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Abstract

We propose machine learning methods for
the estimation of deformation fields that
transform two given objects into each other,
thereby establishing a dense point to point
correspondence. The fields are computed us-
ing a modified support vector machine con-
taining a penalty enforcing that points of one
object will be mapped to “similar” points on
the other one. Our system, which contains
little engineering or domain knowledge, deliv-
ers state of the art performance. We present
application results including close to photo-
realistic morphs of 3D head models.

1. Introduction

Over the last decade, machine learning has found its
way into a number of engineering domains, ranging
from machine vision and telephony to bioinformatics.
A large and important area where machine learning
applications are relatively sparse, however, is the field
of computer graphics. Although there have been some
learning applications (Beymer & Poggio, 1994; Bregler
& Omohundro, 1995; Freeman et al., 2002; Grochow
et al., 2004; Saul & Jordan, 1997, e.g.), as well as the
use of statistical techniques such as PCA in graphics,
it is probably fair to say that when compared to com-
puter vision (its sister discipline), computer graphics
has so far seen relatively little applications of state-
of-the-art machine learning methods. The present pa-
per deals with a problem which we believe is both im-
portant for computer graphics and very well suited to
machine learning, making it an ideal sandbox for mod-
ern machine learning methods. The techniques which
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Figure 1. The images of the two heads (left and right) are
linearly superposed (middle), leading to an image which
no longer is an admissible head. Under pixelwise addition,
the class of head images is not closed and does thus not
form a linear space.

we will apply belong to the class of kernel methods,
which are considered to be among the most accurate
and easy-to-deploy machine learning algorithms (Vap-
nik, 1998; Cristianini & Shawe-Taylor, 2000; Scholkopf
& Smola, 2002).

Most kernel methods, including the Support Vector
Machine (SVM), share the use of a positive definite
kernel k : X x X — R. Here, X is the domain in
which the empirical data live. Positive definite kernels
are characterized by the property that there exists a
mapping ® from X into a Hilbert space H (the re-
producing kernel Hilbert space associated with k) such
that for all z,2' € X,

k(x,2") = (®(x), ®()) . (1)

This paper presents a kernel method for the estimation
of correspondences between objects. It is organized as
follows. The next section briefly reviews the corre-
spondence problem, including some prior work in the
field. Section 3 describes our algorithm for computing
deformation mappings between objects. The approach
builds on an SV regression method for implicit surface
modeling, described in Section 4. In Section 5, we
show some application results, and we conclude with
a discussion (Section 6).
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2. Correspondence and Morphing

The study of object correspondence is one of the basic
issues of computer graphics, and is intimately related
to the problem of morphing. To illustrate it, consider
Figure 1. If we are given two face images Iy, Iy (for
the sake of simplicity, consider b/w images and think
of them as scalar functions on [0,1]?), and we would
like to produce a third image which is “in between”
the other two, then we might first attempt to simply
compute a superposition %Il + %IQ. However, as the
figure illustrates, this does not lead to satisfactory re-
sults. It produces ghost contours caused by the fact
that, for instance, the eyes of the two faces were not
aligned before computing the superposition. If, on the
other hand, we manage to align all relevant facial fea-
tures in I; with the corresponding ones in I, then
the two faces are said to be in correspondence. Obvi-
ously, such an alignment will typically not be possible
by, say, an affine transformation of the image plane.
Usually, it is characterized by a warp or deformation
field T : [0,1)> — [0,1]?, which, given any point in
I, specifies to which point in I it corresponds.! As-
suming that 7 is onto, the warped image I] is con-
structed as follows: the intensity I7(z’, ') is the mean
of all I (x,y) satisfying 7(z,y) = (2',y’). Whilst the
warped I will usually not be equal to I3, at least the
facial features in I will be aligned with the ones of I,
in which case images like AI] 4+ (1 — A\)I2 should look
like meaningful face images. Once a class of images
is thus brought into correspondence, such superposi-
tions will not take us outside the class; it is in this
sense that people refer to such classes as linear object
classes (Vetter & Poggio, 1997; Blanz & Vetter, 1999).

The present paper proposes a machine learning
method for computing warps between general object
classes, focusing on surfaces embedded into 3D. Auto-
mated algorithms for computing warps between sur-
faces have been presented previously. For parameter-
ized surfaces of human faces that were captured with
a laser scanner, Blanz and Vetter (1999) proposed a
modified optical flow algorithm; cf. also (Cootes et al.,
1998) for an approach based on corresponding pairs of
landmark points. For shapes such as animals or human
bodies, methods have been developed that match each
mesh vertex of the first shape to the most similar point
on the second mesh (Shelton, 2000; Allen et al., 2003).

!This is sometimes called a forward warp, as opposed
to a backward warp, where the roles of I; and I2 are inter-
changed. For continuous images and invertible warps, the
backward warp is the inverse of the forward warp; how-
ever, if the images are spatially discretized, the warps are
not guaranteed to map pixels to individual pixels, and in-
terpolation is necessary.

These methods minimize the distance to the target
mesh and maximize the smoothness of the deforma-
tion in terms of stiffness of the source mesh (Shelton,
2000) or the similarity between transformations of ad-
jacent vertices (Allen et al., 2003). For matching par-
tially overlapping portions of the same surface, Itera-
tive Closest Point Algorithms (Besl & McKay, 1992;
Rusinkiewicz & Levoy, 2001) provide a reliable solu-
tion. A variety of methods are available for medical
data registration (Audette et al., 2000).

In contrast to deformations defined only on the sur-
face, a volume deformation algorithm based on free-
form-deformations with B-Splines between landmark
points has been described for MRI scans of human
brains (Rueckert & Frangi, 2003). Miiller et al. (2004)
extend a physically plausible deformation from a set
of sample points to the whole object using a Mov-
ing Least Squares approach. Cohen-Or et al. (1998)
morph two objects into each other by first applying
an elastic deformation based on landmark point corre-
spondences and then blending two implicit functions
describing the objects into each other.

The algorithm to be described below will belong to the
class of volume deformation methods — it will com-
pute a deformation field not only for the object sur-
faces, but also in a neighborhood around the surfaces,
as chosen by the user.

3. Learning Correspondence

Suppose we are given two objects O; and Oz, both
being elements of an object class O. We assume the
objects are embedded in a domain X, which we may
think of as a subset of R”.

3.1. Locational Cost

The main idea of our approach is that intuitively, a
good warp from O; to O has the general property that
it will map x € X to a point 7(z) such that relative
to x, O1 looks like Oo relative to T(x). For instance,
it could be that O; in the vicinity of x is similar to
O3 in the vicinity of 7(x), with respect to a specific
discrepancy measure.

We formalize this intuition in a cost function
Cloc(O1,x,02,7(x)). (2)

Due to its conceptual similarity to the locational ker-
nels defined by Bartlett and Schélkopf (2001), we refer
to cjoc as a locational cost function. Note that such ker-
nels or cost functions are actually used in a variety of
domains, including bioinformatics (Zien et al., 2000).
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Locational cost functions can readily be constructed
if, for instance, we are given feature functions fy, fo :
X — R capturing relevant properties of O1,05. For
our warping application, a good choice of such func-
tions are those that have the object surfaces as their
zero sets, called implicit surfaces; in particular, the so-
called signed distance function: at any given point in
space, the modulus of the signed distance function is
the distance of the point to the object surface, and its
sign is positive outside the object and negative inside.
By definition, the zero set of the signed distance func-
tion coincides with the object’s surface, thus the signed
distance function implicitly describes the surface. In
Section 4, we will describe a way to construct an ap-
proximation of the signed distance function which we
will use in our experiments.

Below, d is a metric, and we may think of fi, f>
as the signed distance functions of O;,0,. We
now list some examples of locational cost functions
Cloc(01, 2,02, 7(x)),

1. preserving signed distances,

d(fi(z), f2(7(2)))? 3)

(in particular, this measures whether surface
points get mapped to surface points),

2. ... and higher order differential properties,
= i i 2
> d (V' fi(e), V' falr(@))) (4)
i=0

where the «; are weighting coefficients determin-
ing the contribution of the higher order terms,

3. ... over neighborhoods,
Y dlfile+Ax), fo(r(@) + Ax)*, (5)
AzeN

where N is some “neighborhood” set such as the
vertices of a regular simplex centered at 0,

4. ... using multiple functions,

> d(fi@), f(r (@), (6)

where the f? are different feature functions com-
puted from the objects, e.g., implicit surface ap-
proximations computed at different length scales.

5. One can also define locational cost functions from
kernels: a locational kernel is a positive definite
kernel on (O x X)) x (O x X). If ¥ is the associated
feature map, we could use

101, 2) = ¥ (O, 7(2))]|*. (7)

Note that if d is the standard Euclidean metric in the
first four examples, then the last example is the most
general — it subsumes the other ones as special cases.

3.2. Landmark Training Point Cost

Computer graphics methods for determining corre-
spondence are often based on a set of landmark points.
When computing correspondence between images, say,
these are typically points that a user manually clicks
on in both images, such as the tip of the nose or the
corners of the eyes. If available, such pairs of landmark
points (z1,21), .-+, (Tm, zm) (where z; belongs to O
and z; to Oz) can be incorporated into the objective
function using a term ¢, (7(21), ..., T(Tm), 215+ - - s Zm)-

The above joint dependence of the cost on all point
pairs allows the incorporation of constraints on the
relative position of points. However, for simplicity, we
will in our experiments only use an additive cost

ep(T(@1), o, T(Tm), 215 - s Zm) = Z 7 (2i) — 22
. (8)

3.3. Function Class and Regularizer

Locational costs and pairs of landmark points may not
sufficiently constrain the problem to lead to a satisfy-
ing overall solution. We thus incorporate an SVM style
large margin regularizer, and optimimize over a class
of warps where each component function is expressed
as a linear function in a reproducing kernel Hilbert
space ‘H induced by a kernel k,

Ta(x) = 20 + (Wge, ®(2)) . (9)

Here, ® is the feature map of k, x4 is the dth compo-
nent of z (likewise for 74), and wy € H.

As a regularizer, we will use

1 D
5 lIwal’® (10)
i=d

thus regularizing the component functions separately.
Better performance may be possible using more so-
phisticated regression schemes (Weston et al., 2003;
Bakir et al., 2004; Micchelli & Pontil, 2005, e.g.), but
we do not pursue this in the present paper.

3.4. Objective Function

Putting together the pieces, we end up with an objec-
tive function of the form

1 D m
5 O lwall® 4+ 2, 3 lIr(a) — i
d=1 i=1
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+)\loc/XCloc(Ol7an27T(x)) du(‘r)a (11)

to be minimized over warps 7 of the form (9). The pa-
rameters Ap, A\joc > 0 determine the relative influence
of the error terms, and p is a measure whose support
covers the area in which we want to estimate the de-
formation field, e.g., the vicinity of the surface of O;.
To turn this optimization problem into a practical one,
we use the empirical measure arising from sampling a
set of points in the desired area. The generalized rep-
resenter theorem (Wahba, 1990; Scholkopf & Smola,
2002) then states that the optimal deformation 7 can
be expressed as a finite expansion of kernels centered
at the training points, i.e., the landmark correspon-
dences and the above sampled points. We thus need
to optimize only over the expansion coefficients.

In general a warp can be split into a rigid and an elastic
transformation. We focus on the latter, as there are
numerous algorithms to estimate the rigid part based
on some landmark points (Haralick & Shapiro, 1992).

3.5. Optimization

However, the optimization problem (11) remains a dif-
ficult non-convex problem with spurious local minima.
In such problems, it is helpful to construct a good
starting point. If we have landmark points (i.e., if
m > 0), one way to proceed is to set \jo. to zero ini-
tially. In that case, the problem can be decomposed
into D problems of the form

1 m
minimize - [wal* + 2, ; (@) = zial*. (12)

This is a convex quadratic program corresponding to
an SVM with a squared loss function. Taking this as
an initial solution, we then optimize (11) using gradi-
ent descent.

As a kernel, we use the Wu function (Schaback, 1995)
k(r)=(1—7r)%(4+ 16r + 120r% + 3r%), (13)
|z—yll

where r = *=—=%. It has compact support of size ¢ > 0
(leading to sparse kernel matrices) and is in C?(R3).

To further stabilize the optimisation process, we ap-
ply a multi-scale scheme. We use wide kernels in or-
der to make sure that the sparse landmark point cor-
respondences lead to a good initial guess in a larger
vicinity. For matching detail structures on the sur-
face of the second object, we need enough flexibility in
the model as provided by smaller kernels. We iterate
the optimization procedure from coarse to fine and ap-
proximate the residual errors on the next finer scale.

We stop the refinement process once the kernel width
reaches the size of the smallest surface features. As
kernel widths, a cascade of 1/2,1/4, ... of the diameter
of the object is used.

The volume X is sampled at each scale at a resolution
necessary to yield on optimisation problem as small
as possible. We extract approximatly equally spaced
points by recursively subdividing an initial bounding
box until the boxes reach a resolution smaller than a
chosen fraction the kernel width (in our case %). We
then take the center point of those boxes to be a train-
ing point in our optimisation problem. Boxes are just
subdivided if they lie within the volume X. This way
we efficiently construct a uniform sampling yielding a
sparse kernel matrix with a time requirement propor-
tional to the sampling volume.

In the experiments to be shown below, we use Eu-
clidean 2-norms everywhere, and as a locational cost
function we use one which depends on signed distances
f1, fo as well as their gradients (cf. (4)), where f; is
computed from O; as described in the next section.
Although preserving the warped points’ distance to
the surface (and the gradients of the signed distance
function) does not completely determine their 3D posi-
tion, it turns out that together with the regularization,
this will lead to rather good overall deformation fields.

4. Surface Reconstruction

Implicit surface modeling is based on the idea that a
surface can be described as the set of all z € X C RP
(D being the dimension of input space) for which a
function f : X — R equals zero. The method we are
using is described in detail in (Steinke et al., 2005);
thus we presently give only a brief account.

Similar to Walder and Lovell (2003) and Schdlkopf
et al. (2005), we model the surface as a hyperplane
in the reproducing kernel Hilbert space H, i.e., as the
zero set of

f(@) = (w,®(z)) +b, (14)
where w € H,b € R. Using SV regression, f can be
written as

flz) = Zaik(xi,x) + b, (15)
i=1

where k satisfies (1). As input for the construction pro-
cess we use points on the surface of the object as well
as surface normals. The regression is trained both on
the given surface points (with target values 0) and on
especially constructed off-surface points (see below).

We use a modification of standard e-insensitive SV re-
gression by setting the offset b to a fixed value. With
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this change and a compactly supported radial basis
function (such as the Wu function (13)), the dual prob-
lem turns out to be a convex quadratic program with
just a box constraint and a sparse kernel matrix. We
can solve this problem rather efficiently by applying a
coordinate descent method.

As above, we use a multi-scale scheme to improve the
interpolation properties of the implicit surface function
and have enough flexibilty at the same time. The off-
surface training points are constructed with a method
similar to the one used by Carr et al. (2001): We con-
struct training points by displacing the surface points
along their surface normals. If those are not directly
given from the laser scanner, they can be estimated
from nearest neighbor information (provided the sam-
pling is sufficiently dense).

Overall, this procedure efficiently and reliably con-
structs a signed distance approximation in the vincin-
ity of the surface of the object which can be used as
feature function in our warping experiments.

5. Experimental Results

We first show results on synthetic 2D data, illustrating
the effect of different locational cost functions. Fig-
ure 2 shows some simple geometric 2D outlines which
we approximate as zero sets of kernel expansions, using
the method of Section 4. We then compute deforma-
tion fields which turn the first object into the second
one, using different cost functions (Section 3.1). The
results show that compared to a simple blending of
implicit functions, a cost function preserving distances
(3) leads to better results, and a cost function incorpo-
rating distances and gradients (cf. (4)) yields a rather
good morph, computed by transforming the left image
with 50% of the deformation field. This will henceforth
be our default cost function.

We next move to 3D data, including head scans from
the MPI face database (Blanz & Vetter, 1999), a
scan of an artifact, available as a 3D demo object
from Cyberware, and two chess pieces taken from
http: //www.buckrogers.demon.co.uk. Figures 3 — 6
show that very realistic results are achieved, with little
or no user intervention.

The computational effort to construct these warps de-
pends significantly on how one chooses the warping
volume X and how densely it is sampled. In most
cases, we used the vicinity of the surface as our training
region and typically constructed around 100k points
for the 3D morphs. The runtime using our current im-
plementation, which is not yet optimized for speed, is
then about 2h on a recent Pentium processor.

.,/‘{{(J\\ ‘,..
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J

Figure 2. 2D toy example of different morphs between the
two left images. First row: Using the cost function (3)
which attempts to preserve distances to the surface, we ob-
tain a 50% morph (third image) which is reasonable but
not optimal. The warp field, shown on the right, reveals
that the algorithm tries to shrink the upper part and ex-
pand the lower part of the triangular protrusion. Second
row: If we use a cost function which is also sensitive to
gradients of the signed distance function (cf. (4)), then the
warp is forced to displace points on the top and bottom
sides of the triangle to corresponding points on the shifted
triangle. This leads to a satisfactory morph (third image
from the left). Third row: One might think that a good
morph could also be obtained by simply taking a convex
combination (with equal weights) of the two signed dis-
tance functions, as approximated using our kernel method,
and rendering its zero set. The last image shows that this
approach already fails for our toy example.

The main parameters of our method are the kernel
width o and the regularization constants A, Ajoc (Sec-
tion 3.4). The former was chosen as described in Sec-
tion 3.5; the latter were set manually by visually in-
specting the results. While it is standard procedure in
computer graphics research to have a number of hand-
tunable parameters, it would clearly be desirable from
a machine learning point of view to develop some au-
tomatic means of parameter tuning. This was not yet
done in the present work; however, we note that there
are several possibilities. (1) In principle, we can use
a holdout subset of the unlabelled data (z;,7(z;)) en-
tering into the locational cost term. The advantage
of this is that we have an unlimited supply of such
data; however, having a small holdout error on this
kind of data points is only necessary, but not sufficient
for good performance (e.g., it only validates that the
warp indeed preserves the signed distance function).
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Start 25%

50%

5% Target

Figure 3. A morph between a male and a female head from the MPI face database. The two heads are of significantly
different size, adding to the difficulty of the correspondence problem. We computed a deformation field using our proposed
algorithm and the signed distance and the iso-distance normals (cf. (4)) as feature functions. Note that the input to the
algorithm are only the 3D models (roughly aligned); no landmark point correspondences were used. Following this, we
took the original mesh describing the male head, and transformed its vertices linearly from the initial to the final position
along the direction of the deformation field. The color was also linearly interpolated in RGB space between the start and
the target object. We thus obtain a sequence of full 3D models, frontal views of which are shown.

1112z

Start 25% 50% 75% Target

Figure 4. We used the same technique as in Figure 3 to
generate a morph between a queen and a pawn.

We are already informally using this method to reduce
the search space in our experiments. (2) If a sufficient
number of labelled training data (i.e., pairs of land-
mark points on the two objects) are available, they
could be used to evaluate the quality of the morphs or
to tune parameters. For instance, in Figure 5 D, E,
F, the mean Euclidean errors of the pairs of landmark
points are 3.87%, 3.33%, and 0.01% of the object di-
ameter, respectively (recall that in Figure 5 F, these
points were used in the training of the warp, which
explains the low error).

Another method for automatic parameter tuning could
arise from a consistency test: if we compute warps
in both directions and concatenate them, we should
recover the original object.

6. Discussion

We have described a method for estimating a dense
deformation field between objects represented by fea-
ture functions and, if available, pairs of corresponding
surface points. Our algorithm is an SVM which is
augmented by a novel penalty term for surface fitting,
enforcing the warp to preserve location-dependent fea-

tures of the objects. In contrast to many other morph-
ing methods, our warp is defined on the whole space in
which the object lives, not just on the object’s surface.

Establishing correspondence between surfaces has be-
come relevant for statistical treatments of classes of
objects (Blanz & Vetter, 1999), and we anticipate that
the extrapolation in depth may open new fields of
shape modeling in the future. For human faces, it
could be used for warping additional structures, such
as anatomical structures inside of the head, e.g., teeth
or bone structures. Our technique could be applied
not only for visual effects, but also in medicine or for
scientific visualization and modeling of volume data.

On several 2D and 3D examples, we have shown
rather encouraging morphing results. These were ob-
tained mainly using implicit surface functions (esti-
mating the signed distance) and their first derivatives
(iso-distance normals) as feature functions entering
the location-dependent penalty term. We conclude
that the signed distance function contains information
which is very useful for computing warps. Our con-
clusions are admittedly somewhat preliminary; other
locational cost functions should be explored. From a
graphics point of view, an attractive choice would be a
cost function incorporating color and texture informa-
tion; from a machine learning point of view, it would
be attractive to have functions that can be computed
using the kernel trick (cf. (7)).

Note that presently, all our morphs linearly apply the
warp field. It would be interesting to give up this
simplifying restriction, e.g., by incorporating model
knowledge akin to what has been proposed by Saul and
Jordan (1997), morphing along paths of high probabil-

1ty.
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Figure 5. We constructed a correspondence field from the Igea artifact (A) to a female face from the MPI face database
(B). We calculated the implicit surface functions and the deformation fields. Using these, the color of the face point
closest to the transformed vertex of the Igea mesh was used to color the artifact (which originally comes without texture).
In D, the deformation field was based only on the signed distance (3). Note that the eyebrows are mapped to the top
of the forehead. Using additionally gradient information (cf. (4)), the correspondence becomes more accurate, leading to
correct eyebrows (E). The best result (F) is obtained if we manually provide 13 pairs of landmark points (Section 3.2) on
both objects (shown for the Igea in C), taken into account during training the deformation field.

25% 50% 5% Target

Figure 6. The deformation field underlying the texturing of Figure 5 F is used to morph the artifact into a female head.
We again applied the warp to the vertices of object one, and linearly interpolated from the initial to the final position.
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We believe that the present work illustrates the poten-
tial of machine learning methods for nontrivial shape
processing tasks. The methods described in this pa-
per are a promising starting point, which could be ex-
tended in a number of ways, including their application
to higher dimensional problems such as the morphing
of video sequences.
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