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Abstract

The Relevance Vector Machine (RVM) is a
sparse approximate Bayesian kernel method.
It provides full predictive distributions for
test cases. However, the predictive uncer-
tainties have the unintuitive property, that
they get smaller the further you move away
from the training cases. We give a thorough
analysis. Inspired by the analogy to non-
degenerate Gaussian Processes, we suggest
augmentation to solve the problem. The pur-
pose of the resulting model, RVM*/ is primar-
ily to corroborate the theoretical and exper-
imental analysis. Although RVM* could be
used in practical applications, it is no longer
a truly sparse model. Experiments show that
sparsity comes at the expense of worse pre-
dictive distributions.

Bayesian inference based on Gaussian Processes (GPs)
has become widespread in the machine learning com-
munity. However, their naive applicability is marred
by computational constraints. A number of recent
publications have addressed this issue by means of
sparse approximations, although ideologically sparse-
ness is at variance with Bayesian principles’. In this
paper we view sparsity purely as a way to achieve com-
putational convenience and not as under other non-
Bayesian paradigms where sparseness itself is seen as
a means to ensure good generalization.

Sparsity is achieved by Csaté (2002), Csaté and Opper
(2002), Seeger (2003), and Lawrence et al. (2003), by

In the Bayesian paradigm one averages over all pos-
sible explanations of the data. Sparseness corresponds to
making “hard” choices about these possible explanations.
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minimizing KL divergences between the approximated
and true posterior, by Smola and Schélkopf (2000) and
Smola and Bartlett (2001) by making low rank approx-
imations to the posterior. In (Gibbs & MacKay, 1997)
and in (Willlams & Seeger, 2001) sparseness arises
from matrix approximations, and in (Tresp, 2000)
from neglecting correlations. The use of subsets of
regressors has also been suggested by Wahba et al.
(1999).

The Relevance Vector Machine (RVM) introduced by
Tipping (2001) produces sparse solutions using an im-
proper hierarchical prior and optimizing over hyperpa-
rameters. The RVM is exactly equivalent to a Gaus-
sian Process, where the RVM hyperparameters are pa-
rameters of the GP covariance function (more on this
in the discussion section). However, the covariance
function of the RVM seen as a GP is degenerate: its
rank is at most equal to the number of relevance vec-
tors of the RVM. As a consequence, for localized basis
functions, the RVM produces predictive distributions
with properties opposite to what would be desirable.
Indeed, the RVM is more certain about its predictions
the further one moves away from the data it has been
trained on. One would wish the opposite behaviour,
as is the case with non-degenerate GPs, where the un-
certainty of the predictions is minimal for test points
in the regions of the input space where (training) data
has been seen. For non-localized basis functions, the
same undesired effect persists, although the intuition
may be less clear, see the discussion.

In the next section we briefly review the RVM and
explore the properties of the predictive distribution in
some detail and through an illustrative example. Next,
we propose a simple modification to the RVM to re-
verse the behaviour and remedy the problem. In sec-
tion 3 we demonstrate the improvements on two prob-
lems, and compare to non-sparse GPs. A comparison
to the many other sparse approximations is outside
the scope of this paper, our focus is on enhancing the
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understanding of the properties of the RVM.

1. Classical Relevance Vector Machines

The RVM, introduced by Tipping (2001), is a
sparse linear model. Given a set of training inputs
{z;li=1,...,N} C RP organized as rows in matrix
X, the model outputs are a linear combination of
the responses of a set of basis functions {¢;(x)|j =
1,...,M} C[RP - R]:

M
@) = Y i@ =ol@)w. £ = ow, (1

where f = [f(z1),..., f(zn)]" are the function out-
puts, w = [wy,...,wy] " are the weights and ¢;(z;)
is the response of the j-th basis function to input
x;.  We adopt the following shorthand: ¢(x;) =
[p1(x;),. .., ¢m(x;)] is a row vector containing the
response of all basis functions to input x;, ¢; =
[pj(x1),...,¢;(xn)]T is a column vector containing
the response of basis function ¢;(x) to all training in-
puts and ¢ is an N x M matrix whose j-th column is
vector ¢, and whose i-th row is vector ¢(x;).

The prior on the weights is independent Gaussian,
p(w|A) ~ N(0,A™1), with separate precision hyper-
parameters A = diag[ay,...,ap]. The output noise
is assumed to be zero mean iid. Gaussian of vari-
ance o2, such that p(y|X,w,0?) ~ N(f,0?I), where
y = [y1,...,yn]" are the training targets.

Learning is achieved by maximizing? the marginal like-
lihood:

p(y1X, A, 0%) = / p(y|X, w,0%)p(wlA)dw,  (2)

(penalized by an inconsequential improper prior uni-
form in log(a)) wrt. the log(a) parameters in A and
the noise variance o2. Sparsity results when a num-
ber of the a’s go to infinity, thus effectively remov-
ing the corresponding basis functions; the surviving
basis functions are called the relevance vectors. See
(Tipping, 2001) for the details. It has been shown
by Faul and Tipping (2002) that local maxima of the
marginal likelihood occur when some of the « tend to
infinity. Integrating over «, the conditional Gaussian
weight prior given o and the uniform top level prior
in log(a) imply an improper weight prior of the form
p(w;) < 1/|w;|. Wipf et al. (2004) have shown that for
any fixed a the RVM Gaussian conditional priors on
the weighs constitute a variational lower bound to the

2This can be done either by direct optimization (eg. con-
jugate gradients) or perhaps faster by means of an EM-like
algorithm (Tipping, 2001, appendix A.2).

full-blown Bayesian treatment. The a’s are then inter-
preted as variational parameters, and it can be shown
that setting them to infinity maximizes the variational
approximation to the marginal likelihood.

It is customary (but by no means necessary) to use
localized squared exponential radial basis functions,
centered on the training points, of the form ¢;(x;) =
exp(—3 Zle(Xid — X;4)?/A2). The metric parame-
ters Ay can also be inferred (Tipping, 2001, appendix
C). This procedure requires interleaved updates of the
metric parameters, A4, the hyperparameters o and the
noise level o2. Note that unfortunately the final solu-
tion depends both on the initial parameter values and
on the exact details of the interleaving of the different
updates.

A Peculiar Prior over Functions

The prior distribution over functions implied by the
model is a weighted linear combination of basis func-
tions, the weights distributed according to their prior.
For localized basis functions, the prior thus excludes
variation outside the range of the basis functions.
When the basis functions are centered on the train-
ing data, this means that a priori no signal is expected
far away from the training points, as was also pointed
out by Tipping (2001). This seems like an unintuitive
property, that the function is expected to be flat in re-
gions where we happen not to see any data at training
time.

The posterior distribution over the weights is propor-
tional to the product of likelihood and prior. It is
Gaussian, p(wly, X, 4,02) ~ N (u, ), with mean and
covariance given by:

p=0"S¢"y,

S=[c"%¢ ¢+ A"
The predictive distribution at a new test input . is
obtained by integrating the weights from the model

(1) over the posterior. The predictive distribution is
also Gaussian:

p(y* |iB*,X, Yv A7 02)
= [l X w0y, X, A, 0%)dw
~ N (m(z.),v(xs)),

with mean and variance given by:
m(@.) = o) .
v(a.) = 0® + ¢(a.) Sh(a.) T

For localized basis functions, if the input x, lies far
away from the centers of all relevance vectors, the re-
sponse of the basis functions ¢;(x.) becomes small:

3)

(4)
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Figure 1. Properties of prior and posterior of RVMs with all o; = 1 and ¢ = 0.1. In the left column the basis functions
are localized squared exponentials (non-normalized Gaussians). Top: functions drawn from the RVM prior. The dashed
lines represent the basis functions of the model. Middle: functions drawn from the RVM posterior after observing the
training targets (crosses) Bottom: The dark gray stripes are the predictive distributions for the classical RVM: the mean,
not represented, is in the middle of the stripe, and the width of the stripe is equal 2 predictive standard deviations
(95% confidence interval). The solid (blue) line is the mean of the predictive distribution of the RVM*, and the light
(cyan) stripe has width +2 RVM* predictive standard deviations. Only for RVM* does the predictive uncertainty grow
when moving away from the training data. Right column: same as left with non-localized basis functions of the form
é;(x;) = log(1 + ||&; — x;]|*). Notice that ¢;(x;) = 0: augmentation cannot increase the variance by using the new basis
function itself.

functions thus produces unreasonable predictive un-
certainties, with a behaviour opposite to what would
seem desirable.

the predictive mean goes to zero and the predictive
variance reduces to the noise level, eq. (4). Under the
prior there is not much signal far away from the cen-
ters of the relevance vectors; this property persists in

the posterior. In other words, the model uncertainty
is maximal in the neighbourhood of the centers of the
relevance vectors, and goes to zero as one moves far
away from them, as illustrated in the left column of
figure 1. The figure assumes all basis functions are
relevance vectors. In the sparse case the RVM uncer-
tainty is even smaller.

As a probabilistic model, the RVM with localized basis

2. Augmentation: RVM*

Consider having trained an RVM and facing the task
of predicting at a new unseen test point. To solve the
problem, that there might be no possibility of variation
for outputs corresponding to inputs far from the cen-
ters of the relevance vectors, we propose to augment
the model by an additional basis function centered at
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Figure 2. Behaviour of the predictive distributions. Bottom (with left y-axis): the white crosses represent the training
data, the circled ones being the 3 cases whose input is the center of the relevance vectors obtained from training. The
black region is the 95% confidence interval for the predictions of a standard RVM, and the gray region that for the RVM*
(for the latter, the white line is the mean prediction). Top (with right y-axis): The solid line represents the predictive
standard deviation of the RVM, and the dot-slashed one that of the RVM*. Note that the predictive variance decreases
when moving away from the relevance vectors in the RVM, but increases for the RVM*.

the test input. The training stage, that is the setting
of the a’s, remains unchanged, the new basis function
being introduced only at test time and for a specific
test input. This is the idea behind the modification of
the RVM that we propose: the RVM*,

For each test point x,, we modify the model obtained
from training by introducing one new basis function
centered on x,, and its associated weight with prior
distribution p(w*) ~ N(0, ;). The joint augmented
Gaussian posterior distribution of the weights has now
mean and covariance given by:

T
M = 0'_22* |:£T:| Yy

Z_l 0.—2¢T d)*

RN
o [o—-%w a*+o-2¢I¢>J ’

where p and ¥ are the posterior weight mean and co-
variance of the classical RVM, given in eq. (3), and ¢,
is the newly introduced basis function evaluated at all
training inputs.

The Gaussian predictive distribution of the augmented
model at . has mean and variance which can be writ-
ten as the terms from the classical RVM, eq. (4), plus

correction terms:

B €x Qs
my(x.) = m(w*)+7a*+8*,
o2 (6)
Ve(T4) = v(®s) + ——
e + 84

as illustrated in figure 1 bottom left, where:

g = o) (y — op)/o?,
ex = u(@s) — 0 20(2.) 80 b, (7)
Sx = ¢I(J2I+ ¢A71¢T)71¢*-

We have adopted the notation of Faul and Tipping
(2002): g. is the projection of the vector of residuals
onto the new basis function: it is therefore a ‘quality’
factor, that indicates how much the training error can
be reduced by making use of the new basis function. s,
is a ‘sparsity’ factor that indicates how much the new
basis function is redundant for predicting the training
data given the existing relevance vectors. e, is an ‘er-
ror’ term that is smaller the better the existing model
can mimic the new basis function at z..

Note, that the predictive variance of RVM* in eq. (6) is
guaranteed not to be smaller than for the RVM. Note
also, that the predictive mean of the RVM™* is modified
as a result of the additional modelling flexibility, given
by the new basis function. This new basis function
is weighted according to how much it helps model the
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part of the training data that was not well modelled by
the classic RVM, whose sparseness may lead to under-
fitting, see the discussion section. Figure 2 illustrates
this effect in the sparse RVM.

When introducing an additional basis function at test
time, we also get an additional weight w, (which is
integrated out when making predictions) and an ex-
tra prior precision parameter a,. How do we set a7
One naive approach would be to take advantage of the
work on incremental training done by Faul and Tip-
ping (2002), where it is shown that the value of a.
that maximizes the marginal likelihood, given all the
other «’s (in our case obtained from training) is given
by:
57

Qy = o,

q2 — s«

Unfortunately, this strategy poses the risk of deletion
of the new basis function (when the new basis func-
tion doesn’t help significantly with modelling the data,
which is typically the case when when x, lies far from
all the training inputs). Thus the unjustifiably small
error bars of RVM would persist.

if g2 > s,, @, = oo, otherwise.

In our setting learning «, by maximizing the evidence
makes little sense, since it contravenes the nature of
our approach. We do want to impose an a priori as-
sumption on the variation of the function. When far
away from the relevance vectors, o' is the a priori
variance of the function value. We find it natural
to make oy ! equal to the empirical variance of the
observed target values, corresponding to the prior as-
sumption that the function may vary everywhere. One
could conceive other reasonable ways of setting . as
long as it remains finite.

Training is identical for the RVM and for the RVM*,
so it has the same computational complexity for both.
For predicting, the RVM needs only to retain g and
¥ from training, and the complexity is O(M) for com-
puting the predictive mean and O(M?) for the predic-
tive variance. The RVM* needs to retain the whole
training set in addition to g and ¥. The computa-
tional complexity is O(MN) both for computing the
predictive mean and the predictive variance. The de-
pendence on the full training set size N is caused by
the additional weight needing access to all targets® for
updating the posterior. The RVM* is thus not really
a sparse method anymore, and it is not necessarily an
interesting algorithm in practice.

30mne could get rid of the dependence on N by re-fitting
only using the targets associated with the relevance vec-
tors; this leads to too large predictive variances, since the
training set may have contained data close to the test in-
put, which hadn’t been designated as relevance vectors.

3. Experiments

We compare the classic RVM, the RVM* and a Gaus-
sian process (GP) with squared exponential covari-
ance function on two datasets: the Boston house-
price dataset, (Harrison & Rubinfeld, 1978), with
13-dimensional inputs, and the KIN40K (robot arm)
dataset?, with 8-dimensional inputs. The KIN40K
dataset represents the forward dynamics of an 8 link
all-revolve robot arm.

We use a 10 fold cross-validation setup for testing on
both datasets. For Boston house-price we use disjoint
test sets of 50/51 cases, and training sets of the re-
maining 455/456 cases. For the robot arm we use dis-
joint test and training sets both of 2000 cases. For all
models we learn individual length-scales for each input
dimension, and optimize by maximizing the marginal
likelihood, (Tipping, 2001, appendix C) and (Williams
& Rasmussen, 1996). For each partition and model we
compute the squared error loss, the absolute error loss
and the negative log test density loss. In addition to
the average values of the different losses, we compute
the statistical significance of the difference in perfor-
mance of each pair of models for each loss, and provide
the p-value obtained from a (two-sided) paired t-test®
on the test set averages.

The results for the Boston house-price example in
table 1 show that the RVM* produces significantly
better predictive distributions than the classic RVM.
Whereas the losses which only depend on the predic-
tive mean (squared and absolute) are not statistically
significantly different between RVM an RVM*, the
negative log test density loss is significantly smaller
for RVM*, confirming that the predictive uncertain-
ties are much better. The RVM models have a final
average number of relevance vectors of 27 + 14 (mean
+ std. dev.) showing a high degree of sparsity® and
quite some variability. The results for the KIN40K
robot arm example in table 2 show a similar picture.
For this (larger) data set, the difference between RVM
and RVM* is statistically significant even for the losses
only depending on the mean predictions. The final
numbers of relevance vectors were 252 + 11. We also
compare to a non-degenerate (see section 4) Gaussian
process. The GP has a significantly superior perfor-

4From the DELVE archive
http://www.cs.toronto.edu/delve.

For the Boston house-price dataset, due to dependen-
cies (overlap) between the training sets, assumptions of
independence needed for the t-test are compromised, but
this is probably of minor effect.

5Note, that the degree of sparsity obtained depends on
the (squared exponential) basis function widths; here the
widths were optimized using the marginal likelihood.
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Table 1. Results for the Boston house-price experiments for RVM, RVM* and GP. The upper sub-table indicates the
average value of the losses for three loss functions. In the lower sub-table, the values in the cells are the p-values that
indicate the significance with which the model in the corresponding column beats the model in the corresponding row.

Squared error loss Absolute error loss - log test density loss
RVM | RVM* GP RVM | RVM* GP RVM | RVM* GP
] Loss: 0.138 | 0.135 0.092 | 0.259 | 0.253 | 0.209 | 0.469 | 0.408 | 0.219
RVM not sig. | < 0.01 0.07 | <0.01 <0.01 | <0.01
RVM* 0.02 - < 0.01 . < 0.01
GP

mance under all losses considered. Note also, that the
difference between RVM and GPs is much larger than
that between RVM and RVM*. This may indicate that
sparsity in regression models may come at a significant
cost in accuracy. To our knowledge, RVMs and GPs
have not been compared previously experimentally in
an extensive manner.

4. Discussion

The RVM is equivalent to a GP (Tipping, 2001, section
5.2) with covariance function given by:

M 1
ICENEDD ;k¢k(wi) dr(x;). (8)
k=1

This covariance function is guaranteed to be degener-
ate since M is finite, and even worse typically small for
the RVM. The distribution over (noise free) functions
is singular. This limits the range of functions that can
be implemented by the model. The RVM* introduced
in this paper is a GP with an augmented covariance
function:

~bulw) bules). (9)

*

k‘*(iL'Z‘,CEj) = k(iL‘Z‘,SIJj) +

which ensures prior variability at the test location
(provided ¢.(x.) # 0), that survives into the poste-
rior if the data doesn’t have a strong opinion in that
region.

It is interesting to note that a GP with squared expo-
nential covariance function coincides exactly with an
RVM infinitely augmented, at all points in the input
space. Following MacKay (1997), consider for simplic-
ity a one-dimensional input space, with squared expo-
nential basis functions ¢c(z;) = exp(—3(z; — ¢)?/A\?),
where c¢ is a given centre in input space and use the
RVM weight prior in isotropic form A = al. We want
to make the number of basis functions M go to infinity,
and assume that the centres are uniformly spaced. To
make sure that the integral converges, we set variance

of the prior over the weights to a~! = sM, for some
constant s. The covariance function becomes:

M%%pw/mwwwm%ma

Cmin

Cmax L 2 L 2
= s/ exp {—(%2)\20)} exp [—(3072)\20)} de.

Cmin

Letting the limits of the integral go to plus and minus
infinity, we obtain the integral of the product of two
(non-normalized) Gaussians which evaluates to:

k(zi,2;) = s VA2 exp [—W] . (10)

402

Thus, we recover the squared exponential covariance
GP as being equivalent to an infinite RVM. The infinite
RVM becomes tractable when viewed as a GP, but of
course it is not clear how to treat the infinitely many
hyperparameters, or how to introduce sparsification
from this standpoint.

It may be surprising that the experiments show that
the performance using loss functions which depend
only on the predictive means was improved for the
RVM* (although sometimes the difference was not sta-
tistically significant). The reason for this is that the
extra added basis function, which is fit to the train-
ing data, adds flexibility to the model. Since this
extra flexibility turns out to improve performance,
this shows that the classical RVM under-fits the data,
ie. the models have become too sparse. Indeed the per-
formance of the full non-degenerate GP is much better
still.

Non-localized Basis Functions

The exposition has so far concentrated on localized
basis functions. Other basis functions could be (and
have been) considered, although their use with multi-
variate inputs restrict them in practice mostly to radial
form (so that the models remain linear in the param-
eters, which is essential for analytic treatment — this
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Table 2. Results for the Robot Arm data; the table is read analogously to table 1.

Squared error loss Absolute error loss - log test density loss
RVM | RVM* GP RVM | RVM* GP RVM RVM* GP
] Loss: 0.0043 | 0.0040 | 0.0024 | 0.0482 | 0.0467 | 0.0334 | -1.2162 | -1.3295 | -1.7446
RVM < 0.01 | <0.01 < 0.01 | <0.01 <0.01 | <0.01
RVM* . < 0.01 . < 0.01 . < 0.01
GP ; . .

precludes e.g. sigmoidal functions as used in neural
networks).

One may be tempted to think that an RVM with non-
localized basis functions would automatically guaran-
tee larger predictive uncertainties as one moves away
from the training data. As illustrated in figure 1 bot-
tom right, this is not the case. In the figure we use ba-
sis functions of the form ¢;(z;) = log(1 + ||z; — z;||*)
which grow unboundedly. Note that the value of the
basis function at its center is zero, so one could have
reservations about the effectiveness of augmentation
with an additional basis function centered at the test
input. However, as seen clearly in the bottom right
of 1 the augmentation leads also in this case to the
desired behaviour. In this case the additional uncer-
tainty comes exclusively from the interaction between
the new basis function with the existing ones (as the
new basis function contributes zero at the test input).

No matter the kind of basis functions used, sparse-
ness in the RVM leads to an over-constrained system
of equations, corresponding to a tight posterior covari-
ance. As a thought experiment, consider a GP with
degenerate covariance function of rank M. Consider
iteratively generating random function values from the
process, while conditioning on the previously drawn
samples. While the first M draws have considerable
flexibility, subsequent draws are essentially determin-
istic, since “freedom” of the process has been pinned
down by the first M samples. Differently put, one can
only sample M linearly independent functions from
the prior. Prediction in a sparse RVM parallels ex-
actly this thought experiment.

Although the present paper discusses only regression
problems, it should be clear that analogous effects may
play a role for classification, although in a more subtle
way: underestimated uncertainties may lead to too
confident predictive class probabilities, although since
the mean and variance of the Bernoulli distribution are
linked, moving away from the training cases may cause
the probability to tend toward %, which automatically
implies higher uncertainty.

5. Conclusions

The RVM has become a popular tool because it is
a simple tractable probabilistic model. As we have
shown, if one is interested in the predictive variance,
the RVM should not be used. Even if one is interested
only in predictive means, the sparsity mechanism of
the RVM seems to come at the expense of accuracy.
The proposed RVM* goes some way towards fixing this
problem at an increased computational cost. We do
not propose it as an alternative to the RVM in prac-
tice, but rather as a tool for our argumentation.

Although outside the scope of this paper, it is an
important future task to experimentally compare the
computation vs. accuracy tradeoff between different
methods for sparsifying GPs. Some recent papers do
attempt to assess these tradeoffs, however, regrettably,
the performance measures often neglect the probabilis-
tic nature of the predictions and focus exclusively on
mean predictions.

A key distinction highlighted both theoretically and
through experiments in this paper, is the difference
between finite-dimensional models and proper pro-
cess models — in GPs exemplified by degenerate and
non-degenerate covariance functions. For probabilistic
models, where faithful representation of uncertainties
play a central role, we emphasize that non-degenerate
models are probably best suited. It remains an impor-
tant future goal to reconcile the sparsity requirement,
needed for computational tractability, with proper
non-degenerate process models. As we have shown,
the RVM does not achieve this goal.
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