Fast Inference and Learning in Large-State-Space HMMs

Sajid M. Siddiqi
Andrew W. Moore

SIDDIQIQCS.CMU.EDU
AWM@CS.CMU.EDU

The Robotics Institute, School of Computer Science, Carnegie Mellon University, Pittsburgh PA 15213

Abstract

For Hidden Markov Models (HMMs) with
fully connected transition models, the three
fundamental problems of evaluating the like-
lihood of an observation sequence, estimat-
ing an optimal state sequence for the ob-
servations, and learning the model parame-
ters, all have quadratic time complexity in
the number of states. We introduce a novel
class of non-sparse Markov transition ma-
trices called Dense-Mostly-Constant (DMC)
transition matrices that allow us to derive
new algorithms for solving the basic HMM
problems in sub-quadratic time. We describe
the DMC HMM model and algorithms and
attempt to convey some intuition for their
usage. Empirical results for these algorithms
show dramatic speedups for all three prob-
lems. In terms of accuracy, the DMC model
yields strong results and outperforms the
baseline algorithms even in domains known
to violate the DMC assumption.

1. Introduction

Hidden Markov Models are a popular tool for model-
ing the statistical properties of observation sequences
in domains where the observations can be assumed to
be indicative of an underlying hidden state sequence.
Introduced in the late 1960s, HMMs have been used
most extensively in speech recognition (Rabiner, 1989;
Bahl et al., 1983) and bioinformatics (El-Difrawy &
Ehrlich, 2002) but also in diverse application areas
such as computer vision and information extraction
(Brand et al., 1997; Seymore et al., 1999). An excel-
lent tutorial on HMMs can be found in the work of
Rabiner (1989).

With ever-increasing amounts of data becoming avail-

Appearing in Proceedings of the 22™% International Confer-
ence on Machine Learning, Bonn, Germany, 2005. Copy-
right 2005 by the author(s)/owner(s).

able in highly varied domains, it is important for HMM
algorithms to be able to scale accordingly for large
state spaces. For example, Felzenszwalb et al. (2003)
note in their work on internet usage data that there
were brief but significant events that could only be
captured by large HMMs of a hundred or more states.
This is hindered by the fact that the three fundamen-
tal algorithms for HMMs are quadratic in the number
of states.

We propose a paradigm for HMM inference and learn-
ing that yields sub-quadratic algorithms for all three
basic HMM operations without resorting to sparse
transition models. We contend that for large-state-
space HMMs; it is usually reasonable to focus on a few
high-probability transitions per state and keep track of
their exact values while approximating the rest with
a constant. We call this a Dense-Mostly-Constant
(DMC) transition matrix. For brevity, we shall use the
term ‘DMC HMM’ to refer to an HMM whose transi-
tion matrix obeys the DMC condition. The number of
transitions per state that are modeled exactly is rep-
resented by K. This set of ‘important’ transitions is
chosen dynamically and need not be specified a priori.
Indeed, the algorithm is designed to automatically de-
tect and choose the K highest transition probabilities
per state. Here is an example of a regular 3 x 3 transi-
tion matrix transformed to a DMC transition matrix
with K = 1:

0.5 03 0.2 0.5 0.25 0.25
01 03 06 ]|]=102 02 0.6
0.05 0.8 0.15 0.1 0.8 01

The highest entry in each row is preserved exactly, and
the remaining probability mass is evenly distributed
among the remaining states. Each row of the matrix
may have a different constant. This idea generalizes
for higher values of N and K. We will also show how
our modified learning algorithm for DMC HMMs can
automatically discover the K highest transition prob-
abilities for each state without computing them all.

The layout of this paper is as follows. We discuss some
related work in Section 2. In Section 3 we briefly



Fast Inference and Learning in Large-State-Space HMMs

review the three primary operations on HMMs and
go on to see how the DMC condition is incorporated
into the HMM model. Section 4 covers our new al-
gorithms for the three HMM operations of estima-
tion, inference and learning under the DMC condition.
In Section 5 we present experimental results on both
synthetic and real-world data sets to investigate the
speedup achieved by our new algorithms and the accu-
racy tradeoff that is made with these models compared
to regular HMMs. We also explore the interaction be-
tween the number of states (V) and the number of ex-
act transition probabilities per state (K). Finally, in
Section 6 we summarize the ideas and results presented
in this paper and discuss how they may be extended
in the future.

2. Related Work

Felzenszwalb et al. (2003) recently proposed fast al-
gorithms for a class of HMMs where the states can
be embedded in an underlying parameter space and
the transition probabilities can be expressed in terms
of distances in this space. In comparison, our new
algorithms are made possible by introducing a class
of transition models that are applicable to arbitrary
state spaces. Assuming a sparse transition matrix is
another way to speed up these algorithms, and is an
underlying assumption in many cases. This has two
drawbacks. Firstly, this is an overly restrictive as-
sumption for many problem domains. Secondly, it re-
quires the sparse structure to be known or extracted in
advance. Other approaches for fast HMM algorithms
include the work by Murphy and Paskin (2002), which
treats HMMs as a special kind of Dynamic Bayesian
Network and proposes faster inference algorithms for
hierarchical HMMs, as well as Salakhutdinov et al.
(2003) which derives an alternative learning algorithm
for HMM parameters under conditions when EM is
slow.

3. HMMs with DMC Transition
Matrices

3.1. Basic Operations on HMMs

We will use the notation and terminology of Rabiner
(1989), as well as his three canonical problems for
HMMs.

Given an observation sequence O of length T and an
HMM model A = (A, B,w) with N states, the three
basic problems of HMMs are:

1. Computing the probability P(O|\) of an observa-
tion sequence O given the model .

2. Inferring an optimal state sequence @ = q14s...q7
given the observation sequence O and model A,
i.e. a state sequence that maximizes P(Q|O, A).

3. Updating the model parameters A to best suit the
observation sequence O, i.e. to maximize P(O|\).

All these computations can be carried out in O(T'N?)
time using well-known methods. The forward part
of the forward-backward procedure computes P(O|\).
The Viterbi algorithm (Viterbi, 1967) yields an op-
timal state sequence @ to maximize P(Q|O, ), and
Baum-Welch (Baum, 1972) is used to re-estimate the
model to maximize P(O|\).

3.2. Incorporating the DMC Condition into
HMDMs

Before we discuss how the DMC condition allows us to
carry out the three basic operations more efficiently,
we will see how HMMs are modified under the DMC
condition. We add a new parameter K, the number of
transitions per row whose values are calculated exactly.
Therefore, under the DMC condition with a particular
value of K, the transition matrix A is constrained so as
to contain K non-constant transition probabilities per
row, with the rest of the N — K transition probabilities
being equal to a per-row constant value such that each
row of A still sums to 1. We also define NC = {NC;}
to be a collection of N K-sized lists where NC; =
{7 : a;j is a non-constant transition probability}.An
example form of a 5 x 5 DMC transition matrix with
2 non-constant probabilities (a;;) and 3 constant (c;)
probabilities per row is

Cs Cs Cs asgq Aass

where the constants ¢; are related to the non-constants
as:

ci=(1- Y ay)/(N-K) (1)

JENC;

The other HMM parameters (B, ) are unaffected by
the DMC condition. Applying the DMC condition on
the transition matrix can be considered a form of para-
meter tying (Bahl et al., 1983). However, conventional
parameter tying methods focus on tying observation
model parameters of different states rather than tran-
sition probabilities.



Fast Inference and Learning in Large-State-Space HMMs

4. Algorithms

We now outline the standard algorithms for the most
common operations on HMMSs, and describe our faster
equivalents for DMC HMMs. Problems 1 and 2 from
Section 3 are the same for DMC HMMs as they are for
regular HMMs. In Problem 3, an additional constraint
for us is that the resulting HMM should also conform
to the DMC condition.

4.1. Calculating P(O|))

P(OJ)) is computed using the forward part of the
forward-backward procedure. Let (i), the forward
variable, be defined as a;(i) = P(0102---O,qt =
Si|A) The regular algorithm for constructing the T'x N
« matrix is, inductively,

Oél(i) = ﬂibi(Ol) (2)

E Oét a”

bj(Os41) (3)

Otf+1

P(O|\) = ZaT (4)

Since there is an N-term summation carried out for
each state per timestep, and there are N X T (%)
values to be calculated, the total running time of the
forward procedure is O(TN?).

For DMC HMMs, we can take advantage of the struc-
ture of the transition matrix and calculate the « val-
ues, and thus P(O|A), more efficiently. The following
inductive step is possible when the transition matrix
is DMC:

Zat azj
= Z Oét a”—f— Z Oét C Ot+1)

[i:GENC; 1 jgNC;
N

= E a(i)ei+
i=1

Instead of computing the N-term summation for each
state per timestep, we break it up into two summa-
tions. The first is an N-term summation without any
mixed j terms, allowing us to compute it just once for
each of the T rows of the o matrix. The second sum-
mation sums over an average of K terms for each o (j)
value. The first summation adds an amortized cost of
O(1) over the N states, and the second one adds a
O(K) cost. Overall, this results in a time complex-
ity of O(T'NK) for calculating the o matrix, and thus

O[t+1(j) = Ot+1) (5)

S auli)ai—ci) | b;(Or41)

i:jENC;

for P(O|A). Note that calculating the o matrix also
allows fast computation of state occupation probabili-

ties P(q; = S;|O1,- -+, 04, A). The backward variables
Bt(i) = P(O410442 - Or|q: = Si, \) are calculated
similarly.

4.2. Finding an Optimal State Sequence

Given an observation sequence O, the Viterbi algo-
rithm is used to calculate the state sequence @ that
maximizes P(Q|O, \). Define §;(4) as

0¢(i) = max  Plqiqz---q = 1,0102---O|A] (6)

g1, 54t —1

The inductive formula for §;(j) used in the Viterbi
algorithm is dy11(j) = [max; 6¢(¢)a;;]b;(Oy1). Since
there is a maximization over N terms carried out for
each state per timestep, and there are N x T 4:(4)
values to be calculated, the total running time of the
Viterbi algorithm is O(TN?). Under the DMC con-
dition, however, we can calculate this maximization
more efficiently.

041 (1) = [maxdy(i)ai;]b;(Or41) (7)
)ai; }] (Or11)
Analogously to (5), we can split the O(N) maximiza-
tion into two terms: a maximization over N terms that

is common to the entire timestep, and a maximization
over an average of K terms per state.

= [max{max 8¢(3)cs, ]HelfaVXC,ét

4.3. Learning a Maximum Likelihood Model

Maximum likelihood estimates of the HMM parame-
ters are obtained by repeatedly iterating the Baum-
Welch algorithm until the likelihood of the data on
the model converges. We present a new re-estimation
procedure only for the transition matrix A since other
parts of the HMM learning procedure are unaffected
by the DMC condition. The main challenge is to en-
sure we pick the K largest transition probabilities per
state without doing the O(T N?) work done by regular
Baum-Welch.

First, we need a few more standard definitions. The set
of forward variables (i) and backward variables 3;(j)
were defined earlier. Two more sets of variables we
need are the point-wise state variables and the point-
wise transition variables:

Ye(i) = P(g: = Si|O, ) (8)
&(i,5) = P(ar = Si, qr41 = 55|10, M) 9)

Once these variables have been calculated, the update
equation for the transition probabilities is:



Fast Inference and Learning in Large-State-Space HMMs

D Srieid ACY))
Qij = "~T-1_ 1~
> i1 e(d)

We will see that (10) and its requisite variables can be
computed in less than O(TN?) time while at the same
time automatically choosing the correct K important
transitions for every state. A sub-quadratic procedure
for computing the forward and backward variables has
already been described in Section 4.1. The v matrix
takes O(TN) time and is easily carried out given the
a and (§ matrices: (i) = %
to the harder problem of calculating the numerator of
(10) in less than O(T'N?) time.

(10)

. We then move

4.4. Computing the pointwise transition
variables ¢

The T &; matrices each contain N? terms to be calcu-
lated, resulting in a O(T'N?) running time for comput-
ing all required £ terms. In the regular Baum-Welch
routine, each term is computed as follows:

(1) aij Bi41(5)bj (Op41)
CDEE (1)

§u(1,5) =

The DMC condition is insufficient for obtaining a
O(TNK) algorithm for the £ terms, since the DMC
condition does not imply any exploitable structure
in the a and [ matrices. Instead we outline a
Q(TNK + RN?) algorithm with a worst case complex-
ity of O(T'N?), but which runs much faster in practice.
R is a new parameter described later. Define S to be
an N x N matrix such that S(i,j) = ZtT;ll & (i, 7).
Towards this end, for a particular row i, it is useful to
think of the a;; update equation (10) as a;; o S(i,7)
since the denominator in (10) is constant with respect
to j, and the numerator is the main computational
challenge. Because of the DMC condition, only K ex-
act S(i,7) terms will be kept in each row of the S ma-
trix, but at the same time we would like to ensure that
our algorithm picks the S(7,j) terms with the largest
values.

4.4.1. LAZY DOT-PRODUCT EVALUATION FOR THE S
MATRIX

Define the x matrix as #¢(j) = Bi+1(5)b;(O¢41). From
(11), we can consider each S;; term to be the dot prod-
uct of column 7 of the o matrix and column j of the x
matrix. Calculating the S matrix involves computing
N72 dot-products between vectors of length T', giving
us an overall O(TN?) running time. However, even
if we computed the exact S matrix we would then

average out the smaller NV — K entries in each row

in order to maintain the DMC property, thus wast-
ing much of our work. To avoid this situation, we
adopt a lazy evaluation approach where we first par-
tially compute each dot-product in the S matrix along
with an upper bound on each S;; term. A new parame-
ter R € {1,...,T} is defined to determine how much
of the S matrix we partially compute in the beginning.
We first compute some intermediate variables:

1: for i =1to N do

2:  a*(i) — R’th largest oy (i) value

3: Taqy «— {t:au(i) > a*(i)}

4 (i) «— Ztha(i) (i) // sum of small «a(i)’s

5: end for

6: for j =1to N do

7. K*(j) < R’th largest x.(j) value

8 Ty «— {t:me(j) > w"(4)}

9:  K(j) « ZtgéTh.,(,-) kt(j) // sum of small k(j)’s

10: end for

11: for i =1 to N do

12:  for j=1to N do

13: Lij < Thy U T,y // set of indices ¢ where
(1) or ke(j) are large

14:  end for

15: end for

We can now compute a matrix of partial S(i,j) calcu-
lations S, and an upper bound matrix U, by explicitly
computing summation terms that have a large oy (i) or
k¢(j) term® and bounding the rest of the summation.

S@j) = Y a(Dre(i)+ Y auli)re(d)

teL;j t¢ L
< Y au(i)re(j) +minfa (i) (7). o ()w" ()}
teL;;

This inequality allows us to define .S, and U as:

Sp(i,J) — Z (i) ke ()

teL;;
U(i,j) < Sp(i, j) +min{a” (i)x*(5), o (1)x" ()}

The extent to which we partially compute each dot-
product, i.e. the size of L;;, is determined by the
parameter R. When partially computing the S(i, j)
terms, we carry out O(RN?) amount of work. The
larger an R we choose, the costlier will be our partial
computation. However, this will also make U(Z,j) a
tighter bound for S(i,7), saving us more work later
on. Once we have the upper bound matrix U, we fully

To be precise, we work with the scaled variables
I ay (i) rea ke (F)
(1) = po,op ad w(i) = o 00000

since the raw a and « values vary monotonically with time.
Conveniently, a;(i)k: () = ﬁ ar (i) ke (7).




Fast Inference and Learning in Large-State-Space HMMs

compute as few dot-products as possible in order to
obtain the desired DMC S matrix:

1: for i =1to N do
2:  U; < row i of U sorted in decreasing order

3 g1
4: repeat
5 Si(j) « compute full dot-product to get exact

S value bounded by U;(j)

Je—J+1

7. until at least K exact S; terms have been com-
puted, and the smallest of them is larger than
all remaining U; terms

8:  Rearrange K largest S, (j) terms to get the re-
quired K non-constant terms in row i of S

9: end for

I3

Each exact S(i,j) computation in step 5 above is a
O(T) operation. The termination condition of the in-
ner loop is designed to ensure that we compute as few
exact terms as possible while still detecting the largest
K terms. This means that the inner loop could iterate
as few as K times or as many as N times, depending
on the tightness of the upper bounds in U, which in
turn depends on R. As a result, the overall running
time for calculating the S matrix (and by implication,
the transition matrix) under the DMC condition can
range from O(TNK + RN?) to O(TN?) in the theo-
retical worst case, though empirically the average run-
ning time for this procedure was always observed to
be much faster than O(TN?).

5. Experiments

We implemented the regular and DMC HMM algo-
rithms in ANSI C with parameter scaling measures in
place to avoid numerical underflow problems (Rabiner,
1989). The inputs are real-valued, multi-attribute ob-
servations modeled as a multi-dimensional axis-aligned
Gaussian for every state. We also implemented rou-
tines to generate regular and DMC HMMs of arbitrary
sizes and simulate data from these HMMs. These rou-
tines are used in generating the synthetic datasets on
which we show our results. Another dataset we use to
show results contains 14,720 rows of two-dimensional,
real-valued time series data obtained from accelerom-
eters worn at two positions on a person’s body over
the course of his daily routine, with 1 datapoint be-
ing obtained every minute. We believe the activity
monitoring domain lends itself naturally to the DMC
assumption since people tend to persist in the same
activity for long durations, and then transition with
a high probability to a small set of related activities,
though sometimes they make unusual transitions. We

refer to this as the Motionlogger dataset?. The R pa-
rameter for DMC HMMs is heuristically chosen to be
T/20 in these experiments.

In conducting experiments, we would like to investi-
gate the following:

1. Running times of algorithms for basic HMM op-
erations, on regular and DMC HMMs.

2. The accuracy tradeoff incurred by assuming a
DMC HMM model on different datasets where the
DMC assumption is obeyed or violated, and how
this tradeoff varies with respect to K. Accuracy
is measured by comparing the test set likelihoods
of the regular and DMC HMMs that were learned
with Baum-Welch on training data.

3. Tradeoffs between N and K in the DMC HMM
model, and how different choices of N and K af-
fect the data likelihood in different domains.

5.1. Speed

We study the running times of DMC and regular HMM
algorithms on synthetic data. Since both sets of algo-
rithms are linear in the number of observations, we fo-
cus on varying the number of states to highlight differ-
ences between the regular and DMC HMM algorithms
while holding the number of observations constant.
The speedup brought about by the DMC assumption
is appreciable for HMMs of 10-15 states or more. How-
ever, we show results for much larger HMMs here to
demonstrate how the algorithm scales.

Figure 1(A) illustrates the time taken for the Viterbi
algorithm as it varies with the number of states in
the HMM for a regular HMM, and the times taken
for our DMC version of Viterbi for DMC HMMs with
K =20, K = 50 and K = 100. The dataset being
used here consists of 2000 rows of two-dimensional ob-
servations. The difference is very clear here since the
regular Viterbi algorithm is quadratic in N and the
DMC version is linear in N for fixed K.

Evaluating the likelihood of an observation sequence
on an HMM is equivalent to computing the a ma-
trix. As discussed in Section 4.1, this procedure is also
O(TNK) under the DMC condition, and the running
time improvement is exactly the same as shown in Fig-
ure 1(A) for the Viterbi algorithm.

Figure 1(B) shows how the time taken per iteration of
Baum-Welch varies with the number of states in the
HMM. As N increases, the speedup is apparent. The

*http://www-2.cs.cmu.edu/~siddiqi/data/motionlogger



Fast Inference and Learning in Large-State-Space HMMs

1000 10000

—=—Regular HMM —=—Regular HMM
——DMC HMM with K=20
DMC HMM with K=50

——DMC HMM with K=100

5000

Time taken for the Viterbi algorithm (s)
@
S
S
Time taken for 1 Baum-Welch iteration (s)

——DMC HMM with K=20

80\:_’_///
60 i
40
20 ‘

1 200 400 600 800 1000
' R

N

200 400 600 800 1000

Avg. time for 1
Baum-Welch iteration (s)

RS

i
Q
S

needed per row
u
g

Avg. number of exact terms

)

S

R

(©)

Figure 1. A. Running times (in seconds) for the Viterbi algorithm in regular and DMC HMMs. B. Running times for one
Baum-Welch iteration in regular and DMC HMMs. C. Baum-Welch running time as a function of R (top panel), along
with the average number of transition matrix terms needed to be exactly computed at each R value (bottom panel). The

dotted line indicates the optimal value of R.

regular Baum-Welch algorithm is clearly quadratic,
whereas the DMC version, though not quite linear,
is still much faster.

As we discussed in Section 4.4.1, R is a tuning para-
meter whose optimal value depends on the particular
dataset. In the upper panel of Figure 1(C) we see how
the average running time for one iteration of Baum-
Welch varies with R while learning a 100-state DMC
HMM with K = 10. The dataset consists of 10,000
observations generated from a 100-state DMC HMM
with K = 10. In the lower panel we plot the aver-
age number of entries per row of the transition matrix
needed to be calculated exactly during the procedure
to calculate the S matrix. This is equivalent to the av-
erage number of inner loop iterations during S matrix
calculation in Section 4.4.1. Ideally this value should
be as close to K as possible at the value of R which
yields the fastest average running time, in order to
achieve a running time of O(TNK + RN?). In the
case of Figure 1(C) it is much less than 100 but still
larger than 10. Therefore, though we do not achieve
the lower bound running time, the DMC transition
matrix re-estimation procedure is much faster than the
worst case O(T'N?) running time.

5.2. Accuracy

We would like to measure how well DMC HMMs model
different data sets compared to their regular HMM
counterparts. We do this by learning regular and DMC
HMMs with different values of K using Baum-Welch
on a training data set until the likelihood stops im-
proving on a test set, and examining the test set log-
likelihood scores. The three data sets we use include
two synthetic and one real-world data set. For each
set of experiments we include as baseline experiments
a 20-state HMM with a uniform transition matrix (es-

b4 + Regular HMM
£ —DMC K=5
s DMC K=4
---DMC K=3

- - DMC K=2

- DMC K=1

> Small HMM

o Uniform HMM

Avg. test-set Joglikelihood

{
N
w
N
T
o~

60 léO
Baum-Welch iteration
Figure 2. DMC-friendly data set learning curves for 20-

state DMC HMMs with different K values, compared to
a 20-state regular HMM and two control models.

sentially a gaussian mixture model) to see whether
the transition matrix is essential, and a 5-state reg-
ular HMM to see whether a large number of states are
needed. The synthetic data sets are generated from
HMMs with highly overlapping states, since gaussian
HMM data with well-separated states can be ade-
quately modeled with a gaussian mixture model. The
Anti-DMC data sets were generated from a 20-state
HMM whose transition model is designed to break the
DMC assumption; the transition probabilities are pro-
portional to the sequence 1,2,3,...,20 in each state.
The DMC-friendly data set is generated from an HMM
with a DMC transition matrix, where the top 5 tran-
sition probabilities for each state capture 60% of the
probability mass. Both synthetic data sets consist of
25,000 datapoints, with 20,000 used for training and
the rest as a test set. From the Motionlogger data,



Fast Inference and Learning in Large-State-Space HMMs

x 10"
27 #WWFW
++++++ emE e =
©
o
(o]
£ ¢
O
L ;
g28 i
3 |1
|
L b
7] 3 + Regular HMM
2 P —DMCK=5 #
g» DMC K=4
Z ---DMC K=3
—2.91 - - DMC K=2
> - DMC K=1
g > Small HMM
l > © Uniform HMM
D> L J
0 100

50
Baum-Welch iteration

(A)

x 10*

+ Regular HMM
—DMC K=5
DMC K=4
---DMC K=3
- - DMC K=2
- DMC K=1
> Small HMM
o Uniform HMM

Avg. test—set loglikelihood

9.4 ©

50 ) 100
Baum-Welch iteration

(B)

Figure 3. Learning curves for 20-state DMC HMMs with different K values on the (A) Anti-DMC and (B) Motionlogger
data sets, compared to a 20-state regular HMM and two control models.

10,000 rows are used for training and the rest for test-
ing. Each of the learning curves is calculated by aver-
aging 5 runs of Baum-Welch at every iteration.

5.2.1. COMPARING REGULAR AND DMC HMMSs

Figures 2 and 3 show learning curves for regular and
DMC HMMs for the different data sets with different
parameter settings, along with a regular 5-state HMM
and uniform 20-state HMM as the baseline. Figure 2
compares a regular 20-state HMM to 20-state DMC
HMMs with K ranging from 5 to 1, on the DMC-
friendly data set. The DMC model with K=5 achieves
the likelihood achieved by the full model, while the
other DMC models still outperform the baselines by
a large margin. Keeping track of even a single tran-
sition probability parameter per state (as the DMC
model with K=1 does) makes a large difference as
compared to the uniform HMM (which can be thought
of as a DMC model with K=0). Figure 3(A) shows
similar learning curves for the Anti-DMC data set.
Here the DMC models beat the uniform HMM by a
smaller margin, and the DMC HMM with K=1 is al-
most the same as the uniform HMM. The Anti-DMC
data set is designed to confound the DMC assump-
tion, meaning that the 15 transition probabilities being
treated as constant for each state actually vary by a
large amount, and they contain a large portion of the
probability mass for each state. Figure 3(B) shows
similar learning curves on the Motionlogger data set.
Here the DMC models do much better, with the K=5
model achieving the likelihood of the full HMM, and

Table 1. Average test set log-likelihoods at convergence for
regular and DMC HMMs with 100 transition parameters
on the (A) DMC-friendly, (B) Anti-DMC, and (C) Motion-
logger data sets.

HMM TYPE A B C

REGULAR N =10 -22829  -27681 -81948
DMC N=20,K =5 -22780 -27098 -80101
DMC N =25K =4 -22783  -27076  -80170
DMC N =50,K =2 -22807 -27054 -79616
DMC N =100, K =1 -22847 -27070 -79283

all the DMC models outperforming the baselines by
a large margin. This indicates that the data is well-
suited to the DMC assumption.

5.2.2. TRADEOFFS BETWEEN N AND K

We would like to study the tradeoff between the DMC
parameter K and the number of states in the HMM.
For all three data sets considered above, we train a
number of different models and compare their average
test set log-likelihoods at convergence. We keep the
number of transition parameters constant as we de-
crease K and increase the number of states, and see
how the resulting models fare on test sets. In Table 1,
we see that, among HMMs with 100 transition para-
meters, our three data sets are best modeled by DMC
HMMs with different pairs of (N, K) values. When
varying N and K in this manner, we are giving the
HMM more parameters to fit features in the data, but
fewer parameters per state to model its transition pat-



Fast Inference and Learning in Large-State-Space HMMs

terns. Different (N, K) pairs may be explored to find
settings that best explain the data, where the space of
(N, K) values considered is bounded by running time
considerations or domain knowledge.

6. Discussion

The DMC assumption induces just enough structure
in the transition matrix to allow faster algorithms for
the three canonical HMM problems, without impos-
ing so much structure as to be overly restrictive as in
the case of sparse transition models. Empirical results
show considerable speedups for large HMMSs in both
inference and learning. The resulting class of approxi-
mations can be viewed as a parameterized mechanism
for partially ignoring the sequential aspect of the data.
K = N —1 gives us the regular HMM which models all
possible transition probabilities, while the DMC HMM
with K=1 models only one distinct transition proba-
bility per state, the largest one, and approximates the
remaining sequential information in return for com-
putational gains. Figures 2 and 3 show how, for a
gaussian-based HMM, the DMC model can segue from
a full HMM (K = N —1) to a gaussian mixture model
(K =0).

It seems that the accuracy of DMC models is deter-
mined by the extent to which the approximated prob-
abilities conform to the DMC assumption, as well as
the probability mass encapsulated by the K largest
transition probabilities in each state on average. Do-
mains where each underlying state transitions mostly
to a small subset of states, but may in principle transit
to any other state at times, are well-suited for DMC
HMDMs in terms of accuracy. Alternatively, in scenar-
ios with large state-spaces where regular HMM algo-
rithms would take too long, the speed of DMC HMM
algorithms is the motivating factor for their usage
rather than the exact suitability of the DMC assump-
tion for the data. This is well justified since, as we
demonstrated, explicitly modeling even a small frac-
tion of transition probabilities in a large state-space
HMM results in a more powerful and accurate model
than a much smaller HMM, or an equally large state-
space model that doesn’t model transitions at all.

Aside from being a useful paradigm for efficiently
working with large HMMs, the DMC HMM model is
highly promising as a regularization mechanism to pre-
vent overfitting when working with data that is well-
modeled by large HMMs. A regular 100-state HMM
has 10,000 transition probabilities that need to be
learned; a DMC HMM of equal size with K=5 has only
500. Another potential application of DMC HMMs is
fast sparse structure discovery; that is, a method for ef-

ficiently to discovering the transition structure in data
that is well explained by a large HMM with a sparse
transition matrix.

Acknowledgements

We would like to acknowledge the reviewers’ com-
ments which were extremely helpful, as well as discus-
sions with Brigham Anderson. This work was partially
funded by DARPA grant #NBCHD030010 and NSF
ITR grant #CCF-0121671.

References

Bahl, L. R., Jelinek, F., & Mercer, R. L. (1983). A max-
imum likelihood approach to continouous speech recog-
nition. IEEE Trans Pattern Anal Machine Intell. (pp.
179-190).

Baum, L. (1972). An inequality and associated maximiza-
tion technique in statistical estimation of probabilistic
functions of a Markov process. Inequalities, 3, 1-8.

Brand, M., Oliver, N., & Pentland, A. (1997). Coupled
hidden Markov models for complex action recognition.
Proceedings of the Conference on Computer Vision and
Pattern Recognition (CVPR).

El-Difrawy, P. B. S., & Ehrlich, D. (2002). Hidden Markov
Models for DNA Sequencing. Proceedings of Workshop

on Genomic Signal Processing and Statistics (GEN-
SIPS).

Felzenszwalb, P., Huttenlocher, D., & Kleinberg, J. (2003).
Fast Algorithms for Large State Space HMMSs with Ap-
plications to Web Usage Analysis. Advances in Neural
Information Processing Systems (NIPS).

Murphy, K., & Paskin, M. (2002). Linear Time Inference
in Hierarchical HMMs. Advances in Neural Information
Processing Systems (NIPS).

Rabiner, L. R. (1989). A tutorial on Hidden Markov Mod-
els and Selected Applications in Speech Recognition.
Proc. IEEE, 77, 257-285.

Salakhutdinov, R., Roweis, S., & Ghahramani, Z. (2003).
Optimization with EM and Expectation-Conjugate-

Gradient. Proceedings, Intl. Conf. on Machine Learning
(ICML).

Seymore, K., McCallum, A., & Rosenfeld, R. (1999).
Learning hidden Markov model structure for informa-
tion extraction. AAAI’99 Workshop on Machine Learn-
ing for Information Extraction.

Viterbi, A. J. (1967). Error bounds for convolutional
codes and an asymptotically optimum decoding algo-
rithm. IEEFE Transactions on Information Theory, 1T-
18, 260-267.



