(e), polynomial in the relevant quantities,
such that ||T(s,a,-) — T(s,a,-)||; < € and |R(s,a) —
R(s,a)| < e, whenever n(s,a) > b(e).

Proof:
fidence

Using the reward and transition con-
intervals, we require that b(e) >

max{ 8[in(2'5! —Eg)—ln(aT)] 2 1n(2/5§)Rmax2 1. Although
d0r and Jr depend on n(s,a), we can choose
be) = O (1l (USDUAP R’ )) - st
satisfy the required condition. O

We’ve mentioned that MBIE assumes “optimism in
the face of uncertainty”, meaning that the expected

return of acting in the agent’s model is at least as
large as the expected return of acting in the underlying
environment.

Lemma 7 Suppose that all confidence intervals com-
puted by MBIE are consistent. Then, for any state s
and action a, the condition Q(s,a) > Q*(s,a) is sat-
isfied during any iteration of MBIE.

Proof: At each step of the learning problem, MBIE
solves the MDP M. We prove the claim by induction
on the number of steps of value iteration. For the base
case, assume that the @) values are initialized t0 vyax >
V*(s), for all s. Now, for the induction, suppose that
the claim holds for the current value function Q(s, a).

MBIE computes two confidence intervals. CI(R) is

an interval of real numbers of the form (R(s,a) —
ef(sﬂ),R(s,a) + e ). CI(T) is the set of proba-

n(s,a)
bility distributions T"(s,a,-) of the form ||T'(s,a,-) —
T (s,a, )1 < Ez(s a)- By assumption, we have that

R(s,a) € CI(R) and T'(s,a,-) € CI(T).

The term Q(s’, a’) on the right-hand side of Equation 6
is the result of the previous iteration and is used to
compute the new Q-value Q(s, a) on the left-hand side

of the equation. By our confidence-interval assump-
tion, we have R(s,a) > R(s,a) and

_ max
T (s,a, )ECI(T)

> v Z T(s,a,s") max Q(s',d)

ry

> v Z T(s,a,s") max Q*(s',d").

ry

v Z T(s,a,s") max Q(s',d)

ry

The first step follows from the assumption that
T(s,a,-) € CI(T) and the second from the inductive
hypothesis. O

7. Sample Complexity of MBIE

We can now prove that MBIE is PAC in the sample-
complexity framework. This section parallels the proof
that Rmax has low sample complexity (Kakade, 2003).
The main difference in our analysis is that we worked
within the discounted reward framework and allowed
for MBIE’s model to be updated on every step.

At the beginning of a run, every state-action (s, a) pair
is said to be unknown. At any step of the algorithm,
the set of known state-action pairs K is defined to be
those (s,a) experienced at least m times (Kearns &
Singh, 2002). For large m, any (s,a) € K will be
accurately modeled. The concept of a known state is
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not used by MBIE—just its analysis. In contrast, E3
and Rmax explicitly keep track of known states.

An overview of the sample-complexity analysis is as
follows. At each timestep, MBIE follows the optimal
policy of its model M. Lemma 8 shows that the value
of MBIE’s policy in its model is very close to its true
value as long as the probability of reaching an un-
known state-action pair is low. By Lemma 7, the esti-
mated value of its policy is at least as large, with high
probability, as the true optimal value function. Thus,
MBIE chooses its actions based on a policy that is ei-
ther nearly optimal or one with a high probability of
encountering an unknown (s, a). However, the number
of times a given (s,a) can be experienced before it be-
comes known is shown to be no more than polynomial
in the relevant quantities. Therefore, the agent will
act nearly optimally on all but a bounded number of
timesteps—it has polynomial sample complexity.

Lemma 8 (Generalized Induced Inequality) Let
M be an MDP, K a set of state-action pairs, M’ an
MDP equal to M on K (identical transition and reward
functions), © a policy, and T some positive integer.
Let Ay be the event that a state-action pair not in
K is encountered in a trial generated by starting from
state s1 and following ™ for T steps in M. Then,
VI\CI(SlvT) Z V]\Z/ (Sl,T) — PI’(A]W).

Umax

Proof: For some fixed partial path p, =
$1,G1,71 - -, 8¢, Gy, T, let Py as(pe) be the probability
pt resulted from execution of policy 7 in M starting
from state s;. Let K; be the set of all paths p; such
that every state-action pair (s;,a;) with 1 <7 <¢ ap-
pearing in p¢ is “known” (in K). Let rps(t) be the
reward received by the agent at time ¢, and 757 (py, t)
the reward at time t given that p; was the partial path
generated. Now, we have the following:

Elrye (t)] — Elrau ()]

= Z (Prae (p)rae (es t) — Poovr (pe)rae (e, t))
ptEK
+ Z (Pear (pe)rar (pes t) — Peovr(pe)rar (pe, t))

Pt Ky

= Z (P, (pe)rar (pes t) — Peoar(pe)rar (pe, 1))
ptZ Ky

< Z Py v (pe)raar (P, t) = Rmax Pr(Anr).
ptZ Ky

The first step in the above derivation involved separat-
ing the possible paths in which the agent encounters an

unknown state-action from those in which only known
state-action pairs are reached. We can then elimi-
nate the first term, because M and M’ behave iden-
tically on known state-action pairs. The result then
follows from that fact that V7, (s1,T) — Vi (s1,T) =

Yico 7 (Elrar ()] = Elrar(#)]). O

The following proposition states that MBIE is PAC in
the sample-complexity framework.

Proposition 3 Let M be an MDP, A; be MBIE'’s pol-
icy at time t, and s; be the state at time t. With prob-
ability at least 1 — 6, V]\?t (s¢) > Vi (se) — € is true for

512/ A] Rmax” In® 1Sl AL Tmax
all but O ( d-v)ed

(1—7)%e

) timesteps t.

Proof: We assume that all confidence intervals com-
puted by MBIE are consistent, an assumption that
holds with probability at least 1 — §/2. We also re-
quire 0 < €/Umax (0 can always be polynomially re-
duced to this value if necessary). At time ¢, let K be
the set of known state-action pairs, specifically, those
tried at least m times by the agent. Recall that the
agent A; chooses its next action by following an op-
timal policy # of MBIE’s internal model M at time
t. Let M’ be the MDP that is equal to M on K
and equal to M on S x A — K. We now choose m =

1o} (\(S\Rn)xgxz In ((\S\)(\A\)Rmax“
1—v)%€

(et
Lemma 6, to ensure that |V}, (s) —
ln Rmax

s. Using Lemma 3, let T' = O( ea(1—)

enough so that for all policies , |VM, (s, T)=Vi(s)] <
€q. Let Ay be the event that @ “escapes” from K in
T steps. By Lemma 8, we have that for all states s:

We now consider two mutually exclusive cases. First,
suppose that Pr(Aps) > v:ax’ meaning that an agent
following A; will encounter an unknown (s,a) in T
Using the Ho-

)), using Lemma 5 and
’:T( )| < e for all

) be large

Vi (s, T) > Viti(s,T)

— Umax

effding bound, after O(%JTU”‘“‘ In %) timesteps t
where Pr(Ay) > ;5 is satisfied, all (s,a) will be-
come known, with probability at least 1 — dg. Now,
suppose that Pr(Aps) < ;2= Note that VT (s, T) —

Vip (s, T)] < €5 + Umax Pr(AM) (0/2)Vmax, which
can be seen by considering executing policy A7 in the
MDP M’ for T steps from state s. Aslong as the agent
encounters only known state-action pairs and it main-
tains correct confidence intervals, it will, by Lemma 5,
achieve e;-optimal average behavior (recall that MBIE
always acts according to some stationary policy 7).
Otherwise, the probability that it either encounters
an unknown state-action pair or computes an incor-
rect confidence interval is bounded by Pr(Ays)+(6/2),
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yielding
Viit(s,T) Var (8, T) — es — €1 — (6/2)Vmax
Vi (s) —€s —€q— €1 —€/2

’

—2€5—€q— €1 —€/2

AV AVAR\VARLY,

Vi (s)
Vi(s) — 265 —eq — €1 — €/2.

The last step made use of Lemma 7. Thus, if 6g =
§/2 and e = €5 = €1 = €/8, then MBIE’s policy is
e-optimal with probability at least 1 — § for all but
O(M In 1) many timesteps. O

|51? | A| Rimax” In® 12021 lamas
(1-7)%e

tion 3 are comparable to those achieved by Kearns and

Singh (2002) and Kakade (2003) for the algorithms E?

and Rmax, respectively, especially when modified to

account for differences in basic assumptions.

The bounds O

in Proposi-

8. Conclusion

Reinforcement-learning algorithms that fully exploit
limited and costly real-world experience to maximize
their performance are crucial to the future of the field.
MBIE takes a step in this direction and, based on re-
cent experimental studies, appears very promising. In
comparison to known PAC algorithms, MBIE more
smoothly integrates exploration and exploitation.

We’ve shown that MBIE’s worst case PAC bounds are
on par with those of E3 and Rmax. In doing so, we sur-
veyed the progression of PAC concepts from the reset
assumption to settings that are increasingly “online”
in that are based on state trajectories encountered dur-
ing learning. We’ve also discovered that algorithms
that are PAC in the sample-complexity setting are also
PAC in the average-loss setting.

Our ongoing work attempts to scale MBIE to more re-
alistic domains such as MDPs with continuous or fac-
tored state spaces. We are also working on an analysis
that will demonstrate that MBIE has a provable ad-
vantage over existing PAC learning algorithms in cer-
tain classes of MDPs.
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