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Abstract

Due to its occurrence in engineering domains
and implications for natural learning, the
problem of utilizing unlabeled data is attract-
ing increasing attention in machine learning.
A large body of recent literature has focussed
on the transductive setting where labels of
unlabeled examples are estimated by learn-
ing a function defined only over the point
cloud data. In a truly semi-supervised setting
however, a learning machine has access to la-
beled and unlabeled examples and must make
predictions on data points never encountered
before. In this paper, we show how to turn
transductive and standard supervised learn-
ing algorithms into semi-supervised learn-
ers. We construct a family of data-dependent
norms on Reproducing Kernel Hilbert Spaces
(RKHS). These norms allow us to warp the
structure of the RKHS to reflect the under-
lying geometry of the data. We derive ex-
plicit formulas for the corresponding new ker-
nels. Our approach demonstrates state of the
art performance on a variety of classification
tasks.

1. Introduction

To set the stage for the developments that will follow,
consider the picture shown in Fig. 1(a). Shown in that
figure are two classes of data points in the plane (R2)
such that all data points lie on one of two concentric
circles. This represents a two class pattern classifica-
tion problem where each class is identified with one
of the circles. The decision boundary separating the
two classes is non-linear. A typical kernel based ap-
proach for pattern classification would be to use the
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Gaussian (RBF) kernel k(x, z) = e−
‖x−z‖2

2σ2 . The ker-
nel k naturally defines a unique Reproducing Kernel
Hilbert Space (RKHS) of functions, which we will de-
note by H, on the two-dimensional plane.

Figure 1. A binary classification problem : Classes (dia-
monds and circles) lie on two concentric circles.

(a) two classes on
concentric circles (b) two labeled points

Suppose we are given a small number, l, of labeled
example pairs (xi, yi) where each xi ∈ R

2 and yi ∈
{−1,+1}. Then, in order to ”learn” a good classifier
from the labeled examples, one may solve the following
regularization problem:

f = arg min
h∈H

1

l

l
∑

i=1

V (h, xi, yi) + γ‖h‖2

H

where ‖h‖H is the norm of the function h in the RKHS
and V is a loss function. By the familiar representer
theorem, the solution can be expressed as:

f(x) =

l
∑

i=1

αik(x, xi)

Choosing V to be the square loss gives rise to Regular-
ized Least Squares (RLS) while choosing it to be the
hinge loss produces Support Vector Machines (SVM).

For illustrative purposes, we consider in Fig. 1(b) the
case where l = 2, i.e., two labeled examples (one pos-
itive and one negative) are provided to the learner.
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Figure 2.

(c) classifier learnt
in the RKHS

(a) gaussian kernel centered
on labeled point 1

(b) gaussian kernel centered
on labeled point 2

Then the learned function would be a linear com-
bination of two Gaussians, each centered on one of
the two data points. The contours (level sets) of the
Gaussian centered at each datapoint are shown in the
Fig. 2(a),(b). Because the Gaussian kernel is isotropic,
it has a spherical symmetry. As a result, the decision
surface is linear, as shown in Fig. 2(c).

It is clear in our setting that the Gaussian with
its spherical symmetry is an unfortunate choice for
the kernel as it does not conform to the particular
geometry of the underlying classes, and is unable to
provide a satisfactory decision surface. The question
we set for ourselves in this paper is the following:

Can we define a kernel k̃ that is adapted to the
geometry of the data distribution?

Such a kernel k̃ must have the property that (i) it is
a valid Mercer kernel k̃ : X × X → R and therefore
defines a new RKHS H̃. (ii) it implements our intu-
itions about the geometry of the data. Our hope is to
obtain an optimization problem over this new RKHS
H̃, given by:

g = arg min
h∈H̃

1

2

2
∑

i=1

V (h, xi, yi) + ‖h‖2

H̃

whose solution g(x) =
∑

2

i=1
αik̃(x, xi) should be ap-

propriate for our setting.

Notice that g is still a linear combination of two (mod-
ified) kernel functions, centered at the two data points
in question. Yet, this solution must produce an in-
tuitive decision surface that separates the two circles
such as in Fig. 1(a). The form of such a Mercer kernel
is not a-priori obvious for our picture.

In this paper, we will show how to deform the original

space to obtain a new RKHS H̃ to satisfy our objec-
tives. Following the philosophy of Manifold Regular-
ization in (Belkin, Niyogi & Sindhwani, 2004; Sind-
hwani, 2004), the geometry of the underlying marginal
distribution may be estimated from unlabeled data
and incorporated into the deformation procedure. The
resulting new kernel k̃ can be computed explicitly in
terms of unlabeled data. Working with only labeled
data in this new RKHS, we can use the full power
of supervised kernel methods for semi-supervised infer-
ence.

We highlight the following aspects of this paper:

1. As far as we know, we obtain the first truly
data-dependent non-parametric kernel for semi-
supervised learning. Prior work on data de-
pendent kernels may be roughly classified into
two categories: (a) choosing parameters for some
parametric family of kernels, and (b) defining a
data dependent kernel on the data points alone
(transductive setting). See section 3 for a discus-
sion of prior work.

2. We discuss the basic theoretical properties of this
kernel and establish that it is a valid Mercer kernel
and therefore defines an RKHS.

3. These developments allow a family of algorithms
to be developed based on various choices of the
original RKHS, deformation penalties, loss func-
tions and optimization strategies.

4. We provide experimental comparisons showing
state-of-the-art performance on a variety of clas-
sification tasks. In particular, we see that this
approach can be used successfully in both trans-
ductive and semi-supervised settings.

We now continue the discussion above and describe a
general scheme for appropriately warping an RKHS.
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2. Warping an RKHS

using Point Cloud Norms

Before proceeding we discuss the basic properties of
RKHS. Let X be a compact domain in a Euclidean
space or a manifold. A complete Hilbert space H of
functions X → R, with inner product 〈·, ·〉

H
is a Repro-

ducing Kernel Hilbert Space if point evaluation func-
tionals are bounded, i.e., for any x ∈ X, f ∈ H, there
is a C, s.t.

|f(x)| ≤ C‖f‖H

A symmetric positive semidefinite kernel k(x, z) can
then be constructed using the Riesz representation
theorem for the point evaluation functional:

f(x) = 〈f, k(x, ·)〉
H

k(x, z) = 〈k(x, ·), k(z, ·)〉
H

We will now show how a very general procedure to
deform the norm ‖ ‖H gives a new RKHS H̃ whose
kernel we will denote by k̃(x, z).

Let V be a linear space with a positive semi-definite
inner product (quadratic form) and let S : H → V be a
bounded linear operator. We define H̃ to be the space
of functions from H with the modified inner product

〈f, g〉
H̃

= 〈f, g〉
H

+ 〈Sf, Sg〉
V

Proposition 2.1 H̃ is a Reproducing Kernel Hilbert
Space.

Proof. It is clear that H̃ is complete, since a Cauchy
sequence in the modified norm is also Cauchy in the
original norm and therefore converges to an element
of H. For the same reason it is clear that point eval-
uations are bounded as |f(x)| ≤ C‖f‖H implies that
|f(x)| ≤ C‖f‖

H̃
.

We will be interested in the case when S and V depend
on the data. We notice that while Proposition 2.1 is
very general, and holds for any choice of S and V, it
is not usually easy to connect the kernels k and k̃.

However, as we will show below, for a class of what
may be termed “point-cloud norms” this connection
can be expressed explicitly.

Given the data points x1, . . . , xn, let S : H → R
n be

the evaluation map S(f) = (f(x1), . . . , f(xn)). Denote
f = (f(x1), . . . , f(xn)). The (semi-)norm on R

n will
be given by a symmetric positive semi-definite matrix
M :

‖Sf‖2

V
= f tM f

We will derive the exact form for k̃(x, z). Note that H̃
can be orthogonally decomposed as

H̃ = span
{

k̃(x1, ·), . . . , k̃(xn, ·)
}

⊕ H̃⊥

where H̃⊥ consists of functions vanishing at all data
points. It is clear that for any f ∈ H̃⊥, Sf = 0 and
therefore 〈f, g〉

H̃
= 〈f, g〉

H
for any function g in the

space.

We therefore see that for any such f ∈ H̃⊥, we have

f(x) = 〈f, k̃(x, ·)〉
H̃

(reproducing property in H̃)

= 〈f, k(x, ·)〉
H

(reproducing property in H)

= 〈f, k(x, ·)〉
H̃

since f ∈ H̃⊥

Thus, for any f ∈ H̃⊥, we have 〈f, k(x, ·)− k̃(x, ·)〉
H̃

=

0 or k(x, ·) − k̃(x, ·) ∈ (H̃⊥)⊥. In other words,

k(x, ·) − k̃(x, ·) ∈ span
{

(k̃(x1, ·), . . . , k̃(xn, ·)
}

On the other hand, for any xi ∈ X and f ∈ H̃⊥

from the definition of the inner product on H̃ we see
〈k(xi, ·), f〉H̃ = 0. Thus, k(xi, .) ∈ (H̃⊥)⊥. Therefore,
we see that

span{k(xi, ·)}
n
i=1

⊆ span{(k̃(xi, ·)}
n
i=1

Also decomposing, H = span {k(xi, ·)}
n
i=1

⊕H⊥, it is

easy to check that k̃(xi, .) ∈ (H⊥)⊥ so that:

span{k̃(xi, ·)}
n
i=1

⊆ span{k(xi, ·)}
n
i=1

Thus, the two spans are same and we conclude that

k̃(x, ·) = k(x, ·) +
∑

j

βj(x)k(xj , ·)

where the coefficients βj depend on x.

To find βj(x), we look at a system of linear equations
generated by evaluating k(xi, .) at x:

kxi
(x) = 〈k(xi, .), k̃(x, ·)〉

H̃

= 〈k(xi, .), k(x, ·) +
∑

j

βj(x)k(xj , ·)〉H̃

= 〈k(xi, .), k(x, ·) +
∑

j

βj(x)k(xj , ·)〉H

+ kxi

tMg

where kxi
= (k(xi, x1) . . . k(xi, xn))t and g is the

vector given by the components gk = k(x, xk) +
∑

j βj(x)k(xj , xk). This formula provides the fol-
lowing system of linear equations for the coefficients
β(x) = (β1(x) . . . βn(x))T :

(I + MK)β(x) = −Mkx

where K is the matrix Kij = K(xi, xj) and kx, as
before, denotes the vector (k(x1, x) . . . k(xn, x))t.

Finally, we obtain the following explicit form for k̃:
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Figure 3.

(c) classifier learnt
in the deformed RKHS

(a) deformed kernel centered
on labeled point 1

(b) deformed kernel centered
on labeled point 2

Proposition 2.2 Reproducing kernel of H̃:

k̃(x, z) = k(x, z) − kt
x(I + MK)−1Mkz

One can observe that the matrix (I + MK)−1M is
symmetric. When M is invertible, it equals (M−1 +
K)−1 which is clearly symmetric. When M is singular,
one adds a small ridge term to M and then uses a
continuity argument.

We see that modifying the RKHS with a point-cloud
norm deforms the kernel along a finite-dimensional
subspace given by the data.

2.1. Choosing the Point Cloud Norm

The key issue now is the choice of M , so that the de-
formation of the kernel induced by the data-dependent
norm, is motivated with respect to our intuitions about
the data. Such intuitions may be inspired by forms of
prior knowledge (e.g, transformation invariances), or,
in the case of semi-supervised learning, by the form
of the marginal distribution as described by unlabeled
data.

In this paper, we will follow (Belkin, Niyogi & Sind-
hwani, 2004; Sindhwani, 2004) and utilize the Lapla-
cian associated to the point cloud. This choice im-
plements a smoothness assumption with respect to an
empirical estimate of the geometric structure of the
marginal distribution.

We set M = Lp, where p is an integer and L is the
Laplacian matrix of a graph that models the under-
lying geometry. The graph Laplacian is defined as

L = D − W where Wij = e−
‖xi−xj‖2

2σ2 , if xi and xj

are adjacent and zero otherwise and D is a diagonal
degree matrix given by Dii =

∑

i Wij . The graph
Laplacian provides the following smoothness penalty
on the graph: f tLf =

∑n
i,j=1

(f(xi) − f(xj))
2Wij .

Typically we use nearest neighbors to construct the
matrix. The neighborhood relationship can vary de-
pending on our understanding of the data. This ma-
trix implements an empirical version of the Laplace-
Beltrami operator, when the underlying space is a
manifold. See (Belkin,2003; Lafon, 2004) for more de-
tails.

2.2. Back to Concentric Circles

The result of modifying the kernel by using the graph
Laplacian for the particular case of two circles1 is
shown in Fig. 3.

In Fig. 3(a) and Fig. 3(b) we see level lines for modified
kernels centered on two points on smaller and larger
circles respectively. We see that as expected the ker-
nel becomes extended along the circle. This distortion
of the kernel reflects two intuitions about the natural
data: what may be termed “the manifold assumption”,
i.e. the notion that our regression/classification func-
tion is smooth with respect to the underlying probabil-
ity distribution and the related “cluster assumption”
(see e.g (Chapelle & Zien, 2005)), which suggests that
classes form distinct “clusters” separated by low den-
sity areas. The kernel, such as shown in Fig. 3, heavily
penalizes changes along the circle, while imposing little
penalty on changes in the orthorgonal direction.

Finally, Fig.3(c) shows the class boundary obtained
using this new kernel.

2.3. Algorithms

By setting M = γI

γA
Lp the modified kernel allows us to

reconstruct algorithms for semi-supervised classifica-
tion presented in (Belkin, Niyogi & Sindhwani, 2004)
and re-interpret them within the standard framework

1Each consisting of 150 evenly spaced unlabeled points,
with one labeled example
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of kernel methods. γA and γI are regularization pa-
rameters whose ratio controls the extent of the de-
formation. In particular, Laplacian SVM (LapSVM)
and Laplacian RLS (LapRLS) become standard RLS
and SVM using these kernels. One can also employ a
suite of kernel-based algorithms, such as support vec-
tor regression and one-class SVM, together with their
optimization strategies and implementations to solve
various learning problems. Additionally, based on dif-
ferent choices of M , our approach provides a general
algorithmic framework for incorporating useful domain
structures (e.g invariances) in kernel methods.

3. Related Work

Kernel methods (Schoelkopf & Smola, 2002; Vap-
nik, 1998) have become very popular in recent years.
There is a large body of literature on how to choose
the parameters of a kernel based on data, e.g by
cross-validation. However, these methods, which in-
clude some classical statistical procedures, require an
a-priori parametrization of the kernel.

Related work on developing data-dependent kernels
on the set of labeled and unlabeled examples includes
(Belkin, Matveeva & Niyogi, 2004; Joachims, 2003;
Zhou et al, 2004; Zhu, Gharamani & Lafferty 2003)
and references therein.

In particular, we note (Chapelle, Weston &
Schoelkopf, 2003; Chapelle & Zien, 2005) where ker-
nels are designed to implement the cluster assumption.

These approaches do not define an RKHS whose do-
main is the whole space X. Some related ideas for out
of sample extension were proposed in (Delalleau, Ben-
gio & Le Roux, 2005; Vert & Yamanishi, 2005). Also
see (Smola & Schoelkopf, 1998; Bousquet, Chapelle &
Hein, 2004) for related theoretical frameworks.

Algorithmic extensions of SVMs to handle unlabeled
data have been proposed, e.g in (Joachims, 1999).
Manifold learning was recently combined with boost-
ing in (Kegl & Wang, 2005). Finally, (Wu & Amari,
2002) produced a family of data dependent kernels
with some interesting geometric interpretations.

4. Experiments

The purpose of the experiments is to evaluate the
quality of transductive and semi-supervised learning
with SVMs and RLS using the data-dependent semi-
supervised kernel in comparison to their standard ver-
sions. Additional comparisons are made based on
results reported in (Chapelle & Zien, 2005) and
(Joachims, 2003) with transductive graph methods

(abbreviated Graph-Trans) such as Graph Regulariza-
tion (Belkin, Matveeva & Niyogi, 2004) and Spectral
Graph Transduction (SGT) (Joachims, 2003); the im-
plementation of Transductive SVMs (Vapnik, 1998) in
(Joachims, 1999) (TSVM) and in (Chapelle & Zien,
2005) (∇TSVM)); and with other methods proposed in
(Chapelle & Zien, 2005) : training an SVM on a graph-
distance derived kernel (Graph-density) and Low Den-
sity Separation (LDS). We will also observe the roles
of the original RKHS norm and the point cloud norms
in empirical performance. For the purpose of reprodu-
cability, the matlab scripts and datasets used in these
experiments are available at :
http://www.cs.uchicago.edu/∼vikass/research.html.

Data Sets

Experiments were performed on five well-known
datasets described in Table 1.

Table 1. Datasets used in the experiments : c is the number
classes, d is the data dimensionality, l is the number of
labeled examples, n is the total number of examples in the
dataset from which labeled, unlabeled and test examples,
when required, are drawn.

Dataset c d l n

g50c 2 50 50 550
Coil20 20 1024 40 1440
Uspst 10 256 50 2007

mac-windows 2 7511 50 1946
Webkb (page) 2 3000 12 1051
Webkb (link) 2 1840 12 1051

Webkb (page+link) 2 4840 12 1051

g50c is an artificial dataset generated from two unit-
covariance normal distributions with equal probabili-
ties. The class means are adjusted so that the true
bayes error is 5%, and 550 examples are drawn. Coil20
and Uspst datasets pose multiclass image classification
problems. Coil20 consists of 32× 32 gray scale images
of 20 objects viewed from varying angles and Uspst
is taken from the USPS (test) dataset for handwrit-
ten digit recognition. The text data consists of bi-
nary classification problems: mac-win is taken from
the 20-newsgroups dataset and the task is to cate-
gorize newsgroup documents into two topics: mac or
windows; the WebKB dataset is a subset of web doc-
uments of the computer science departments of four
universities. This dataset has been extensively used
for semi-supervised learning experiments (Joachims,
2003; Nigam, 2001). The two categories are course or
non-course. For each document, there are two repre-
sentations: the textual content of the webpage (which
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we will call page representation) and the anchortext
on links on other webpages pointing to the webpage
(link representation). Following (Nigam, 2001), we
generated bag-of-words feature vectors for both repre-
sentations as follows: Documents were tokenized using
the Rainbow Text toolkit (McAllum, 1996) ; HTML-
tagged content was skipped and no stoplist or stem-
ming was used; numbers were included in the tok-
enization. For the page representation, 3000 features
were selected according to information gain. For the
link representation, 1840 features were generated with
no feature selection. The columns of the document-
word matrix were scaled based on inverse document
frequency weights (IDF) for each word and the result-
ing TFIDF feature vectors were length normalized. We
also considered a joint (page+link) representation by
concatenating the features.

In the discussion ahead, by a training set we will mean
the union of the labeled set and the unlabeled set of ex-
amples available to transductive and semi-supervised
learners. Test sets comprise of examples never seen
before.

Transductive Setting

In the transductive setting, the training set comprises
of n examples, l of which are labeled (n, l are specified
in Table 1). In Table 2, we lay out a performance com-
parison of several algorithms in predicting the labels
of the n − l unlabeled examples. The experimental
protocol is based on (Joachims, 2003) for the We-
bKB dataset and (Chapelle & Zien, 2005) for other
datasets.

Protocol: For datasets other than WebKB, perfor-
mance is evaluated by error rates averaged over 10
random choices of the labeled set. Each random set
samples each class at least once (twice for coil20). Re-
sults for Graph-Reg, TSVM,∇TSVM,Graph-density,
and LDS are taken from (Chapelle & Zien, 2005)
where models were selected by optimizing error rates
on the unlabeled set giving these methods an un-
fair advantage. For, LDS, a cross-validation protocol
was used in (Chapelle & Zien, 2005). For LapRLS,
LapSVM we preferred to fix γA = 10−6, γI = 0.01 to
reduce the complexity of model selection. Gaussian
base kernels and euclidean nearest neighbor graphs
with gaussian weights were used. The three param-
eters : number of nearest neighbors (nn), the degree
(p) of the graph Laplacian, and the width (σ) of the
Gaussian are chosen based on 5-fold cross-validation
performance in a small grid of parameter values. To-
gether, these parameters specify the deformed kernel
that incorporates the unlabeled data.

For WebKB, we evaluated performance by precision-
recall breakeven points. Linear Kernels and cosine
nearest neighbor graphs with gaussian weights were
used. In this case, we fixed nn = 200 (as in (Joachims,
2003)), p = 5 (unoptimized), and σ as the mean edge
length in the graph. Since the labeled set is very small
for this dataset, we performed model selection (includ-
ing γA, γI for LapSVM, LapRLS) for all algorithms by
optimizing performance on the unlabeled set.

Discussion: Using the proposed kernel, SVM and RLS
return the best performance in four of the five datasets.
In g50c, performance is close to the bayes optimal.
We obtain significant performance gains on Coil20 and
Uspst where there are strong indications of a manifold
structure. On WebKB, the methods outperform other
methods in the page+link representation. We also
tried the following novel possibility: the point cloud
norm was constructed from the mean graph Laplacian
over the three representations and used for deforming
RKHS in each representation. With this multi-view
regularizer, the method significantly outperforms all
other methods for all representations. Finally, note
that one can recover the original base kernel by setting
γI = 0. With a good model selection, the proposed
methods should never perform worse than inductive
methods.

Semi-supervised Setting

In the semi-supervised setting, the training set com-
prises of l + u examples (l labeled as before and u

unlabeled) and the test set comprises of n − l − u ex-
amples. Experiments were performed to observe the
performance of LapSVM and LapRLS on the test and
unlabeled sets to see how well these methods extend
to novel out-of-sample examples.

Protocol: We performed a variation of 4-fold cross-
validation. The data was divided into four equal
chunks: three chunks were combined to form the train-
ing set and the remaining formed the test set. Each
chunk therefore appeared in the training data thrice
and as a test set once. Table 3,4 report mean per-
formance of LapSVM and LapRLS in predicting the
labels of each chunk as a subset of the unlabeled set
and as a test set. γA, γI are optimized for best mean
performance; and the other parameters are set as be-
fore. For WebKB, is is natural for the four chunks to
correspond to the four universities: training on three
universities and testing on the fourth. The detailed
performance for each university is reported in Table 3
for LapSVM (performance is similar for LapRLS).

Discussion: For g50c, mac-win, and WebKB the per-
formance on unlabeled and test subsets is almost in-
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Table 2. Transductive Setting: Error Rates (100-PRBEP for WebKb) on unlabeled examples. Results on which
Laplacian SVMs (LapSVM) and Laplacian RLS (LapRLS) outperform all other methods are shown in bold.
LapSVMjoint, LapRLSjoint use the sum of graph laplacians in each WebKB representation. Results for Graph-Trans,
TSVM,∇TSVM,Graph-density, and LDS are taken from (Chapelle & Zien, 2005)

Dataset → g50c Coil20 Uspst mac-win WebKB WebKB WebKB
Algorithm ↓ (link) (page) (page+link)

SVM (full labels) 4.0 (2.9) 0.0 (0.0) 2.8 (0.8) 2.4 (1.3) 5.1 (2.8) 5.3 (4.0) 0.7 (1.4)
RLS (full labels) 4.0 (2.7) 0.0 (0.0) 2.5 (1.3) 2.8 (1.7) 5.6 (2.8) 6.4 (3.8) 2.2 (3.0)

SVM (l labels) 9.7 (1.7) 24.6 (1.7) 23.6 (3.3) 18.9 (5.7) 28.1 (16.1) 24.3 (15.0) 18.2 (15.5)
RLS (l labels) 8.5 (1.5) 26.0 (1.5) 23.6 (3.5) 18.8 (5.7) 30.3 (16.5) 30.2 (15.3) 23.9 (16.1)

Graph-Trans 17.3 6.2 21.3 11.7 22.0 10.7 6.6
TSVM 6.9 26.3 26.5 7.4 14.5 8.6 7.8

Graph-density 8.3 6.4 16.9 10.5 - - -
∇TSVM 5.8 17.6 17.6 5.7 - - -

LDS 5.6 4.9 15.8 5.1 - - -

LapSVM 5.4 (0.6) 4.0 (2.3) 12.7 (2.3) 10.4 (1.1) 17.2 (9.0) 10.9 (1.2) 6.4 (0.9)
LapRLS 5.2 (0.7) 4.3 (1.3) 12.7 (2.4) 10.0 (1.3) 19.2 (10.0) 11.2 (1.1) 7.5 (1.4)

LapSVMjoint - - - - 5.7 (1.5) 6.6 (1.3) 5.1 (0.9)
LapRLSjoint - - - - 6.7 (6.2) 8.9 (3.9) 5.9 (2.9)

Table 3. Semi-supervised Setting: (WebKB)
100-PRBEP on unlabeled and test examples

View → link page page+link
University ↓ unlab unlab unlab

test test test

Cornell 26.1 14.4 8.0
27.3 14.3 8.0

Texas 18.8 19.0 4.7
17.3 17.8 5.1

Washington 12.8 8.7 4.8
13.8 8.4 4.5

Wisconsin 18.6 14.5 7.1
19.3 15.7 7.0

distinguishable. The out-of-sample extension is high
quality also for Uspst. For Coil20, we observe an over-
deformation phenomenon : the in-sample performance
is significantly better than out-of-sample performance.
A smoother base kernel and appropriate degree of de-
formation can remove this difference for coil20.

Parameters of Deformation

The parameters γA, γI specify a trade-off between am-
bient regularization and deformation. In Fig 4 we show
the performance difference over test sets and unlabeled
subsets as a function on the γA, γI plane. Also shown
is the location of the optimal γA, γI . For a wide range

Table 4. Semi-supervised Setting:
Error rates on unlabeled and test examples.

Dataset → g50c Coil20 Uspst mac-win
Algorithm ↓ unlab unlab unlab unlab

test test test test

SVM 9.7 21.7 21.6 20.9
9.7 22.6 22.1 20.9

RLS 9.1 21.8 22.5 20.9
9.6 22.6 23.0 20.4

LapSVM 4.9 8.7 14.9 9.9
5.0 14.6 17.7 9.7

LapRLS 4.9 9.40 14.3 9.4
4.9 12.9 17.0 9.3

of parameter settings, the performance difference is
less than 1% for g50c and mac-win, and less than 2%
for coil20 and uspst. In uspst and coil20 we see an ex-
pected behaviour : When γI is much larger than γA,
the point cloud norm dominates the regularization and
the in-sample performance is found to be much better
than the out-of-sample performance. When γA is in-
creased, the difference decreases. In general, the op-
timal performance strikes a good balance between the
ambient norm and the degree of deformation.

Further experimental observations would be required
to understand the nature of these deformations and
the choice of deformation parameters.
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Figure 4. Difference in Error Rates (in percentage on the
vertical colorbar) over test sets and unlabeled subsets in the
γI − γA plane. The optimal mean performance is obtained
at the point marked by a black star.
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5. Conclusion

We have shown how to warp an RKHS to adapt to the
geometry of the data in machine learning tasks. Our
framework has particular applicability to the problem
of semi-supervised learning, where we have demon-
strated state of the art empirical performance. This
framework also permits us to incorporate various other
domain structures in a large class of algorithms. We
will pursue these in future work.
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