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Abstract

Many time-series experiments seek to esti-
mate some signal as a continuous function of
time. In this paper, we address the sampling

problem for such experiments: determining
which time-points ought to be sampled in
order to minimize the cost of data collec-
tion. We restrict our attention to a growing
class of experiments which measure multiple
signals at each time-point and where raw
materials/observations are archived initially,
and selectively analyzed later, this analysis
being the more expensive step. We present
an active learning algorithm for iteratively
choosing time-points to sample, using the
uncertainty in the quality of the currently
estimated time-dependent curve as the objec-
tive function. Using simulated data as well
as gene expression data, we show that our
algorithm performs well, and can significantly
reduce experimental cost without loss of
information.
Supplementary Webpage:
http://theory.csail.mit.edu/tsample

1. Introduction

Time-series gene expression experiments are used to
study a wide range of biological systems. They
measure the relative expression levels of genes in a
cell. Such data is used to identify the complete set
of genes that participate in the system over time
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as well as infer causal relationships and interactions
among these genes (Qian et al., 2001). A large
fraction— over 30%— of gene expression experiments
are time-series studies (Stanford Microarray Database,
http://genome-www5.stanford.edu).

Expression profiles, i.e. continuous functions modeling
variations in expression levels, for these systems are
estimated by performing multiple microarray experi-
ments over a period of time (Spellman et al., 1998).
At a single time-point, each microarray experiment
measures expression levels of many genes, often tens-
of-thousands, simultaneously. However, each measure-
ment is costly (in some cases as much as $1000), mak-
ing it crucial to use as few experiments as possible to
estimate the expression profile.

Although our primary focus in this paper is on gene
expression experiments, the experiment design prob-
lem we discuss is general. There exist a wide vari-
ety of time-series experiments that measure hundreds,
or even thousands, of signals at each time-point. In
many cases, each additional sampling location signif-
icantly adds to cost or technical complications. Ex-
amples beyond gene expression analysis include atmo-
spheric data— where hundreds of weather patterns are
tracked over time (Chudova et al., 2003), and clinical
data (e.g., blood measurements) that cannot be ob-
tained more than a few times from each individual.

The high cost of data collection per experiment makes it
important to pick the minimal set of sampling locations
while still ensuring that an accurate representation of
the underlying system may be reconstructed for each
of the multiple signals being measured. Over-sampling
is expensive and time-consuming, and diverts resources
that could be used for performing complementary stud-
ies. On the other hand, under-sampling will lead to
inaccurate estimation, and key features of the system’s
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time-dependent response may be missed.

A principled approach to sampling in such problems is
essential. In the context of gene expression studies, the
lack of such an approach has made it hard to compare
the quality of datasets generated from related but inde-
pendent studies. Indeed, multiple experiments from the
same lab, reported in the same paper, and directed at
the same biological system have utilized different sam-
pling rates. Such inconsistencies can lead to incomplete
results.

One of our key insights is that many of the datasets
described above share a common property: that is, the
ability to sample the system in an online fashion, par-
ticularly between two previously-sampled time-points.
For example, in the case of microarray experiments,
biological samples may be frozen and stored prior to
hybridization. This allows researchers to extract and
archive the biological samples at a very high rate, then
make decisions about which samples to hybridize at a
later time. We remark also that the expensive part of a
microarray experiment is the hybridization step, rather
than the act of extracting the sample. Similarly, when
monitoring clinical trials, blood samples from each pa-
tient visit can be stored and (expensive) diagnostic tests
performed later.

In this paper, we present an online algorithm that uses
active learning to determine an appropriate sampling
strategy for these experiment scenarios. One of our
core contributions is the development of a principled,
efficiently-computable objective function for measuring
the uncertainty in the estimated signal. An important
feature of this measure is that it enables us to sample
from non-uniform functions effectively by using local
cross validation (LCV) to focus in on local signal vari-
ations. In Sec 5 we briefly discuss how our approach
can be easily transferred to the general case of sampling
from and estimating any continuous function of one in-
dependent variable, x (i.e., y = f(x) where x need not
be time).

We demonstrate the efficacy of our method by applying
it to both the problem of reconstructing a function from
noisy simulated data, and that of selecting time-points
for observation in a time-series gene expression experi-
ment. In the latter case, by testing against an existing
dataset, we show that our algorithm could have signif-
icantly reduced the data-collection cost without appre-
ciable loss in the information extracted. Our method
may be extended to do batch processing— sampling
multiple time-points per iteration, instead of just one.

Related work: Determining good sampling rates
is a well-studied signal-processing problem (Orfanidis,

1995). However, most prior work in this area has fo-
cused on reconstructing individual signals. In our case
thousands of signals are measured simultaneously. Be-
cause the signals are often correlated, clustering and
profile estimation are interdependent, rendering tradi-
tional signal-processing methods ineffective.

Recently, several approaches have been proposed for re-
constructing continuous representations for the types of
datasets considered here (James & Hastie, 2001; Bar-
Joseph et al., 2003; Chudova et al., 2003). However,
these methods sidestep the issue of sampling strategies
altogether, assuming that the given sampling rate is
correct. Although there have been discussions about
the importance of sampling rates for modeling biolog-
ical systems (Bay et al., 2003) and on designing mi-
croarrays experiments (Baldi & Hatfield, 2002), we are
not aware of computational approaches to the sampling
problem for time-series expression studies.

A recent paper (Lizotte et al., 2003) discusses the use
of active learning for minimizing data-collections costs
while training Naive Bayes classifiers. A problem vari-
ant we consider here,CostThresh, is similar in spirit.

2. Problem Formulation

Assume that we have m signals per time-point. For
example, m might be the number of genes in expression
experiments, or the number of patients in clinical trials.
Our goal is to identify the minimal set of experiments
required in order to generate high-quality estimates of
the m time-dependent function profiles. We describe
two variants of this problem.

The first variant, ErrThresh, is suitable when the
primary concern to meet a pre-specified error threshold
for the estimated function profiles:

Problem ErrThresh

Input: A set of m observables per time-point; a se-
quence of N time-points TN = (tn1 , . . . , tnN ) at which
sampling can potentially be performed; and an associ-
ated error threshold Ce. Of these N time-points, an ini-
tial round of sampling has been done at S time-points
TS = (ts1, . . . , t

s
S) where ts1 = tn1 and tsS = tnN . (Obser-

vations at the first and last time-points are necessary
for “anchoring” the estimated function profile.)
Output: A set of L time-points TL = (tl1, . . . , t

l
L)

where tl1 = tn1 , tlL = tnN and TS ⊂ TL ⊂ TN such that
the function profiles estimated from the experiments
done at these time-points have an expected error less
than Ce.

The ideal error measure (for Ce) is almost always un-
available, since this measure would require comparing
the estimated function to the true (continuous) func-
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tion, the latter being unavailable in almost all cases. In-
stead, we describe an error function (Section 4.1) which
performs reasonably well on common problems, though
it is not theoretically ideal.

The second variant, CostThresh, is more pertinent
when a fixed (and limited) set of resources (e.g., money)
must be used in the best possible way.

Problem CostThresh

Input: Same as ErrThresh, except that Ce (the error
threshold) is not supplied. Instead, it is specified that
only a maximum of K ≤ N samples may be picked.
Output: A set of K time-points TK = (tk1 , . . . , tkK)
where tk1 = tn1 , tkK = tnN and TS ⊂ TK ⊂ TN at which
these experiments should be performed to estimate the
function profiles.

3. Algorithm

We first describe our continuous representation model,
and then the statistical and computational techniques
for measuring uncertainty in the estimated function
profiles. Finally, we describe an online algorithm that
ties these techniques together under an active learn-
ing framework and can be adapted to solve both Er-

rThresh and CostThresh.

3.1. Modeling Continuous Functions

Suppose that the true function is f∗(t). Accounting for
measurement errors, sampling at times t1, . . . , tn leads
to the observations:

yi = f∗(ti) + εi, εi ∼ N(0, σ2), 1 ≤ i ≤ n (1)

To obtain the optimal approximation f̂(t) to f∗(t), we
minimize the penalized least squares error (PLSE):

f̂ = arg min
f

n
∑

i=1

[yi − f(ti)]
2 + λ

∫ tn

t1

[f ′′(x)]2dx (2)

The first term measures the familiar least-squared er-
ror. The second term enforces a smoothness constraint
on f(t). The smoothing parameter λ controls the
“bumpiness” of f(t): λ = 0 leads to an interpolat-

ing curve; λ → ∞ results in f̂ being a straight line.
An advantage of PLSE is that it can be proven that,
for λ > 0, the optimal f̂(t) under PLSE is a cubic
smoothing spline (De Boor et al., 2001). Such splines
have good numerical properties; their computational
manipulation is well-understood (e.g., in the graphics
community) and can be done very efficiently (in O(n)
time).

For spline regression (i.e. fitting), we use Bar-Joseph et

al.’s probabilistic smoothing splines model (Bar-Joseph

et al., 2003). As we describe in detail later (Sec 3.5),
this model can handle multiple correlated signals per
time-point. For now, we just remark that the smooth-
ing parameter λ (Eqn. 2) in our formulation directly
translates to the number of control points p of the uni-
form knot vector used in the Bar-Joseph model. In
what follows, we work with p instead of λ.

The smoothing characteristics of a curve can also be
captured by a smoothing matrix (Cummins et al., 2001).
Such a matrix A is defined by the relation Ŷ = AY

where Ŷ = (f̂(t1), . . . , f̂(tk)) are the function estimates
at Tk = (t1, . . . , tk), and Y = (y1, . . . , yk) are the ac-
tual observations. Aij can then be thought of as the

influence of the observation yj on the estimate f̂(ti).
For example, for an interpolating curve, Aii = 1 and
Aij = 0 for i 6= j. In our formulation, A is a simple
function of p and Tk that can be derived from elemen-
tary Spline Theory (see References & Notes).

Optimal Smoothing Parameter: During spline re-
gression using the Bar-Joseph model, the smoothing
parameter p is a free parameter. For our purposes, how-
ever, choosing the optimal p is important for achieving
a balance between underfitting (caused by an overly-
smooth curve; small p) and overfitting (resulting in a
far-too-bumpy curve; large p).

We use cross-validation (CV) to evaluate each value of p

and select the optimal p∗. For each p and a set of obser-
vations at k time-points: perform k spline-regressions
on a reduced (k − 1)-dataset, leaving out point ti (for
i = 1, . . . , k). Evaluate the error summed across the k

curves and choose p∗ with the lowest error.

p∗ = arg min
p=4...k+3

k
∑

i=1

[f̂
(p)
−i (ti) − yi]

2 (3)

where f−i(ti) = leave-ti-out cross-validation estimate
of f , evaluated at the skipped timepoint, ti.

3.2. Quantifying the Uncertainty in Estimates

There are two main considerations when choosing a
time-point to sample: sampling in regions with too-few
time-points, and denser coverage in areas where current
observations indicate that more detail is needed. The
latter are often marked by high local curvature in the
estimated function. We now describe statistical tech-
niques that capture both of these intuitions.

Confidence Intervals (CI): Given the optimal
smoothing parameter, confidence intervals (CIs) for
spline-based curves are given by:

CI(i) = zα/2

√

σ2Aii (Wahba, 1983) (4)
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where the desired confidence level is 1−α (thus, for 95%
confidence zα/2 = z(0.025) = 1.96); σ2 is the estimated
variance and A is the smoothing matrix corresponding
to the optimal smoothing parameter p∗ and Tk. σ2

captures the fitting error during spline regression (see
Sec 3.1). The

√
Aii term formalizes the first intuition

mentioned in the previous paragraph: if an estimate
ŷi is supported by multiple observations (i.e., Aii � 1)
then the corresponding CI should be smaller than when
the estimate at ti depends only on the observation at
ti (i.e., Aii = 1).

However, the CIs estimated by the above formula do
not sufficiently reflect local uncertainties in the esti-
mate: once the optimal smoothing parameter (p∗) has
been determined, confidence intervals do not depend on
individual observations. In particular, two curves with
the same p∗, Tk, and σ2, but with different observed
values, will have the same CIs (see supp. webpage
for an illustration). In gene expression experiments
that measure a process with non-uniform response rates
(e.g., stress response), such global estimates do not ad-
equately take into account the short, yet important,
period in which most of the changes occur.

Local Cross Validation: To solve this problem, we
use Local Cross Validation (LCV) (Cummins et al.,
2001). It is a technique that allows us to account for
local fluctuation in our estimates. Given the global op-
timal smoothing parameter p∗ for the entire curve, we
calculate local smoothing parameters, one per sampled
time-point. The local smoothing parameter pi at ti is:

pi = argmin
p=p∗,...,k−1

1

k

∑k
j=1(wj(f̂

(p)(tj) − yj)
2)

(1 − ∑k
j=1 wjA

(p)
ii )2

(5)

where A(p), for any value p of the local smoothing pa-
rameter, is the smoothing matrix corresponding to p

and Tk. f̂ (p)(t1), . . . , f̂
(p)(tk) are the function estimates

derived using p and all k observations. Also, wj = A∗
ij

where A∗ is the smoothing matrix corresponding to Tk

and the global smoothing parameter p∗. The intuition
behind LCV is to compute pi by “zooming in” on the
curve in the vicinity of ti, i.e., by disproportionately
weighting local observations over others. If the zoomed-
in view of the curve looks the same as the overall view,
then pi = p∗. However, if yi is in an area of high cur-
vature, then pi > p∗.

Given LCV-inferred smoothing parameters for each
sampled time-point, Cummins et al. describe a modi-
fied formula for calculating CIs as CI(i) = zα/2

√

σ2Ai
ii

where Ai is the smoothing matrix corresponding to Tk

and the local smoothing parameter pi at ti. The CIs
calculated using LCV are more sensible than those cal-
culated using CV. For more details, please see the sup-

plementary webpage.

3.3. Choosing the Next Sampling Location

Our basic intuition is that the uncertainty in the cur-
rent estimate, as captured by the CIs, can be used to
inform future sampling decisions. We proposed a prin-
cipled active learning approach that captures this intu-
ition. One of our contributions is a predictive model,
amenable to active learning, for the sampling problem.

The goal in active learning (Tong, 2001) is to build a
predictive model M of the environment. The model is
built by iteratively querying the environment, and us-
ing the information gained from the response to decide
the next query to ask. We associate with the model
a loss function Loss(M) that indicates the inaccuracy
in the model. Each query qx provides an observation
ox about the model. At any time, one of many queries
{q1, . . . ,qr} can be asked. Given the current (impre-
cise) model M, we can calculate for each query qx its
expected loss 〈Loss(qx)〉 = E[Loss(Mox)] where the
expectation is taken over ox, the set of possible out-
comes of qx. Of all available queries we then pick the
one that minimizes the expected loss.

We now describe our model. M is the currently esti-
mated function profile f̂(t). For each unsampled time-
point tr, the corresponding query qtr

is: “what is the
observed gene expression value at time tr?” The obser-
vation otr

is the value yr found after experiment.

We define the Confidence Area (CA) of a curve y = f(x)
as the area of the confidence band around the curve
over the entire time-range, i.e., [t1, tN ]. The confidence
band, in turn, is the region bounded by the curves

f+(x) = f(x)+ CI(x)
2 and f−(x) = f(x)− CI(x)

2 . Since
we have CIs only at certain time-points along the curve,
we approximate CA of the curve as the sum of the area
of trapezoids marked by CIs at these points. Thus,

CA(Tk, f̂) =
1

2

k−1
∑

i=1

((ti+1 − ti)(CI(i) + CI(i + 1))) (6)

We use the confidence area CA(Tk, f̂) of the estimated

function profile f̂ as the loss function. Computing the
expected loss 〈Loss(qx)〉 for a given query involves a
complicated integration over spline coefficients using
the Bar-Joseph et al.’s mixed effects model. It is fur-
ther complicated by the LCV procedure that uses dif-
ferent spline curves for different points (depending on
the selected smoothing parameter). Instead we fol-
low Zhu et al (2003) and compute the loss of the
expected observation 〈ox〉. This expected observation
〈otr

〉 = E[otr
|M,qtr

] under M can be calculated very
easily: it is simply the prediction as per the current es-
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timate, f̂(tr). We update the data with this expected
observation to infer the new (expected) model M〈ox〉

and the corresponding loss Loss(qx) = Loss(M〈ox〉).
This can also be done efficiently: the new data-point
yest

r falls exactly on the existing estimate f̂ . Eqn (2)
implies that no re-fitting is required; only CIs and CAs
need to be recalculated.

To summarize, for each unsampled time-point tr, we
compute the expected observation yest

r = f̂(tr). We

then update the estimate f̂ to include yest
r , getting f̂+tr

.
We add this expected observation to existing data and
re-calculate Loss(M〈ox〉) = CA(Tk ∪ {tr}, f̂+tr

). Fi-
nally, we pick the unsampled time-point corresponding
to the minimum expected CA.

3.4. Summary: Algorithm Choose-Next-Point

Given data from j previously sampled time-points, use
it to pick the (j + 1)-th sampling location:

1. Generate a smoothing function for the j time-points:

(a) Evaluate all possible smoothing parameters for
the spline model using cross-validation.

2. Use the smoothing function to choose the next time-
point that should be sampled:

(a) Compute locally-sensitive confidence intervals
over the continuous function at all of the sam-
pled time-points

(b) Use active learning to suggest the next time-
point to sample, based on the confidence inter-
vals

With each iteration, at step 1, the above algorithm
computes an error estimate (see Section 4.1) In order to
solve ErrThresh, we choose time-points until this er-
ror falls below Ce; to solve CostThresh, we continue
until K time-points have been chosen.

3.5. Generalizing The Algorithm

Generalizing to Multiple Signals: Consider the
general case where m observations (say, for m genes)
are made per time-point so that m function profiles
f∗
1 (t), . . . , f∗

m(t) need to be estimated. Moreover, many
of these function profiles are correlated, and can be
clustered in, say, c clusters. We then use Bar-Joseph et

al.’s (2003) probabilistic smoothing splines model for
generating our estimates. In the gene expression con-
text, this method simultaneously clusters the m genes
into c clusters and computes the m smoothing splines
by taking into account both the observations for the
gene and the cluster to which it belongs to. Specifi-
cally, this method seeks to maximize the likelihood of

the following probabilistic model

f∗
k (t) = s(t)(µj + γk), 1 ≤ k ≤ m, 1 ≤ j ≤ c (7)

Here, signal k is supposed to be in class j; s(t) is the
set of spline basis functions evaluated at t; µj is a class-
specific control-points vector and γk is a signal-specific
control-points vector. In order to constrain signals in
the same class, the set of signal-specific control points
are required to follow a joint distribution such that γk ∼
N(0,Γj) where Γj is a class covariance matrix. The
parameters of this model (including class membership)
are learned using an EM algorithm.

The free parameters in the Bar-Joseph model are the
smoothing parameter p and the number of clusters c.
Earlier, we discussed how to pick p. Appropriate values
of c are typically picked by prior knowledge. Our algo-
rithm is robust to overestimates of c, because clusters
with non-time-dependent genes will be down-weighted
(see below). Lower-bounds for c, in turn, can be reli-
ably estimated biologically.

We now discuss how to generalize the calculation of
CIs/CAs in the case of experiments with m signals.
We could weight all m signals equally, simply summing
up the signal-specific CV/LCV scores. However, this
fails to ignore the signals whose function estimates have
already been accurately determined.

Instead, we extend our existing sampling strategy as
follows: identify the signals in the dataset that will sig-
nificantly benefit from a new set of observations and
work with only this subset. Given the entire m-signal
dataset, we cluster all m signals into c classes using the
Bar-Joseph model. For each of these classes, we calcu-
late cluster-specific CIs and CAs (confidence areas) by
computing the average CA for signals in that cluster.
We then remove all clusters whose CA is less than a
predefined stopping criteria and equally weight all sig-
nals in the remaining clusters when choosing the next
sample point.

Generalizing to a batch approach In some situ-
ations, performing one sampling at a time is incon-
venient. Instead, our algorithm can be adapted for
batch processing. Starting with a set of sampled points,
we run our algorithm to select the next time-point
to analyze. Next, we compute the expected values
(yest

r = f̂(tr)) for the selected time-point and treat
them as if they were observed values. We now re-run
the active learning algorithm to select the next time-
point and so forth until z time-points have been se-
lected. Sampling at these z locations may then be per-
formed at the same time. The next iteration proceeds
similarly. The stopping criteria of the algorithm remain
unchanged.
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4. Results

We evaluated our algorithm on simulated data as well
as data from biological experiments. Due to space re-
strictions, only a representative subset of results are
presented in the paper; the rest are on the supplemen-
tary webpage. We first discuss some implementation
related optimizations.

Implementation: While cross-validation (CV) is a
powerful technique for estimating the smoothing pa-
rameter p as discussed above, it is also very time-
consuming (O(k2m) curve-fittings) because we need
to re-run our spline assignment and clustering algo-
rithms once for each of the k measured time-points
with each iteration of the algorithm. Instead, we use
Generalized Cross Validation (GCV), introduced by
Wahba (Wahba, 1983). GCV approximates the cross-
validation score, avoiding the O(k) increase in running
time. Theoretically, the GCV score is a good approxi-
mation of the cross-validation score, and gives the same
optimal p∗, asymptotically (Cummins et al., 2001). In
practice too, we have found that the optimal smoothing
parameter selected by GCV very often exactly agrees
with the parameter selected by CV, even for the short
time-series datasets seen in biological/medical contexts.
For the simulated dataset discussed below, GCV was
much faster (30 minutes for GCV vs. 191 minutes for
CV). Furthermore, curves computed for GCV can be
reused for LCV. See the supplementary webpage for
more details.

4.1. Simulations

When working with simulated data, we know the
actual function that generated the observations, and
can therefore measure the accuracy of our derived
model as the difference between the true function,
f∗(t), and the estimated function, f̂(t). In particular,

we measure the true error eT
f of f̂ as the average

difference between the two curves over the time-range

of interest, i.e., eT
f = 1

(tn

N
−tn

1
)

∫ tn

N

tn

1

|f∗(t) − f̂(t)| dt.

Generation of Simulated Data: Simulated data
was created by adding Gaussian noise to sinusoidal
and linear functions. A set of 24 equally-spaced po-
tential sampling locations, were available to each sam-
pling strategy. Each dataset consisted of three clusters,
each with 50 co-varying signals. By changing the fre-
quency and positions of the sinusoids, datasets with
varying hardness levels were created. In the following
discussion, results are reported for three representative
datasets, marked as “easy,” “moderate,” and “hard”.
See the supplementary webpage for more details and
other datasets.

Benchmarking Strategies: We compared the func-
tion estimates derived from samples chosen by our al-
gorithm to those obtained through random and uni-
form sampling strategies. These strategies, in partic-
ular uniform sampling, are quite common in biological
papers. Also, note that uniform sampling cannot be im-
plemented as an online algorithm, and hence can only
be used to solve CostThresh.

Random sampling involves randomly adding an as-yet
unselected time-point to the sample set, and can be
used with either CostThresh or ErrThresh. In the
results presented below, random sampling was repeated
10 times and the scores averaged.

CostThresh Our method performs better (in terms
of eT

f ) than both random and uniform sampling, espe-
cially when using more difficult cost targets (12 or 15 of
24 total samples) and harder datasets. Table 1 shows a
comparison of the true error for the functions derived
from samples selected by our algorithm to the true error
for the functions derived by random and uniform sam-
pling. We performed the comparison for three different
cost thresholds: 12, 15 and 18 samples. We accept the
estimate to be a good fit with the original if eT

f < 0.15.

ErrThresh We first need to define an error measure
ef over the estimated functions. Ideally, such an er-
ror measure will behave exactly like the true error, eT

f .
For simulated datasets, we can measure the true error,
and use this to measure performance in ErrThresh

problem instances. We show that our online algorithm
performs significantly better than the random sampling
approach, i.e., requiring fewer samples to achieve the
same error (Fig 1). The difference is particularly ap-
parent in the “hard” problem instances.

Designing An Error Measure: When considering
real experimental data, the true error measure eT

f is un-
known, so we approximate it with the GCV-error mea-
sure, which we define as the confidence area of the esti-
mated function calculated using GCV-based CIs. Simu-
lations indicate that GCV-error is a reasonable error es-
timate: on average, a lower GCV-error corresponds to a
lower true error and vice-versa (see Supp. Info.). Some
discrepancy between GCV-error and eT

f is unavoidable,
since any error measure designed solely from noisy ob-
servations (i.e., without knowing a priori the underlying
function) can not completely match the true error. To
deal with these fluctuations, we have found the follow-
ing stopping criterion to work well: keep sampling until,
over three successive iterations GCV-error remains be-
low Ce. Fig 2(a) shows how GCV-error decreases as a
function of the number of sampled time-points.

We now describe how to set Ce, the error threshold.
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TimePoints 12 of 24 15 of 24 18 of 24
AL∗ Unif. Rand. AL∗ Unif. Rand. AL∗ Unif. Rand.

Easy 0.095 0.168 0.228 0.084 0.103 0.111 0.087 0.074 0.088
Moderate 0.219 0.258 0.464 0.110 0.169 0.296 0.085 0.086 0.115
Hard 0.257 0.265 0.289 0.140 0.242 0.252 0.111 0.106 0.194

Table 1. Performance of Different Strategies on CostThresh, measured by true error (see Section 4.1): we compare
the performance of our algorithm (∗AL=ActiveLearn) against that of uniform sampling and random sampling in the
CostThresh instance, i.e., when the number of final samples is fixed beforehand. An error of less than 0.15 indicates a
good fit. As the table shows, ActiveLearn outperforms other methods, especially on harder problem instances and with
fewer samples. Note that uniform sampling has limited usefulness because it can’t be performed as an online algorithm.
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Figure 1. Performance of different sampling strategies on
ErrThresh with the true error measure eT

f and a threshold
of 0.15. For both ActiveLearn (our method) and Random
sampling, the true error with k time-points is shown. The
vertical dashed support lines indicate the number of samples
at which each strategy crossed the threshold. Our method
requires fewer samples to cross the threshold. The difference
is especially significant for the hard dataset.

The variance, σ2, can be estimated from repeat data.
Given a time-range ∆t = tnN − tn1 , we then set Ce =

∆t(zα/2

√
σ2a) where a represents an estimate for the

desired Aii. This formula is inspired by the formula for
confidence area (Eqn. 6) as Ce is a threshold for it. Our
experiments indicate a = 0.8 provides good-quality fits
for many datasets.

4.2. Biological Results

In order to test our algorithm on real experimental
data, we used the Cdc15 cell cycle gene expression
data (Spellman et al., 1998). Expression experiments
were carried out at 24 time-points (every 20 minutes be-
tween 10 and 70, every 10 minutes between 80 and 240
and every 20 minutes between 250 and 290), making
it one of the few publicly-available microarray datasets
thought to be over-sampled. The main goal of this ex-
periment was to identify cycling yeast genes. Cycling
genes are genes with periodic fluctuations in expression
level, likely because of their involvement in cell cycle.

This dataset is an appropriate testbed for our method
since identification of cycling genes is a question that
lends itself well to the comparison of sampling strate-
gies. Moreover, with the large number of samples col-
lected, our results can be easily validated.

Our goal was to check if our method could save signifi-
cant cost for very little information loss– a key concern
to biologists. In particular, with the Cdc15 dataset we
wanted to check if our method could have extracted the
full set of cycling genes with fewer samples. To do so,
we ran CostThresh on it, once asking for expression
profiles based on 18 samples, once for 20 samples, and
once allowing all 24 samples to be used. We then used
the periodogram method (Wichert et al., 2004), which
performs Fourier analysis on the derived function esti-
mates, to identify the top 500 cycling genes from the re-
sultant time-dependent functions. We compared these
genes to those which have previously been identified for
the Cdc15, Alpha, and Cdc28 datasets. Using 18 time-
points (25% savings), 93−94% of the genes reported by
our method to be cycling are in agreement with those
previously identified in the Cdc15, Alpha, and Cdc28
studies. When using 20 time-points (17% savings), this
number increases to 96 − 97%. Furthermore, functions
for cycling genes with clear signals were identically re-
constructed when we asked CostThresh for its pick
of 20 time-points as when all 24 points were used.

5. Conclusions and Future Work

In this paper we have presented an online algorithm
that uses active learning to determine an effective
sampling strategy for time-series experiments where
the cost of data collection is high. We described an
efficiently-computable objective function for measur-
ing the uncertainty in the estimated smoothing splines,
and showed how this function may be used with active
learning to suggest the next sample point.

Observe that our algorithm can be applied, without
modification, to sample from and estimate any con-
tinuous function with one independent variable, i.e.,
(y1, . . . , yd) = g(x) where x need not be time. For ex-
ample, in a large sensor network, obtaining continuous
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Figure 2. (a): GCV-error as a function of number of time-
points. On average, ActiveLearn’s GCV-error is lower than
Random sampling’s, especially in moderate and hard cases.
(b): Profiles recovered using 20 time-points chosen by Ac-
tiveLearn (dashed lines), compared with profiles using all 24
time-points (solid lines). Dots are expression values. Top
row: Two cycling genes correctly identified using both sam-
pling strategies. Bottom row: Two genes identified as cy-
cling using 24 points but not when using 20 points. Even
in such cases the recovered expression pattern is very simi-
lar. However, the low signal-to-noise ratios for these genes
makes it hard to unambiguously determine cyclicity.

readings from all sensors has prohibitive communica-
tion/power costs (Deshpande, 2004). At the same time,
several of these readings maybe redundant. Given some
k, our algorithm can help identify the optimal subset of
k sensors whose readings, taken together, result in the
smallest overall uncertainty in the global observation.

In the future, we would like to develop a variant of our
algorithm that can be used to estimate a principled
quality metric for time-series data. Then, by applying
the objective function presented in this paper to two
separate datasets that study the same system, we can
compare their relative sampling quality.
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