Large Scale Genomic Sequence SVM Classifiers

S6ren Sonnenburg

SOEREN.SONNENBURGQFIRST.FRAUNHOFER.DE

Fraunhofer Institute FIRST, Kekuléstr. 7, 12489 Berlin, Germany

Gunnar Ratsch

GUNNAR.RAETSCHQTUEBINGEN.MPG.DE

Friedrich Miescher Laboratory of the Max Planck Society, Spemannstr. 37, 72076, Tibingen, Germany

Bernhard Scholkopf

BERNHARD SCHOELKOPFQTUEBINGEN.MPG.DE

Max Planck Institute for Biological Cybernetics, Spemannstr. 38, 72076, Tiibingen, Germany

Abstract

In genomic sequence analysis tasks like splice
site recognition or promoter identification,
large amounts of training sequences are avail-
able, and indeed needed to achieve suffi-
ciently high classification performances. In
this work we study two recently proposed and
successfully used kernels, namely the Spec-
trum kernel and the Weighted Degree kernel
(WD). In particular, we suggest several ex-
tensions using Suffix Trees and modifications
of an SMO-like SVM training algorithm in
order to accelerate the training of the SVMs
and their evaluation on test sequences. Our
simulations show that for the spectrum ker-
nel and WD kernel, large scale SVM train-
ing can be accelerated by factors of 20 and
4 times, respectively, while using much less
memory (e.g. no kernel caching). The evalu-
ation on new sequences is often several thou-
sand times faster using the new techniques
(depending on the number of Support Vec-
tors). Our method allows us to train on sets
as large as one million sequences.

1. Introduction

Support Vector Machines (SVMs) (cf. Cortes & Vap-
nik, 1995; Scholkopf, 1997; Cristianini & Shawe-
Taylor, 2000; Scholkopf & Smola, 2002) have been
successfully used to solve biological sequence analy-
sis tasks (cf. Scholkopf et al., 2003; Miiller et al., 2001
and references therein). They employ a so-called ker-

Appearing in Proceedings of the 22™¢ International Confer-
ence on Machine Learning, Bonn, Germany, 2005. Copy-
right 2005 by the author(s)/owner(s).

nel function k(s;,s;) which intuitively computes the
similarity between two sequences s; and s;. The result
of SVM learning is a a-weighted linear combination of
N kernel elements and the bias b:

N
f(s) = sign (Z a;yi k(si,s) + b> :

i=1

When applying SVMs on non-vectorial data types such
as sequences, we face the following dilemma: on the
one hand, we often need huge datasets in order to
achieve state of the art performances. On the other
hand, we have to use nontrivial kernels in order to deal
with the data in an appropriate way. These two goals
can be in conflict; indeed, for SVMs, huge training sets
are easiest to deal with using linear kernels, in which
case one can work directly in the primal problem. The
content of the paper is to strike the best possible bal-
ance in this conflict, for the case of sequence data.

Five types of kernels have been proposed in order to
deal with the discrete nature of biological sequences:
(a) polynomial-like kernels (including the locality im-
proved kernel; e.g. Zien et al., 2000), (b) kernels de-
rived from probabilistic models (including the Fisher
and TOP kernels; cf. Jaakkola et al., 1999; Tsuda
et al., 2002), (c) alignment based kernels (e.g. SVM-
Pairwise (Liao & Noble, 2002) and Local Alignment
kernels (Vert et al., 2003)), (d) the spectrum and
mismatch kernel considering all appearing K-mers in
a sequence (independent of their position; cf. Leslie
et al., 2002; Leslie et al., 2003; Vishwanathan & Smola,
2003) and (e) kernels such as the Weighted Degree ker-
nel proposed in Rétsch and Sonnenburg (2004) which
incorporate positional information when comparing
two sequences (see also Meinicke et al., 2004; Vish-
wanathan & Smola, 2003 for related approaches).

In this work we aim at accelerating and improving



Large Scale Genomic Sequence SVM Classifiers

two representatives of the latter two families of ker-
nels, namely the Spectrum kernel and the Weighted
Degree kernel. Both kernels have already been exten-
sively studied, however, we report several novel ways
to more efficiently compute those kernels using suf-
fix trees. While the idea of using trees to optimize
kernel computation has been proposed before (Leslie
et al., 2002; Vishwanathan & Smola, 2003), we show
in Section 3.2 that the newly proposed algorithms for
instance for K-mer kernels with m mismatches can
be computed O(|X|™K™) times faster during test-
ing, where |X| is the size of the alphabet. In Sec-
tion 3.3 we show that the same idea can be applied
to the Weighted Degree kernel leading to significant
speedups. Moreover, we show in Section 4 how the
trees can be exploited to drastically reduce training
times of SVMs while using significantly less memory.

The rest of the paper is structured as follows: In Sec-
tion 2 we briefly review the Spectrum, Mismatch and
Weighted Degree Kernel. In Section 3 we propose and
discuss several improvements and extensions of these
kernels and describe a simple extension of SMO-like
algorithms (such as SVM'9"; cf. Joachims, 1999) in
Section 4. We conclude the paper with simulation ex-
periments on up to one million training sequences in
a splice site recognition task, illustrating the efficiency
of the new algorithms (Section 5).

2. String Kernels for Sequence Analysis
2.1. The Spectrum Kernel

The spectrum kernel (Leslie et al., 2002) implements
the n-gram or bag-of-words kernel (Joachims, 1997) as
originally defined for text classification in the context
of biological sequence analysis. The idea is to count
how often a K-mer (a contiguous string of length K)
is contained in the sequences s and s’. Summing up
the product of these counts for every possible K-mer
(note that there are exponentially many) gives rise
to the kernel value which formally is defined as fol-
lows: Let ¥ be an alphabet and u € ¥ a K-mer
and #u(s) the number of occurrences of w in s. Then
the spectrum kernel is defined as the inner product
of k(s,s’) = ®(s) - D(s'), where ®(s) = (#u(S))yexnk-
Note that spectrum-like kernels cannot extract any po-
sitional information from the sequence which goes be-
yond the K-mer length. It is well suited for describing
the content of a sequence but is less well suited for in-
stance for analyzing signals where motifs may appear
in a certain order. Note that spectrum-like kernels are
capable of dealing with sequences with varying length.

The Spectrum kernel can be efficiently computed in
O(K(Js| + |s'])) using suffix trees (Leslie et al., 2002),

where |s| denotes the length of sequence s. An easier
way to compute the kernel for two sequences s and s’
is to separately extract and sort the N K-mers in each
sequence, which can be done in a pre-processing step.
Note that for instance DNA K-mers of length K < 16
can be efficiently represented as a 32-bit integer value.
Then one iterates over all K-mers of sequences s and
s’ simultaneously and counts which K-mers appear
in both sequences and sums up the product of their
counts. The computational complexity of the kernel
computation is O(log(|X]) K (|s| + |s']))-

2.2. The Weighted Degree Kernel

The so-called weighted degree kernel efficiently com-
putes similarities between sequences while taking po-
sitional information of k-mers into account. The main
idea of the WD kernel is to count the (exact) co-
occurrences of k-mers at corresponding positions in
the two sequences to be compared. The WD kernel of
order K compares two sequences s; and s; of length
L by summing all contributions of k-mer matches of
lengths &k € {1,..., K}, weighted by coefficients Bj:

L—k+1
k(si,s;) Zﬁk Z T(up,(si) = upi(sy)). (1)
k=1 =1

Here, ug,(s) is the oligomer of length k starting at
position [ of the sequence s and I(.) is the indica-
tor function which evaluates to 1 when its argument
is true and to 0 otherwise. For the weighting coef-
ficients Rétsch and Sonnenburg (2004) proposed to
use [ = 2 1]((( Kk Hl) Matching sub-strings are thus re-
warded with a score depending on the length of the
sub-string. Note that although in our case Bx11 < Ok,
longer matches nevertheless contribute more strongly
than shorter ones: this is due to the fact that each
long match also implies several short matches, adding
to the value of (1). Exploiting this knowledge allows
for reformulation of the kernel using “block-weights”
as will be discussed in Section 3.3.

Note that the WD kernel can be understood as a Spec-
trum kernel where each position is treated indepen-
dently from the others. Moreover, it does not only
consider oligomers of length exactly K, but also all
shorter matches. Hence, the feature space for each po-
sition has Zle ISk = % — 1 and additionally
duplicated L times (i.e. leading to O(L|X|¥) dimen-
sions). However, the computational complexity of the
WD kernel is in the worst case O(K L) as can be di-
rectly seen from (1).



Large Scale Genomic Sequence SVM Classifiers

3. Faster String Kernels and Extensions
3.1. Efficient Storage of Sparse Weights

All considered kernels correspond to a feature space
that can be huge. For instance in the case of the WD
kernel on DNA sequences of length 100 with K = 20,
the corresponding feature space is 10'* dimensional.
However, most dimensions in the feature space are not
used since only a few of the many different k-mers ac-
tually appear in the sequences. An appropriate choice
of the data representation is crucial for fast algorithms.
If the data can be efficientiently represented for the
general class of kernels which can be written as the in-
ner product of some sparse feature space, one achieves
significant speedups in SVM training when using the
in Section 4 proposed “Linadd” algorithm.

In this section we briefly discuss three methods to ef-
ficiently deal with sparse vectors v. We suppose that
the elements of the vector v are indexed by some in-
dex set U (for sequences, e.g. U = LK) and that we
only need three operations: clear, add and lookup.
The first operation sets the vector v to zero, the add
operation increases the weight of a dimension for an
element w € U by some amount «, i.e. vy = Uy + «
and lookup requests the value v,,. The latter two op-
erations need to be performed as quickly as possible
(whereas the performance of the lookup operation is
of higher importance).

Explicit Map If the dimensionality of the feature
space is small enough, then one might consider keeping
the whole vector v in memory and to perform direct
operations on its elements. Then each read or write
operation is O(1).! This approach has expensive mem-
ory requirements (O(|X|%)), but is very fast and best
suited for instance for the Spectrum kernel on DNA
sequences with K < 14 and on protein sequences with
K <6.

Sorted Arrays More memory efficient but compu-
tationally more expensive are sorted arrays of index-
value pairs (u,v,,). Assuming the L indices are given
and sorted in advance, one can efficiently change or
look up a single v,, for a corresponding u by employing
a binary search procedure (O(log(L))). When given
L' look up indexes at once, one may sort them in ad-
vance and then simultaneously traverse the two arrays
in order to determine which elements appear in the
first array (i.e. O(L + L') operations — omitting the
sorting of the second array — instead of O(log(L)L')).

"More precisely, it is log K, but for small enough K
(which we have to assume anyway) the computational ef-
fort is exactly one memory access.

This method is well suited for cases where L and L'
are of comparable size, as for instance for computa-
tions of single Spectrum kernel elements (as proposed
in (Leslie et al., 2003)).

Suffix Trees If the number of non-zero elements in
the vector v becomes very large, then the Sorted Ar-
rays method become infeasible. If furthermore the di-
mensionality of the index set is too large to use the
Explicit Mapping, then we need suffix trees in order
to introduce a structure over the non-zero weights that
allows fast insertion and look up of elements. The idea
is to use a tree with at most |X| siblings of depth K.
The leaves store a single value: the element v,,, where
u € ¥ is a K-mer and the path to the leaf corre-
sponds to u. To add or lookup an element one only
needs K operations to reach a leaf of the tree (and
to create neccessary nodes on the way in an add op-
eration). Note that the computational complexity of
the operations is independent of the number of K-
mers/elements stored in the tree. On the other hand,
a tree has a considerably larger storage overhead com-
pared with for instance Sorted Arrays, as each node
needs to store pointers to its parent and siblings.

3.2. Spectrum Kernel with Mismatches

When considering long K-mers, the probability that
exactly the same K-mer appears in another sequence
drops to zero very fast. Therefore, it can be advanta-
geous (depending on the problem at hand) to consider
not only exact matches but also matches with a few
mismatching positions. Leslie et al. (2003) proposed
to use the following kernel:

k(S, S/) == <(I)m(s); (I)m(S/»

where (I)m(s) = ZuGs (1), (I)m(u) = (¢U(u))U€EK7
where ¢, (u) = 1 if 0 mismatches with w in at most m
positions and zero otherwise. This kernel is equivalent

to

k2m(sa S/) = Z Z AQm(u; u/)v (2)

ues u’cs’

where Ag,, (u,u’) = 1 if w mismatches ' in at most
2m positions. Note that if m = 1 then one already
considers matches of k-mers which mismatch in two
positions.? Leslie et al. (2003) proposed a suffix tree
based algorithm that computes a single kernel element
in O(K™*3|™(|s| + |s’|)). While we cannot improve
the single kernel computation, we will show that it is
possible to compute N dot products between s with N

?By using the formulation (2) one may of course also

consider the case with at most one mismatch (i.e. m =

%) While this kernel is empirically positive definite, it is

theoretically not clear whether it always has this property.



Large Scale Genomic Sequence SVM Classifiers

sequences Si,...,sy of length L in O(KNL) after a
preparation of a tree which needs O(K?2™+1|$]?™|s])
operations. The idea is to add for each u € s all
() (IZ] = 1)®™ oligomers of length K to the tree
which mismatch with w in at most 2m positions. After
the tree construction, a single lookup operation only
takes K operations (finding the right leaf) and there-
fore it only takes O(K N L) to perform NL lookup op-
erations. Note, however, that the resulting tree may
become huge for larger m, i.e. only at the expense
of increased memory usage we achieve a considerable
speedup.

Additionally note that one can drastically speedup the
computation of a linear combination of kernels (for
instance in testing), i.e.

g(s) = Zai k(s;,s),

el

where I is some index set (for instance the set of sup-
port vectors). One simply follows the above recipe for
each u € s; (i € I) and adds the corresponding o
to the value at the leaf addressed by w. Then the
evaluation of g(s) only needs O(KL) operations per
test example, while the generation of the tree needs
O(|I|K?™+1|5|2™|s|) operations.

3.3. Faster WD Kernel Computations

Identification of Blocks In the weighting scheme
(1) higher-order matches seem to get lower weights,
which appears counter-intuitive. Note, however, that
a k-mer contains two (k — 1)-mers, three (k — 2)-mers
etc. Hence, a block of length k contains k — b + 1
blocks of length b. We can make use of this finding
and reformulate the kernel. Instead of counting all
matches of length 1,2,..., K one moves along the se-
quence only weighting the longest matching block (and
not the smaller ones contained within, c.f. Figure 1)
using different weights w which can be computed from
the original weights as follows: For matches of length
B with B < K the “block weights“ wp are given by

2K —b+1)
K(K +1)

S

%

Il
M=

m(b)

o
[

1
2K —b+1)
- K(K +1)
B(-B?+3K-B+3K +1)
3K (K +1)

I
M w

(B+1-10)

o

where m(b) is the number of times blocks of length b
fit within blocks of length B. When the length of the
matching block is larger than the maximal degree, i.e.

k(s1,2) = w7z +Ww1 + w2+ w2 + w3
S1—>—AGT GGACATCAGTAGACAG
[
$2>—TTA CAAAGACATCAGTAGAC
Figure 1. Given two sequences s; and sz of equal length,
the kernel consists of a weighted sum to which each match
in the sequences makes a contribution wg depending on

its length B, where longer matches contribute more signif-
icantly.

—>

TT—>

B > K, the block weights are given by:

B
2(K —b+1)
wp = Zm(b)i
— K(K+1)
3B-K+1

3

To compute the kernel one determines the longest
matches between the sequences s and s’ and adds
up their corresponding weights. This requires only L
steps reducing the computational complexity to O(L).
For illustration, Figure 2 displays the weighting wp for
different block lengths B at fixed K: longer match-
ing blocks get increased weights; while the first few
weights up to b = K increase quadratically higher or-
der weights increase only linearly.

45

40

35

30

251

W, (block)

20

o 10 20 . 30 40 50
Figure 2. How the block weights in the Weighting Degree
Kernel are chosen. In the figure the maximum match-
length was set to K = 20 and the sequence length to
N = 50. The circle marks the the switch from polyno-
mial to linear growth in terms of the weights.

Suffix Trees While we cannot hope to further im-
prove a single kernel evaluation (which is already
O(L)), it turns out to be possible to drastically
speedup the computation of a linear combination of
kernels, i.e.

g(s) = Zaik(sivs)a

icl



Large Scale Genomic Sequence SVM Classifiers

where [ is the index set. The idea is to create a suf-
fix tree for each position [ = 1,..., L of the sequence
as done before for the Spectrum kernel. The main
difference is that the WD kernel not only considers
K-mers but also k-mers with £ < K. We therefore
propose to attach weights not only to the leaves of
the tree but also to internal nodes, allowing an effi-
cient storage for k < K. Now we may add all k-mers
(k=1,...,K) of s; (i € I) starting at position [ to
the tree associated with position I (using weight o;Og;
operations per position: O(K|I|)). Then the lookup
algorithm for sub-sequences u starting at position [ of
s traverses down the tree associated with position [

A

A G

vl oy

A

o132 {
A

11

a3 afs

>

G
+ 062/32 063/32

_O_

o—>

a3 f3

Figure 3. Three sequences AAA, AGA, GAA beeing added
to the tree. The plot displays the resulting weights at the
nodes.

(following the path defined by u) and adds all weights
along the way (stopping when no children exists), see
Figure 3. Note that we now can compute g in O(LK)
operations (compared to O(|I|LK) in the original for-
mulation).

3.4. WD Kernel with Mismatches

Finally, we briefly discuss an extension of the WD ker-
nel to consider mismatching k-mers. We propose to
use the following kernel

K M
k(Si7Sj) = Z Z ﬁk,m

k=1m=0

L—k+1

D T(una(si) #m wra(s))),
=1

where u #,, u' evaluates to true if and only if there
are exactly m mismatches between uw and u/. When
considering k(u,u’) as a function of u’, then one
would wish that full matches are fully counted while
mismatching u’ sequences should be less influential,
in particular for a large number of mismatches. If
we choose Brm = Be/((F) (X —1)") for £ > m
and zero otherwise, then an m-mismatch gets the

full weight divided by the number of possible m-
mismatching k-mers, which seems a reasonable choice.
Note that this kernel can be implemented such that its
computation only needs O(LK) operations (instead of
O(MLK)). This kernel has been successfully used in
a siRNA efficacy prediction task (Réatsch & Candela,
2005).

As discussed in Sections 3.2 and 3.3, it is possible to
adapt the ideas developed for the Spectrum kernel in
order to generate a tree in O((|X] — 1)™ (X)) opera-
tions per position that has the property that a single
lookup operation (O(K)) is necessary in order to com-
pute the kernel between some fixed u and another u’'.

We therefore omit details of the algorithm.

For a WD kernel formulation with improved positional
invariance see (Rétsch et al., 2005).

4. Speeding up SVM Training

It is not feasible to use standard optimization tools
(e.g. MINOS, CPLEX, LOQO) for solving the SVM
training problems on data sets containing more than a
few thousand examples. So-called decomposition tech-
niques overcome this limitation by exploiting the spe-
cial structure of the SVM problem. The key idea of
decomposition is to freeze all but a small number of
optimization variables (working set) and to solve a se-
quence of constant-size problems (subproblems of the
SVM dual quadratic optimization problem (Cortes &
Vapnik, 1995)).

The general idea of the Sequential Minimal Optimiza-
tion (SMO) algorithm has been proposed by Platt
(1999) and is implemented in many SVM software
packages. While Platt (1999) used @ = 2 as a work-
ing set size, other implementations such as SVM!9"
(Joachims, 1999) typically uses larger values (e.g. Q =
40). The SVM optimization algorithm internally needs
the output fj = > oy k(si,s;) for all training ex-
amples in order to select the next variables for op-
timization (Joachims, 1999). In order to update fj
one needs to compute full rows j of the kernel ma-
trix for every changed o;. One typically uses kernel-
caching to reduce the computational effort of this op-
eration, which is, however, in case of large scale simu-
lations not efficient enough.® Fortunately, for the con-
sidered string kernels we can efficiently compute lin-
ear combinations of kernel elements. Using the tech-

niques described in Sections 3.2 and 3.3 we generate

3For instance when using a million examples one can
only fit 125 rows into 1 GB. Moreover, caching 125 rows
is insufficient when for instance having many thousands of
active variables.



Large Scale Genomic Sequence SVM Classifiers

for instance suffix trees such that the computation of
g(s) = Zqul(aiq - afid)yiq k(s;,,s) becomes more ef-
ficient as shown in Algorithm 1. When using the WD

Algorithm 1 Outline of the Linadd SMO-like algo-
rithm that exploits the fast computations of linear
combinations of kernels (e.g. by suffix trees).
fiIO7 aiZOfOI‘Z'Zl,‘..,N
fort=1,2,... do
Check optimality conditions and stop if optimal
select Q variables i1, ...,ig based on f and «
aold —a
solve SVM dual w.r.t. the selected variables
and update a
generate data structures to prepare efficient
computation of
g9(s) = 32 (aiy — af )y, k(si,,9)
update f; = fi +g(s;) foralli=1,...,N
end for

kernel this leads to a speedup of a factor of @), in case
of the Spectrum kernel with mismatches it can be con-
siderably higher. Note that creating the suffix tree(s)
on () examples can be expensive, however, it is a fixed
cost (given that @ is fixed) per iteration. If the num-
ber of examples is large enough, then the speedup of
the evaluation when using trees will eventually lead to
an advantage.

Finally note that most time is spent in evaluating g(s)
for all training examples. When using suffix trees,
one may perform parallel lookup operations using sev-
eral shared memory CPUs, speeding up computations.
Moreover, this situation is almost ideal to distribute
this part of the computations to many CPUs (little
communication while large chunks of computations
can be done independently).

5. Results and Discussion
5.1. Speed Comparison

Experimental Setup To demonstrate the effect
of the several proposed algorithmic optimizations,
namely the WD block formulation and the Linadd-
SMO SVM training Algorithm 1 extension for the WD,
the Spectrum and the Mismatch-WD kernel, we ap-
plied each of the algorithms to a real world splice site
data set containing 1,026,036 acceptor splice site se-
quences each 201 base pairs long. We trained SVMs
using SVM"9"* (Joachims, 1999) on 500, 1000, 5000,
10000, 30000, 50000, 100000, 200000, 500000 and 106
randomly sub-sampled examples and measured the
time needed in SVM training. We set the degree pa-
rameter to K = 20 for the WD kernel and to K = 8
for the spectrum kernel fixing the SVMs regularization
parameter to C' = 10. SVM'9"*’s subproblem size (pa-

' Weighted Degree Kernel '
. (original version)

10" ¢ :
©
£
g N N
s . Weighted Degree Kernel
210" | (precomputed) -0 .
= : b
©
c N B Lo
§ o eighted Degree Kernel
402 ¢ using Linadd
c :
© Weighted Degree Kernel
£ using Linadd in :
o Block Formulation
£ 1
£ 10 : : o
©
= - ©- WD-Precompute
< ——WD
%) Weighted Degree Kernel WD-—Block

10° in Block Formulation o— WD-Linadd §

I : : : - «- WD-Linadd-Block

4 5

10 10
number of training sequences (logarithmic)

10

Figure 4. Comparison of the running time of the different
weighted degree kernel algorithms. Note that as this is a
log-log plot small appearing distances are large for larger
N and that each slope corresponds to a different exponent.
The empirically determined complexity of the precomputed
WD kernel is N2, of the original WD kernel it is N1-71,
of the block formulation N2 and for the Linadd-SMO
variants N1-5° (for N > 10°).

rameter gpsize) and convergence criterion (parameter
epsilon) were set to Q = 41 and € = 1075, respec-
tively, while a kernel cache of 1GB was used for all
kernels except the precomputed kernel and algorithms
using the Linadd-SMO extension for which the kernel-
cache was disabled. Experiments were performed on a
PC powered by a 2.4GHz AMD Opteron(tm) Proces-
sor running Linux. We measured the training time for
each of the algorithms and data set sizes.

WD Kernel Algorithm Comparison The ob-
tained training times for the Weighted Degree Kernel
are displayed in Table 1 and in Figure 4. These SVMs
were trained using the different kernel algorithms:
First the kernel matrix was precomputed using the
standard WD kernel implementation (Pre). The train-
ing time including the time needed to pre-compute the
full kernel matrix as presented is in all cases larger
than the times obtained using the original WD ker-
nel demonstrating the effectiveness of SVM!9ht’s ker-
nel cache. The block-formulation of the WD kernel,
although theoretically K times faster only leads to
a further 70% speedup which is due to the very few
higher order matches between two DNA sequences
in the training set. Note that starting from 10,000
(30,000) examples Linadd-SMO optimization becomes
more efficient than the original (blockwise) WD kernel
algorithm as at the same time the kernel cache cannot

6



Large Scale Genomic Sequence SVM Classifiers

hold all kernel elements.* In the case of 0.5 million
of examples the Linadd formulation outperforms the
original WD kernel by a factor of 4. Finally training
with a sample size of 1,000,000 takes 7 hours and 15
minutes. Note that the Linadd-SMO optimization us-
ing the original WD kernel is not significantly slower
than the block-formulation using Linadd-SMO.

Table 1. Speed Comparison of the original Weighted De-
gree Kernel algorithm (WD) in SVM"" training, com-
pared to a precomputed version (Pre), its blockwise formu-
lation (Block) the SMO Linadd extension used in conjunc-
tion with the original WD kernel (Linadd) and its block
formulation (LinB). The first column shows the sample size
N of the data set used in SVM training while the following
columns display the time (measured in seconds) needed in
the training phase.

N \ Pre \ WD \ Block \ Linadd \ LinB

500 0 1 0 3 3
1000 1 1 1 5 5
5000 28 19 11 24 23
10000 | 108 58 33 45 49
30000 | 965 317 177 159 174
50000 - 794 485 355 312
100000 - 2507 1576 761 741
200000 - 8863 5226 2024 2031
500000 - | 40632 | 23946 9119 9071
1000000 - - - | 26107 | 26085

Table 2. The achieved AUC, relative AUC improvement
(i.e. the improvement relative to the previous result) and
test error for the WD-SVM trained on 500 to 1,000,000
examples. Test Error (AUC) are steadily decreasing (in-
creasing). After reaching 30,000 examples the relative im-
provement still remains at a level of ~ 20%

’ N \ AUC \ rel. AUC Imp. \ Test Error ‘
500 | 96.91% - 6.03%
1000 | 97.82% 29.45% 6.03%
5000 | 98.96% 52.29% 3.38%

10000 | 99.28% 30.77% 2.40%
30000 | 99.58% 41.67% 1.57%
50000 | 99.65% 16.67% 1.31%
100000 | 99.73% 22.86% 1.07%
200000 | 99.80% 25.93% 0.92%
500000 | 99.84% 20.00% 0.83%
1000000 | 99.87% 18.75% 0.71%

WD Mismatch and Spectrum Kernel Compar-
ison For the single mismatch WD and the spectrum

4When double precision 8-byte floating point numbers
are used, caching all kernel elements is possible when train-
ing with up to 11585 examples.

kernel the SVM training times are listed in Table 3
and diagrammed in Figure 5.

4l ‘ : Spectruni Kernel

Weighted Degree Mismatch
10° L Kernel

tWeighted Degree Mismatch
Kernel B sY

Spectrum Kernel using
Linadd

- - WD-Mismatch

- ©- WD-Mismatch-Linadd
—— Spectrum

—o— Spectrum-Linadd

SVM training time in seconds (logarithmic)
=)

10 10* 10°

number of training sequences (logarithmic)

Figure 5. In analogy to Figure 4: Comparison of the sin-
gle mismatch WD and spectrum kernel with and without
Linadd-SMO optimization. Empirically determined com-
plexity of the mismatch WD is N1-¢4. Complexity estimates
for the mismatch WD kernel using linadd are N'® and
for spectrum kernel using linadd N2-32. Note however that
more data points are needed to give reliable estimates as
the curves seem linear only for N > 10000 and N > 200000
respectively.

Using the SMO optimization we gain speedups of 180%
with respect to the mismatch WD kernel and even by
a factor of 21 to the linear spectrum kernel.

Table 3. Speed Comparison (analoguous to Table 1) of a
single mismatch Weighted Degree Kernel and the Spectrum
Kernel, with (LinMis and LinSpec) and without (Mismatch
and Spec) the SMO Linadd extension.

’ N H MismWD \ LinMis H Spec \ LinSpec ‘

500 1 14 1 0
1000 3 23 2 1
5000 43 102 36 5

10000 131 208 123 17
30000 703 779 || 3462 142
50000 1827 1575 || 9025 423
100000 5464 3932 - 2283
200000 18524 | 10317 - 11673

Classification Performance In Table 2 the Test
Error and AUC achieved on the splice site classifica-
tion task for several sample sizes are shown. With
one million examples the WD kernel method achieves
0.71% test error and 99.87% AUC. This is a relative
improvement upon training on a 500 sample of 96%.



Large Scale Genomic Sequence SVM Classifiers

Regardless of the amount of training data, when dou-
bling the sample size, the relative improvement of the
area under the curve (AUC) is approximately 20%
(though slightly higher for small sample sizes). As
can be seen the position dependent WD kernel is well
suited for that task in good agreement to (Rétsch &
Sonnenburg, 2004). As the spectrum kernel is position
independent, it is not suited for that task (results not
shown).?

Conclusion We developed an efficient SMO-like
SVM training algorithm, particularly well suited for
string kernels like the Weighted Degree and Spectrum
kernel and formulated linear time algorithms for ker-
nel computation and SVM classifier prediction. Us-
ing the Spectrum, Weighted Degree and Mismatch
Weighted Degree kernel in a large scale splice site
recognition experiment with up to one million of se-
quences we demonstrated significant speedups while
at the same time shrinking memory requirements (as
kernel caching is not required). We show that SVM
training is up to 20 times faster using the Linadd-SMO
algorithm in combination with the spectrum and up to
4 times faster in combination with the WD kernel. For
the WD kernel we developed a blockwise-formulation,
extend it allowing for mismatches and demonstrate its
effectiveness on the splice site recognition task.

Acknowledgments

The authors gratefully acknowledge partial sup-
port from the PASCAL Network of Excellence (EU
#506778), DFG grants JA379/13-2 and MU987/2-1.

References

Cortes, C., & Vapnik, V. (1995). Support vector networks.
Machine Learning, 20, 273-297.

Cristianini, N., & Shawe-Taylor, J. (2000). An introduction
to support vector machines. Cambridge, UK: Cambridge
University Press.

Jaakkola, T., Diekhans, M., & Haussler, D. (1999). Using
the Fisher kernel method to detect remote homologies.
Intelligent Systems in Molecular Biology (pp. 149-158).

Joachims, T. (1997). Text categorization with support
vector machines: Learning with many relevant features
(Technical Report 23). LS VIII, University of Dortmund.

Joachims, T. (1999). Making large-scale SVM learning
practical. Advances in Kernel Methods — Support Vec-
tor Learning (pp. 169-184). Cambridge, MA: MIT Press.

5Note that the degree of the WD kernel and the SVM-C
were fixed to K = 20 and C' = 10 throughout the experi-
ments.

Leslie, C., Eskin, E., & Noble, W. (2002). The spectrum
kernel: A string kernel for SVM protein classification.
Proceedings of the Pacific Symposium on Biocomputing.
Kaua’i, Hawaii.

Leslie, C., Kuang, R., & Eskin, E. (2003). Inexact matching
string kernels for protein classification. Kernel Methods
in Computational Biology (pp. 95-112). MIT Press.

Liao, L., & Noble, W. (2002). Combining pairwise sequence
similarity and support vector machines for remote pro-
tein homology detection. Proceedings of the Sizth Annual
International Conference on Research in Computational
Molecular Biology (pp. 225-232).

Meinicke, P., Tech, M., Morgenstern, B., & Merkl, R.
(2004). Oligo kernels for datamining on biological se-
quences: A case study on prokaryotic translation initia-
tion sites. BMC Bioinformatics, 5.

Miiller, K.-R., Mika, S., Réatsch, G., Tsuda, K., &
Schélkopf, B. (2001). An introduction to kernel-based
learning algorithms. IEEE Transactions on Neural Net-
works, 12, 181-201.

Platt, J. (1999). Fast training of support vector machines
using sequential minimal optimization. Advances in Ker-
nel Methods — Support Vector Learning (pp. 185-208).
Cambridge, MA: MIT Press.

Rétsch, G., & Candela, J. (2005). Predicting siRNA effi-
cacy. European Conference on Computational Biology,
ECCB. (submitted).

Rétsch, G., & Sonnenburg, S. (2004). Accurate splice
site prediction for caenorhabditis elegans, 277-298. MIT
Press series on Computational Molecular Biology. MIT
Press.

Rétsch, G., Sonnenburg, S., & Scholkopf, B. (2005). Rase:
Recognition of alternatively spliced exons in c. elegans.
ISMB 2005. (accepted).

Scholkopt, B. (1997).
Oldenbourg Verlag.

Scholkopf, B., & Smola, A. J. (2002). Learning with ker-
nels. Cambridge, MA: MIT Press.

Scholkopf, B., Tsuda, K., & Vert, J. (Eds.). (2003). Kernel
methods in computational biology. MIT Press series on
Computational Molecular Biology. MIT Press.

Tsuda, K., Kawanabe, M., Rétsch, G., Sonnenburg, S.,
& Miiller, K. (2002). A new discriminative kernel from
probabilistic models. Neural Computation, 14, 2397-414.

Vert, J.-P., Saigo, H., & Akutsu, T. (2003). Local align-
ment kernels for biological sequences. Kernel Methods
in Computational Biology (pp. 131-154). MIT Press.

Support vector learning. Munich:

Vishwanathan, S., & Smola, A. (2003). Fast kernels for
string and tree matching. Kernel Methods in Computa-
tional Biology (pp. 113-130). MIT Press.

Zien, A., Réatsch, G., Mika, S., Scholkopf, B., Lengauer,
T., & Miiller, K.-R. (2000). Engineering Support Vector
Machine Kernels That Recognize Translation Initiation
Sites. Biolnformatics, 16, 799-807.



