Coarticulation:
An Approach for Generating Concurrent Plans in

Markov Decision Processes

Khashayar Rohanimanesh
Sridhar Mahadevan

KHASHQCS.UMASS.EDU
MAHADEVA@QCS.UMASS.EDU

Department of Computer Science, University of Massachusetts, Amherst, MA 01003

Abstract

We study an approach for performing concur-
rent activities in Markov decision processes
(MDPs) based on the coarticulation frame-
work. We assume that the agent has multiple
degrees of freedom (DOF) in the action space
which enables it to perform activities simul-
taneously. We demonstrate that one natural
way for generating concurrency in the system
is by coarticulating among the set of learned
activities available to the agent. In general
due to the multiple DOF in the system, of-
ten there exists a redundant set of admissi-
ble sub-optimal policies associated with each
learned activity. Such flexibility enables the
agent to concurrently commit to several sub-
goals according to their priority levels, given
a new task defined in terms of a set of priori-
tized subgoals . We present efficient approx-
imate algorithms for computing such policies
and for generating concurrent plans. We also
evaluate our approach in a simulated domain.

1. Introduction

Every day in our life we constantly perform concur-
rent activities. By exploiting many degrees of freedom
(DOF) in our body (e.g., arms, legs, eyes, etc), we are
able to simultaneously commit to several tasks and
as a result generate concurrent plans. As an example
consider a driving task which may involve subgoals
such as safely navigating the car, talking on the cell
phone, and drinking coffee, with the first subgoal tak-
ing precedence over the others. Having the benefit
of extra DOF in our body, we are able to simultane-

Appearing in Proceedings of the 22™¢ International Confer-
ence on Machine Learning, Bonn, Germany, 2005. Copy-
right 2005 by the author(s)/owner(s).

ously commit to multiple subgoals. For example we
can control the wheels by the left arm and use the
right arm to answer the cell phone, or drink coffee.
In general concurrent decision making is a challenging
problem, since subgoals often have conflicting objec-
tives and compete for the limited DOF in the system.
However, the main challenge with this problem is the
combinatorial space of possible concurrent actions that
includes every possible combination of control signals
(e.g., primitive actions in MDPs) for controlling the
DOF in the system.

In this paper we study an approach for generating
concurrent plans based on the coarticulation frame-
work introduced in (Rohanimanesh et al., 2004). We
demonstrate how this approach can cope with the
curse of dimensionality incurred in systems with ex-
cess degrees of freedom, and that it can be viewed as
one natural way for generating concurrent plans. The
key idea is that for many goal-oriented activities — in
addition to the optimal policy — often there exists a set
of ascending (and possibly sub-optimal) policies that
guarantee achieving the goal with a cost of a slight
deviation from optimality. Such flexibility enables the
agent to simultaneously commit to multiple subgoals.

We argue that coarticulation is a natural way for gen-
erating parallel execution plans for several reasons.
First, many concurrent decision making problems can
be actually viewed as concurrent optimization of a set
of prioritized subgoals, in which the agent manages
its DOF' to simultaneously commit to them. Second,
because of the multiple DOF in the system, learned
activities offer more flexibility in terms of the range
of ascending policies associated with them. For exam-
ple in the driving task, while the best policy for driv-
ing the car would be to control the wheel using both
arms, by exploiting the extra DOF in our body we
can perform the same task sub-optimally by engaging
one arm for turning the wheel and releasing the other
arm for committing to the other subgoals of lower pri-

Coarticulation: An Approach for Generating Concurrent Plans

ority such as drinking coffee, for example. However,
the key advantage of coarticulation in concurrent de-
cision making lies in its efficient search in the expo-
nential space of concurrent actions. The action selec-
tion mechanism in this approach is restricted to those
that ascend the value functions associated with each
activity. This interactive search enables the agent to
perform the search in a much smaller set of concurrent
actions with a controllable cost in optimality.

In this work, we also present approximate algorithms
for scaling the coarticulation framework to large do-
mains, such as concurrent decision making in MDPs,
where the concurrent action space is exponentially
large. Unfortunately the algorithms presented in (Ro-
hanimanesh et al., 2004) do not scale to such large
domains. Thus efficient algorithms for computing the
set of ascending policies for activities, and also scalable
algorithms for the action selection problem is required.

Most of the related work in the context of Markov
decision processes assume that the subprocesses mod-
eling the activities are additive utility independent
(Boutilier et al., 1997; Singh & Cohn, 1998; Guestrin &
Gordon, 2002) and do not address concurrent planning
with a set of learned activities modeled as temporally
extended actions. In contrast we focus on problems
where the overall utility function may be expressed as
a non-linear function of sub-utility functions that have
different priorities.

The rest of this paper is organized as follows: In sec-
tion 2 we briefly overview the coarticulation frame-
work. In section 3 we present approximate algorithms
for scaling the coarticulation framework to large prob-
lems such as the concurrent decision making problem.
We present our empirical results in a simulated do-
main in section 4. Finally, we summarize the paper in
section 5 and describe some future directions.

2. Coarticulation in MDPs

Coarticulation in MDPs (Rohanimanesh et al., 2004)
can be viewed as the problem of simultaneously com-
mitting to multiple subgoals, placing more weight on
subgoals of higher priority. More formally, this ap-
proach assumes that the agent has access to a set of
learned activities modeled by a set of minimum cost-
to-goal eredundant controllers ¢ = {C;}I;. Each
controller is designed to achieve a subgoal w; from
a set of subgoals Q@ = {w;}" ;, and is modeled as a
subgoal option (Precup, 2000) defined over an MDP
M= (S, A, R,P). A controller is e-redundant if it ad-
mits multiple optimal or e-ascending policies. A policy
7 is e-ascending if it satisfies the following conditions:

1. Ascendancy:

Vs € S, ES,NP‘W(S){V*(S/)} —V*(s)>0 (1)
2. e-optimality:
1
VseS, Q% (s,m(s)) > ZV*(S) (2)

The first condition (ascendancy) guarantees that the
policy arrives in a goal state in a bounded number
of steps. The second condition (e-optimality) assures
the policy deviates from the optimal policy by a fac-
tor inversely proportional to e (note that in minimum
cost-to-goal problems all rewards are negative, except
in a goal state). Given a minimum cost-to-goal con-
troller C, we can compute the set of policies that are
e-ascending on V¢ in every state s € S by verifying
the conditions in Equations 1 and 2 for every action
a € A(s). We define the e-redundant set for every state
s €S as:

A (s) = {a € A(s) | a is either optimal, or e-ascending}

Now, given a subset of prioritized subgoals w =
{w;}F_,, the agent has to devise a policy that simulta-
neously commits to the most possible number of sub-
goals according to their degree of significance. We can
think of this problem as a multi-criterion reinforce-
ment learning problem (Gabor et al., 1998), in which
the reward signal is a vector whose elements are the
rewards associated with the controllers, and a lexico-
graphical ordering of such reward vectors are defined
according to the priority order of the controllers. For
specifying the order of priority relation among the con-
trollers we use the expression C; < C;, where the re-
lation “<” expresses the subject-to relation (following
(Huber, 2000)). This equation should read: controller
C; subject-to subtask C;. A priority ranking system is
then specified by a set of relations {C; < C;}. With-
out loss of generality we assume that the controllers
are prioritized based on the following ranking system:

{Cj < CZ|Z < j}

The action selection mechanism in the coarticula-
tion framework takes the ordered intersection of the
e-redundant sets computed for every controller in
progress. The ordered intersection operator works
as follows: First, we set Uy = Ag', and then for
i = 2,3,...,k we perform: U; = U;-1 N AZ. If
U; = 0, we chose U; = U;_1, and continue to the
next iteration. After the algorithm terminates, Uy re-
turns a set of actions that achieve the subgoals ac-
cording to their order of priority. The computational
cost of computing the redundant-sets in every state s
Ag(s) is linear in the number of states and actions:

Coarticulation: An Approach for Generating Concurrent Plans

O(]S] |4]). Also the computational cost of perform-
ing the action selection mechanism in every state s is

O((k — 1) (maxc [AZ(s)])?).

3. Coarticulation and Concurrent
Decision Making

In Section 1, we described several reasons for why coar-
ticulation could be one natural way for generating par-
allel execution plans in systems with multiple DOF.
For example in the driving task, we can design three
controllers associated with the subgoals: Cravigate s
Ceeit, and Ceof fee, Where each controller is defined over
an MDP M = (S, A,R¢,P). The overall objective
can be approximated in terms of the concurrent opti-
mization of the subgoals using the following priority
ranking SyStem: Cnavigate < Ccell < Ccoffee' For
each controller, we can compute the redundant sets,
and then perform the action selection algorithm that
we described in Section 2.

As stated in Section 1, one immediate problem with
applying coarticulation to this problem is the combina-
torial space of concurrent actions. In this example, the
set of actions in the MDP M can be described via a set
of action variables a = {a;}?_,, where each a; controls
a DOF in the system. Each assignment a to the set of
action variables denotes a concurrent action a € A. In
the driving task, for example, there are action vari-
ables associated with the arms, hands, eyes, head,
and so on. The total number of concurrent actions
is exponential in the number of action variables, and
hence the algorithms for computing the redundant sets
and the action selection mechanism that we described
in Section 2 are computationally intractable for such
problems. In the rest of this section, we present an ap-
proximate method for efficiently solving this problem.

The general idea in our approach is rather than verify-
ing the conditions in Equations 1 and 2 for the expo-
nential set of concurrent actions, which is intractable,
we only verify them for the top h concurrent actions
that have the top h state-action values in state s. We
show that our approximate algorithm computes the
top h concurrent actions with the computational com-
plexity logarithmic in h. The parameter h is an input
parameter which can be tuned to counterbalance the
tradeoffs between the computational complexity and
the flexibility of the controller.

Let C be a redundant controller defined over an MDP
M = (S, A,R,P), where the set of concurrent actions
A are described via a set of discrete action variables
a = {a;}? ;. Each action variable a; takes on discrete

Hi— Ha[y He [
‘ N 3
e [T e @ [
Tuw) ToWi) y Ti (W) '
R I N S M=
hi |] [N e
ffffff I S T e
h" values i
Extract values E
Hi » :
: T '
¥ —

Figure 1. Visualization of step 5 of the Algorithm 1. Each
function H; returns a sorted table of size h. From cross
summation of table values across H; functions, a new table
of the top h summations is produced.

values from some finite domain Dom(a;). Without loss
of generality, we assume that Va; € a, |[Dom(a;)| = d.
We further assume that the optimal state-action value
function Q* associated with the controller C is approx-
imated using linear function approximation techniques
(Sutton & Barto, 1998) and admits the following linear
additive form:

m

Q" (s {ar} i) = @ (s aikim) = Y Qulsyw)
- (3)

where each Q;(s,u;) is a local function defined over
states and a subset of action variables u; C a. We
introduce an operator I'” which returns the top h val-
ues of a function Q*(s,a). By exploiting the linearity
of the approximate state-action value function (Equa-
tion 3) we can use an algorithm in spirit similar to the
variable elimination algorithm in Bayesian networks
and efficiently compute I'?.Q*(s,a). Our approach is
inspired by the action selection algorithm introduced
in (Guestrin et al., 2002) that actually solves the spe-
cial case for h = 1 (i.e., T'}), which is the max, op-
erator. It is also closely related to the problem of
finding the h most probable configurations in prob-
abilistic expert systems (Nilsson, 1998). The general
idea is rather than summing all local functions and
then performing the I‘g operator, we perform it over
variables one at a time, using only summands that in-
volve the eliminated variable. For example, consider

Coarticulation: An Approach for Generating Concurrent Plans

the following state-action value function defined over
a set of action variables a = {ay, aq, as}:

Q' (s,a1,a2,a3) = Qi(s,a1) + Qa(s,a1,az) + Qs(s, az, as)

by applying the I'" operator and the variable elimina-
tion algorithm, we obtain:

Fh{al,@,ag}.Q*(s,al,ag,ag) =
Fh{almyaa}.(Ql(s,al) + Qa(s,a1,a2) + Qs(s,a2,a3)) =
I (ary- (Qi(s,a1) ©

F?QQ}. (Q2(57a17a2) ® F}{Las}.Qg(s,ag,ag)))

Note that in the above equation, we used the special
sum operator @, because at each elimination step the
summation is performed over functions that return the
top h maximum values of the past elimination steps,
which need to be combined in order to obtain the up-
dated top h maximum values as a result of the elim-
ination of the next variable. Note that in the special
case h = 1, this operator turns into the plus operator.
The above procedure is summarized in Algorithm 1.
The key computational steps are the steps 5 and 6 of
this algorithm.

Before describing the details of these two steps, first
we introduce some useful notation. Let H(w) denote
a one-to-many function defined over a set of variables
w. Figure 1 shows a tabular view of this function,
and demonstrates the details of the computations per-
formed in the step 5 of the Algorithm 1. For every set-
ting of variables w, it returns the sorted top h values
and assignments to the subset of eliminated variables
from the previous steps (tables T'(W) in Figure 1). Be-
fore the elimination algorithm starts, we can represent
each summand Q;(s,u;) as some function H;(u;) (for
simplifying equations, we drop the state s from the
notations), where every assignment of the variables u;
is mapped to a single value Q;(s,u;). Assume that
the algorithm is at iteration ¢, where the variable a;
is selected for elimination. Let {H;}¥_, be the set of
summands that involve the variable a;. Also let y;
denote the rest of the variables involved in {Hj}?zl
that are connected to a;, and let w; = y; U{a;}. As
shown in Figure 1 , for every setting of variables w;
summand H; returns a sorted top h values and also
the assignments to a subset of past eliminated vari-
ables (represented as tables T;(W;)). There are k such
tables and we need to compute the top h maximum
values from the set of all cross summations of k ele-
ments, one from each table T);(w;).

There are h* such values and a naive approach would
first compute the whole A* summations, and then ex-
tract the top A maximum values, with the computa-
tional complexity of O(h*(k — 1) + hlog(h)) (the first

term is the complexity of computing the summations,
and the second term denotes the complexity of sort-
ing these values). However considering that each ta-
ble is sorted, we can perform the above computation
more efficiently. Rather than summing all the values
across all tables, we perform the summation over two
tables at a time, and extract a new table with the top
h maximum values of the pairwise table summation.
We then repeat it for the rest of the tables. When per-
forming the pairwise cross summation over two tables,
we only need to perform the summation only over the
top Vh elements from each table, since the tables are
sorted. The computational complexity of this method
is O((k — 1)(h + hlog(h))). The final top h elements
are stored in a new function H,;(w;) for the setting w,.

Algorithm 1 Function I'?

Inputs:
S > Current state
Yo Qi(s,ug) > Q* function
{a;} > Elimination order
h > Number of top max elements
Outputs:
{a;, v}, > Top h assignments and values
1: Let F ={Q;(s,u;)}, > set of summands
2: while not all variables eliminated do
3: Pick the next variable a;
4: Extract all summands {H;} from F
that involve a;
5: Perform: H; — ®&({H,})
6: Eliminate a; from H; to obtain H
7 Add H; to F
8: end while

The details of the computations of step 6 of the Algo-
rithm 1 are demonstrated in Figure 2. Note that step
5 returns a newly introduced function H(w;) that in-
volves the variable a;. The elimination takes place in
step 6. First, a new function H~ (y;) is introduced
that involves only the variables connected to a; (i.e.,
vi). Every setting y; is mapped to d tables (where
|Dom(a;)| = d), each for one assignment of the vari-
able a;. Each table contains the top h values and set-
tings for a subset of eliminated variables in the previ-
ous steps. We need to extract the top h values across
these tables. There are d sorted tables of size h, and
we can extract the top h values across them with the
computational complexity of O(h.d). The new set of
values are then stored in the function H; (y;) for the
setting y; (see Figure 2).

This yields the overall computational complexity of

Coarticulation: An Approach for Generating Concurrent Plans

O(nd™! (khlog(h) +h.d)) = O(nkd ™! hlog(h)) for
the Algorithm 1. This complexity is logarithmic in h,
and exponential in the network width (Dechter, 1999)
induced by the structure of the approximate state-
action value function.

Hi
Wi= 3
‘ Dom(aj)=d
‘ d tables
I ‘ I
T3 T2 Ti(;d)
N e e T
Hi ‘ ””””””””””
T
”””” h -—
7777777 Extract vaJues

Figure 2. Visualization of step 6 of the Algorithm 1 where
the variable a; is eliminated.

By performing Algorithm 1 in state s, we obtain the
top h concurrent actions and their values. We can
then verify the ascendancy and e-optimality conditions
that we described in Section 2, for each action. In ei-
ther case, we need to compute V*(s). From the Bell-
man optimality equation (Sutton & Barto, 1998) we
have V*(s) = max, Q*(s,a) ~ ' Q*(s,a) which can
be computed using Algorithm 1. Thus verification of
the e-optimality condition can be efficiently done. For
the ascendancy condition, we need to compute the ex-
pected optimal value of the next states given that the
concurrent action a is executed in state s. Expanding
the optimal state-action value function for the action
a yields:

Q*(s,a) = R(s,a) + ’yES/NPE{V*(s’)}

by subtracting vV*(s) from both sides and rearranging
the terms, we obtain:

Bynpa{V* ()} = V*(s) =

1, .. _ *

;(Q (s,a) = YR(s,a) = yV*(s))
Note that the right hand side of the Equation 4 can
be efficiently computed for a concurrent action a and
can be used to verify the ascendancy condition.

Table 1. Action Variables

Left arm (ay)

Right arm (a,) | Eyes (a.) |

pick
washer-to-front
front-to-rack
rack-to-front
front-to-washer

pick
washer-to-front
front-to-rack
rack-to-front
front-to-washer

fizxate-on-washer
fixate-on-front
fizate-on-rack
n0-0p

stack
no-op

stack
no-op

Given a set of redundant controllers {C;}¥_;, we can
perform Algorithm 1 and compute the redundant sets
for each controller. Note that the cardinality of the
redundant set for the controller C; is at most h;. Thus
the computational complexity of the action selection
mechanism that we described in Section 2 in every
state s becomes O((k — 1) (max; h;)?) which is poly-
nomial in h.

4. Experiments

In this section we present a concurrent decision making
task and apply the coarticulation approach using the
approximate methods that we described in Section 3.
Figure 3 shows a robot with three degrees of freedom,

Dish Rack Dish Washer

Front

Figure 3. The robot’s task is to empty the dish-washer and
stack the plates in the dish-rack.

namely, the eyes, the left arm, and the right arm. The
robot’s task is to empty the dish-washer and stack the
plates in the dish-rack. Each arm of the robot at any
time can be in three predefined positions: washer, rack,
and front as shown in Figure 3. In order to make a
successful arm movement from a source position to
a target position, the robot needs to first fixate at
the target position. The eyes of the robot can also
fixate on any of these positions. The set of actions that
the robot can perform is described via a set of action
variables a = {a;, a,,a.}, each controlling a DOF in
the system. Action variable a; controls the left arm,
a, controls the right arm, and a; controls the eyes of
the robot.

Table 1 shows the control actions for each action vari-

Coarticulation: An Approach for Generating Concurrent Plans

Table 2. State Variables

| Swasher | 1p057 Tposs €pos ‘ lstah Tstat ‘ Srack
0,1...,n | washer has-plate | stacked
front empty not-stacked
rack
able. There are control actions that move one arm

from a source position to a destination position. How-
ever, the arms cannot move directly from washer to
rack, and vice versa. In order to perform such move-
ments, the robot needs to first move the arm from the
source position to the front position, and then from
that position to the target position in two primitive
steps. The control action pick picks up a plate from
the washer, if the arm is positioned at the dish-washer,
and there is a plate to pick up. The control action stack
stacks a plate into the dish-rack if the arm is holding
a plate and is positioned at the dish-rack. The robot
can also transfer a plate from one arm to the other,
if both arms are positioned in front of the robot, and
the empty arm executes the pick control action. The
control actions for the eye movements cause the robot
to fixate on the specified position. There is also a no-
op action for each DOF, that does not influence that
DOF.

The states of the robot are also described via a set of
state variables summarized in Table 2. State variable
Swasher keeps track of the number of plates in the dish-
washer. State variable 1,,5 shows the current position
of the left arm (i.e, washer, front, rack). State variable
ls¢q¢ describes the current status of the left hand, i.e.,
whether it is holding a plate or it is empty. Similarly
state variable rj,s and rg,; describe the position and
status of the right arm. State variable e,,s, describes
the current gaze of the robot’s eyes. Finally, state
variable s,.q.; describes whether or not a plate has been
stacked in the dish-rack.

Any assignment to the set of action variables forms
a concurrent action. However, not all concurrent ac-
tions are allowed for execution in every state. Actions
are pruned to simplify learning and enforce safety con-
straints (Huber, 2000). For example the left arm can
execute the action pick only when it is located at the
dish-washer and is empty, and there is also a plate
to pickup. Any concurrent action that violates the
safety constraints is referred to as an invalid action.
If the robot executes an invalid action, it receives a
large negative reward. The actions that control the
gaze of the robot reflect the limitations of a real robot

system. The robot is required to look at a target posi-
tion before being able to move any of its arms to that
position.

Recall that the overall objective is to empty the dish-
washer and stack the plates in the dish-rack in the
smallest number of steps. This objective can be ap-
proximated in terms of concurrent optimization of two
competing subgoals: wgiaek, and wpicr, with the pri-
ority ranking system: wgtack < Wpick- Wstack 1 the
subgoal of stacking a plate in the dish-rack, and wp;cx
is the subgoal of picking up a plate from the dish-
washer. These subgoals compete for the DOF in the
robot (i.e., eyes and arms). We design two controllers
Cpick, and Csiqcr that achieve each subgoal. Note that
such controllers can be viewed as general purpose ob-
ject manipulation controllers for picking up and stack-
ing objects across different tasks. We can model the
controller Cpicr, as an option (Zpck, Tpick, Opick), Where
ZIpick is the set of states at which the robot can pick up
a plate. This consists of the states where at least one
of the robot’s hands is empty and there is a plate in
the dish-washer . The policy 7k, specifies a closed
loop policy for picking up a plate. Bp;cr defines the ter-
mination condition for this option and it occurs when
the robot picks up a plate from the dish-washer.

Similarly, we can model the controller Cytqcr as an op-
tion <Z.stacka7rstackaﬂstack>; where Istack is the set of
states at which the robot can stack a plate . This con-
sists of the states where the robot is holding at least
one plate. The policy Tstqcr specifies a closed loop pol-
icy for stacking a plate. Ostqck defines the termination
condition for this option and it terminates when the
robot stacks a plate in the dish-rack. Note that due
to multiple DOF in the system, both controllers are
e-redundant for some e. For example the robot can
pick up a plate either by its left arm, or by its right
arm. Or, it can stack a plate either by moving the arm
that is currently holding the plate to the dish-rack and
stack the plate, or it can hand it to the other hand and
use the other hand to stack it.

It can be verified that the sequential solution (no
coarticulation) that involves executing Cp;c, and then
Cstack 1n sequence, does not provide the most efficient
solution. For example while the robot is stacking a
plate held by its right hand, it can concurrently pick
up a new plate with its left hand. By coarticulating
between these two controllers, the robot can perform
an action that achieves the objective of the superior
controller (i.e., Cstqck), while committing to the objec-
tive of the subordinate controller (i.e., Cpick), if the
intersection of the redundant sets of these two con-
trollers is non-empty in the current state. To further

Coarticulation: An Approach for Generating Concurrent Plans

Table 3. CMACs tilings

‘ Tiling | # of tiles |
Ql (swashem jLeXR) lstat) 12
Q2 (Swasher7 Tpos» Tstat) 12
QS (Swasher7 Sracks T'pos Tstat) 24

(Swasher7 Sracks Als ar) 196

(Swashera Ppos» lstat7 €pos al) 252
QG(swasher7 Tposy T'stats Epos ar) 252
Q7(Swa5he’r7 Srack lposa lstata €pos) al) 504
QS(Swashem posH lstata €pos» aj, ae) 1008
QQ(Swasher7 Tpos, I'stats Epos, Ar, ae) 1008
QlO(Swashera lpos; T'poss Epos, Al ar) 2646

illustrate this, consider the following scenario: assume
that the robot is currently holding a plate with its right
arm positioned at the front and the controller Cgtqck
is in progress. Also, assume that its left arm is posi-
tioned at front and is empty. In this state, the robot
can execute at least two e-ascending actions with re-
spect to the Cgpqer controller: (1) move the right arm
to the dish-rack and concurrently look at the front po-
sition; (2) move the right arm to the dish-rack and
concurrently look at the dish-washer position. Note
that the second action is also e-ascending with respect
to the Cpicr controller, since by looking at the dish-
washer position, the robot can then move its empty
left arm to the dish-washer in order to pick a plate.
By coarticulating between these two controllers, the
robot executes the second action that is e-ascending
with respect to both controllers. Note that while this
action moves the robot’s right arm to the dish-rack to
stack the plate, concurrently it moves the empty left
arm to the dish-washer in order to pick a new plate.

In our experiments, both controllers are defined over
an MDP M = (S, A, R, P), where the states and ac-
tions are described via the set of variables given in Ta-
bles 2, and 1. All actions are stochastic; they succeed
with probability p and fail with probability (1 — p).
When actions succeed, they change the state of the
robot to the next state as described above. Upon fail-
ure, or executing an invalid action, the robot does not
change its state. All actions are also rewarded —1 upon
termination.

In order to learn the optimal state-action value func-
tion associated with each controller, we used sparse-
coarse-coded function approximator (CMACs) (Al-
bus, 1981) combined with Sarsa(\) algorithm (Sutton,
1996). We used CMACs consisting of 10 tilings (for
the total of 5914 tiles) as listed in Table 3. For each
controller, we learned the approximate value func-

tion which can be expressed as Q*(s,{a;,a,,a.}) =
2321 Q,(s;, a;), where s; and a; are the subset of state
and action variables that are involved in the tiling
Q;. Next, we applied the approximation algorithm
that we described in Section 3 for computing the e-
redundant sets for each controller, using the elimina-
tion order {a;, a,,a.}. Figure 4 shows the performance

170 |
seq
[coart:ep 0.85 |
e coart:ep 0.70 =
160 |
-\ /'\/\\ /\
/ \
155 \ N\ . |

& \/\// v\ AV,

(]

& 150 + * |
140 L/ y |
135 | * |

0 5 10 15 20 5 20

State

Figure 4. Performance of the coarticulation approach using
different values of € and the sequential approach.

of the coarticulation method, and also the sequential
approach in which the Csacr and Cpicr, are executed in
sequence (using their optimal policy) with no coartic-
ulation. The performance is measured in terms of the
total number of steps for completion of the task. These
results are averaged over 20 tasks, each consisting of
27 episodes. Each episode is associated with a starting
state, with 20 plates in the dish-washer, and the robots
arms are set to empty. The horizontal axis depicts the
starting states. An starting state is defined in terms of
the various configurations of the state variables (e.g.,
initial positions of the arms and the eyes, and their
status, etc) that are relevant to the task (i.e., at least
one controller can be initiated). The bottom two plots
are the performance of the coarticulation framework
using € = 0.70,0.85, and A = 10 when computing the
redundant sets for each controller. From these results,
we can observe that the coarticulation approach out-
performs the sequential case in every starting state.
Figure 5 shows the total number of coarticulation in
the above task when the system is initialized in differ-
ent starting states, for different values of e. Note that
by choosing € = 0.99, the controllers offer less flexibil-
ity and hence the total amount of coarticulation de-
creases. Next, in order to measure the accuracy of our
approximate method when computing the redundant
sets, we computed the exact value function without
the function approximation, and then computed the
redundant sets. Figures 6 and 7 shows the total num-
ber of hits and misses of the e-ascending actions in ev-

Coarticulation: An Approach for Generating Concurrent Plans

5 T T T - -
coart:ep 0.99 ——
45 B coart:ep 0.85 1
c 4l % coart:ep 0.70 -~ -
o AN
8 35 i 1
> * P
-g 3+ & o x X q
8 250 Lo e 1
(@] [1 :) * H B
I} 2080 A es Vo ke 1
] g / .]
: 1? N : <
L A J
05 4/ \\\ / ‘\/\/ \K /\/_/M |
O L L L L L
0 5 10 15 20 25 30

State

Figure 5. Total number of coarticulation for different start-
ing states, and different values of e.

10

coart:ep 0.85 ——

Number of hits

0
0O 20 40 60 80 100 120 140 160

Pick controller State

Figure 6. Number of correct e-ascending actions computed
by the approximate method for controller Cpcr in every
state that the controller can be executed.

ery state in which the controller Cp;., can be executed.
As it can be seen from these figures, our approxima-
tion technique has missed only a few actions in a small
number of states. We also measured the false positive
rate in every state and interestingly there was no false
alarm in neither of states. This suggests that our ap-
proximation method can compute the redundant sets
with a high precision.

5. Concluding Remarks

In this paper we studied an approach for scaling the
coarticulation framework to large domains, such as
concurrent decision making in systems with excess
DOF. We presented an efficient approximate algorithm
for computing the set of e-redundant policies for re-
dundant controllers. Although we considered struc-
tured actions, we did not fully exploit the underlying
structure that many MDPs offer. We are currently in-
vestigating how such structure could be exploited for
more efficient action selection mechanism in the coar-
ticulation framework.

10

coart:ep 0.85 ——

Number of misses

ol
0 20 40 60 80 100 120 140 160
Pick controller State

Figure 7. Number of missed e-ascending actions computed
by the approximate method for controller Cpicr in every
state that the controller can be executed.

Acknowledgments

We would like to thank Nathan Srebro for his use-
ful comments and discussion. This research was sup-
ported in part by the National Science Foundation un-
der grant ECS-0218125.

References
Albus, J. (1981). Brain, behavior, and robotics. ByteBooks.

Boutilier, C., Brafman, R., & Geib, C. (1997). Prioritized goal de-
composition of Markov decision processes: Towards a synthesis of
classical and decision theoretic planning. Proceedings of the Fif-
teenth International Joint Conference on Artificial Intelligence
(pp. 1156-1163). San Francisco: Morgan Kaufmann.

Dechter, R. (1999). Bucket elimination: A unifying framework for
probabilistic inference. Artificial Intelligence.

Gabor, Z., Kalmar, Z., & Szepesvari, C. (1998). Multi-criteria rein-
forcement learning.

Guestrin, C., & Gordon, G. (2002). Distributed planning in hier-
archical factored mdps. In the Proceedings of the Eighteenth
Conference on Uncertainty in Artificial Intelligence (pp. 197 —
206). Edmonton, Canada.

Guestrin, C., Lagoudakis, M., & Parr, R. (2002). Coordinated re-
inforcement learning. In Proceedings of the ICML-02. Sydney
Australia.

Huber, M. (2000). A hybrid architecture for adaptive robot control.
Doctoral dissertation, University of Massachusetts, Amherst.

Nilsson, D. (1998). An efficient algorithm for finding the m most
probable configurations in bayesian networks. Statistics and
Computing, 8, 159-173.

Precup, D. (2000). Temporal abstraction in reinforcement learning.
Doctoral dissertation, Department of Computer Science, Univer-
sity of Massachusetts, Amherst.

Rohanimanesh, K., Platt, R., Mahadevan, S., & Grupen, R. (2004).
Coarticulation in markov decision processes. Proceedings of the
Eighteenth Annual Conference on Neural Information Process-
ing Systems: Natural and Synthetic. Vancouver, Canada.

Singh, S., & Cohn, D. (1998). How to dynamically merge markov
decision processes. Proceedings of NIPS 11.

Sutton, R., & Barto, A. (1998). An introduction to reinforcement
learning. Cambridge, MA.: MIT Press.

Sutton, R. S. (1996). Generalization in reinforcement learning: Suc-
cessful examples using sparse coarse coding. Advances in Neu-
ral Information Processing Systems (pp. 1038-1044). The MIT
Press.

