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Abstract

A novel algorithm for performing Indepen-
dent Subspace Analysis, the estimation of
hidden independent subspaces is introduced.
This task is a generalization of Independent
Component Analysis. The algorithm works
by estimating the multi-dimensional differen-
tial entropy. The estimation utilizes minimal
geodesic spanning trees matched to the sam-
ple points. Numerical studies include (i) il-
lustrative examples, (ii) a generalization of
the cocktail-party problem to songs played
by bands, and (iii) an example on mixed in-
dependent subspaces, where subspaces have
dependent sources, which are pairwise inde-
pendent.

1. Introduction

Independent Component Analysis (ICA) (Jutten &
Herault, 1991; Comon, 1994) aims to recover linearly
or non-linearly mixed independent, possibly noisy
sources. There is broad range of applications for ICA,
such as blind source separation and blind source de-
convolution (Bell & Sejnowski, 1995), feature extrac-
tion (Bell & Sejnowski, 1997), denoising (Hyvérinen,
1999). Particular applications include, for example,
the analysis of financial data (Kiviluoto & Oja, 1998),
data from neurobiology, fMRI, EEG, and MEG (see,
e.g., (Makeig et al., 1996; Vigario et al., 1998) and
references therein). For a recent review on ICA see
(Hyvérinen et al., 2001).

Original ICA algorithms are 1-dimensional in the sense
that all sources are assumed to be independent, real
valued stochastic variables. However, applications
where not all sources, but groups of the sources are
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independent may be relevant in practice. In this case,
independent sources can be multi-dimensional. For ex-
ample, generalizations of the cocktail-party problem
arise for independent groups of people talking about
independent topics, or if groups of musicians play at
the party. This is the Independent Subspace Analysis
(ISA) extension of ICA, also called Multi-dimensional
ICA (MICA) (Cardoso, 1998; Hyvirinen & Hoyer,
2000). An important applications is, e.g., the process-
ing of EEG-fMRI data (Akaho et al., 1999). Efforts
have been made to develop ISA algorithms (Cardoso,
1998; Vollgraf & Obermayer, 2001; Akaho et al., 1999;
Bach & Jordan, 2003), but there are certain concerns
with regard to these algorithms. Certain approaches
use 2-dimensional Edgeworth-expansion (Akaho et al.,
1999). This approach leads to sophisticated equations
and it is not having higher dimensional generalizations
yet. Another suggestion uses ICA as preprocessing
step followed by permutations of the columns of the
mixing matrix (Cardoso, 1998), but the method to find
the right permutations has not been worked out. An-
other recent approach searches for independent sub-
spaces via kernel methods (Bach & Jordan, 2003).

Here, we show that ISA needs the minimization of
the sum of multi-dimensional differential entropies of
the components that we estimate by means of min-
imal geodesic spanning trees (Hero & Michel, 1998;
Yukich, 1998). The paper is organized as follows: In
sections 2 and 3 the ISA model and the ISA cost func-
tion will be introduced. Details of entropy estimations
are given in Section 4. Section 5 is on Jacobi-rotations
that minimize the cost function. Numerical simula-
tions are presented in Section 6. Results are discussed
and conclusions are drawn in Section 7.

2. The ISA Model

Assume we have d of m-dimensional independent
sources denoted by y', ..., y?, respectively, where y* €
R™. Lety = [(y)7T,...,(¥y)T]T € R, where su-
perscript T' stands for transposition. We assume that
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these sources are hidden and we can observe only the
following signals

x = Ay (1)

where A € R¥*9m  The task is to recover hidden
source y and mixing matrix A given the observed sig-
nals x € R¥". In the ISA model we assume that
y* € R™ is independent of y/ € R™ for i # j. For the
special case of m=1, the ICA problem is received.

In the ICA problem, given signals x, sources 3 can be
recovered only up to sign, up to arbitrary scaling fac-
tors and up to an arbitrary permutation. The ISA task
has even more freedom, signals y* can be recovered up
to an arbitrary permutation and an m-dimensional lin-
ear, invertible transformation. It is easy to see this by
considering matrix C € R¥™"*%™ made of a permuta-
tion matrix of size d x d with each element made of an
m x m block-matrix with invertible C; blocks placed
only to the non-zero elements of the permutation ma-
trix. Then, x = Ay = AC~!Cy, and because y’ is
independent of y7, thus C,;y* is independent of C;y’
Vi # j. That is, in the ISA model, matrices A and
AC~! and sources y’ and C;y’ are indistinguishable.
The ambiguity of this task can be lowered by assuming

Ey =0, and E{yy’} =14 (2)

where F is the expected value operator, I,, is the n-
dimensional identity matrix. Similarly, scaling of ob-
served signals x can assure that

FEx =0, and E{xx"} =1,,4 (3)

which is called the whitening of the inputs. Then,
Eq. (1) ensures that E{xxT} = AFE{yyT}AT and
I, = AAT. Tt then follows that signals y* can be
recovered up to permutation and up to m-dimensional
orthogonal transformation in the ISA problem. In
other words, if C; € R™*™ is an orthogonal matrix,
then signals x will not provide information if the orig-
inal sources correspond to y* or to C;y*. In 1D, this is
equivalent to the uncertainty of the sign of y* (C; = 1
or C; = —1). Thus, without loss of generality, we can
restrict the search for mixing matrix A and separation
matrix W, to the set of orthogonal matrices.

3. The ISA Cost Function

We shall derive the cost function for ISA task under
the constraint W7 W = I,,, for the separation matrix
W. Global minima of this cost function will include
separation matrix W. Let us introduce the following
notations. Let I(y!,...,y?) denote the mutual infor-
mation between vectors y',...,y% € R™:

1 dy _ o p(y)
1y = [oos Py @

where p(y) = p(y!,...,y%) denotes the joint probabil-
ity density function of stochastic variables yl, Ly
and p(y”’) denotes the marginal density of y”.

Now, for a real valued stochastic vector variable y let
the differential entropy be denoted by H(y), that is

H(y) = —/p(Y) log p(y)dy (5)
Further, assume y = Wx. Then
d .
I(y',...,y") = —H(x) + log [W|+ Y H(y") (6)
i=1

because H(Wx) = H(x) + log |W|. However, H(x) is
constant and log [W| = 0 since WI'W = I. Thus, our
task is to minimize

JW) = H(y") + ...+ H(y% (7)

that is, the solution of the ISA task is equivalent to the
minimization of the multi-dimensional entropies of the
marginals of the corresponding vector variables.

4. Multi-dimensional Entropy
Estimation

Shannon’s differential entropy of the H(y') terms of

Eq. (7) needs to be estimated. First, we shall estimate

Rényi’s a-entropy of stochastic variable y having prob-
ability density function f, which is defined as

11%/me (8)

H, =

11—«
It is known that in the limit hm1 H, =
o—

— [ f(y)log f(y)dy Rényi’s entropy converges to
Shannon’s entropy. Rényi’s entropy has already been
used for ICA problems (Hild et al., 2001). To our best
knowledge, it has not been used for the ISA task.

Let {y*(1),...,y*(n)} denote n independent and iden-
tically distributed (i.i.d.) samples drawn from distri-
bution y* € R™. The ~ weighted Euclidean graph be-
longing to these points is a spanning tree of the points
having edges £ = {e:e =y'(p) —y'(q) € R™,p # ¢}
between the points and having edge lengths equal
to the y'" power of the Euclidean distance (I,(e) =
|le]|”). A graph is called minimal (v weighted) Euclid-
ean graph, if the sum of the edge lengths of the graph
is minimal, i.e.,

Ly(y") = Trpelg}z llell” 9)
ecT

where 7 denotes the set of spanning trees belonging
to node set {y‘(1),...,y‘(n)}. Let v = m — ma.
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With our notations, and under certain technical con-
ditions, the Beadword-Halton-Hammersley Theorem
holds (Yukich, 1998), and one can show that

L. (y! )
Mg ) p (vt a0 (10)
n

with constant ¢ being independent of the distribution
of y*. This estimation is asymptotically unbiased and
strongly consistent (Yukich, 1998). However, this esti-
mation is sensitive to outliers if the spanning tree has
long edges. Different methods have been derived to
increase the robustness of the estimation.

One approach deletes the longest k& edges from the
spanning tree and considers the remaining sum of the
edge lengths (Banks et al., 1992). Another approach
replaces the set of points y*(1),...,y*(n) by the k-
element subset which produces the shortest sum of
edge lengths. Although this task is NP-complete, it
seems to have an effective greedy approximation (Hero
& Michel, 1998).

We shall follow a third route, which utilizes geodesic
distances. This method uses the edges of the k-nearest
nodes or the nodes within radius € to each node y*(p).
These sub-graphs are called the Euclidean neighbor-
hood graph. One needs to find the minimal spanning
forest made of such subgraphs called the geodesic span-
ning forest of the set. The geodesic distance between
two points is defined as the length of the shortest path
on the geodesic spanning forest. These methods are
used in manifold learning problems, such as ISOMAP
(Tenenbaum et al., 2000) as well as for the estima-
tion of intrinsic dimensions (Costa & Hero, 2004).
Neighborhood graphs with neighbors & = 10 were con-
structed, the geodesic spanning forests were computed
for illustrative purposes: Figure 1(a) and 1(b) show
the geodesic spanning forests for letter ‘A’ sampled
uniformly and that of a three dimensional cubic wire-
frame sampled uniformly and with added noise of 2%
standard deviation, respectively.

The limit @ — 1 in Eq. (10) leads to an estimation
of Shannon’s entropy. Trivially, @« — 1 exactly when
v — 0. In practice, limit n — oo can only be ap-
proximated. Computation of the limit v — 0 is also
troublesome and small but fixed v values are used.
Numerical experiments demonstrate the quality of this
entropy estimation (Fig. 2): We draw 10000 samples
from two of 3 dimensional independent normal dis-
tributions, each having randomly chosen non-diagonal
covariance matrices. The samples were then mixed
by rotation matrix G () € R(6*6) where parameter 6
were chosen from interval [—m, 7]. Figure 2 shows the
exact and the estimated entropies of the first 3 coordi-

(a) 2D example for letter ‘A’ (b) 3D example for the
edges of a cube

Figure 1. Examples for geodesic spanning forests.
Forests for (a) 400 samples taken from letter ‘A’ with line
thickness of 15% of the letter size and (b) 400 samples of
a noisy 3D cubic wireframe.

nates of the mixed vectors. The two curves differ only
by and additive and irrelevant constant.

—_ True
stimated, k=20, y=0.
Esti d, k=20, y=0.01

Entropy

0
Rotation angle

Figure 2. Estimated and true entropies. Solid line: en-
tropy computed analytically for a 3 dimensional problem.
Solid line with diamonds: estimated entropy using Eq. (10)
for v = 0.01 and k = 20. The two curves differ by an (ir-
relevant) additive constant.

Computation of the Euclidean neighborhood graph
needs O(n?) steps, where n is the number of samples.
In our case, the minimal geodesic spanning forest can
be found in O(nlogn) steps with Kruskal’s method.
That is, the computational costs of the entropy esti-
mation in Eq. (10) scales as O(n?).

5. Optimization

First, we shall discuss how to optimize the cost func-
tion (7) by means of Jacobi-rotations. Then the
pseudo-code of our algorithm will be provided. Finally,
we shall generalize the Amari-distance (Amari et al.,
1996) to provide a performance measure for ISA tasks.

Let us rewrite Eq. (7) in a different form by tak-
ing advantage of relation H(y’) = >.i- H(y]) —
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,42.). Thus we have

d m
:ZZH Zlyl,...,ym (11)

j=11i=1 j=1

1y, ..

One may proceed in minimizing J(W) by first estimat-
ing the different terms of the cost function for a given
W, that is the multi-dimensional H(y?) entropies in
Eq. (7) or the one dimensional H (y]) entropies and the
mutual information I(y],...,v,) in Eq. (11) and then
minimizing these quantities by changing W. Consid-

ering Eq. (11), a two-step heuristics that provides local
minima can be derived. Note that
d m ]
mvlvn;z;H(yi) (12)
j=1i=

is equivalent to the classical 1D ICA problem
(Learned-Miller & Fisher, 2003) and in the first step,
one can solve the tradltlona,l 1D ICA task, which
minimizes the expression ZJ " H(y!). In the

second step, the quantity ijl (yl,...,ym), which
is the sum of the mutual information of the subspaces
should be maximized. Although there are methods
for the estimation of the mutual information (Bach
& Jordan, 2002; Gretton et al., 2003), we have found
that good results may be achieved by estimating only
the multi-dimensional entropy in Eq. (7) and using a
simple heuristics, an improvement of the permutation
method mentioned in (Cardoso, 1998). We note that
no permutatlon of the ICA components will modify
the term Z > H(y]) and such permutations
will improve The cost functlon Eq. (11) if they increase
the quantity Z (yl, ...,y} ). The idea is to group
components that belong to each other. In the general
case, however, the ICA components may need to be
modified for proper grouping and the approximation
needs to be extended. This extension is detailed
below.

5.1. Jacobi-Rotations

Let W* € R™?*™ denote an optimum of J(W). One
does not need to explore the full R™4*™? space for
finding an optimum, because W is orthogonal and
thus the space to be searched is somewhat smaller;
it has md(md — 1)/2 dimensions. Now, let us consider
Jacobi-rotation (also known as Givens-rotation). Let
1 < p < g < md, and let # denote a rotation an-
gle. Jacobi-rotation of angle 6 of components p and
q is denoted by G(p,q,0) € R™¥™d  This matrix
is derived from identity matrix I,,4 by modifying 4
of its elements: G(p,q,0)pp, = G(p,q,0)qq = cos(8),
G(p,q,0)qp = —G(p,q,0)p, = sin(d). Thus G is or-

thogonal and for any vector y € R™? rotation by ma-
trix G(p, ¢, ) mixes only the p'" and the ¢'" elements
of vector y. In our approach we shall avoid the opti-
mization of the orthogonal matrix in the full Rmd*md
space, because such global optimization is intractable.
Instead, we shall perform a series of 1D optimization
characterized by angle 6. Note that there is no need to
consider all pairs 1 < p < ¢ < md in the optimization.
Optimization may be restricted to those p, ¢ pairs that
belong to different subspaces.

In the second step we shall execute a series of iteration
cycles. One cycle of the iteration has m2d(d — 1)/2
separate 1D Jacobi-rotation optimization tasks. The
rotations will either demix two components (0 < 0] <
m/2), or may leave those unchanged (f = 0), or may
exchange them (|f| = 7/2). Iteration will stop if new
cycles can not improve the results. We note that global
minimum may not be reached by this algorithm. How-
ever, random rotations of the subspaces between itera-
tion cycles diminishes the chances of being trapped in
local minima, provided that simulated annealing strat-
egy is applied. Such random rotations were not used
here.

5.2. Algorithm

Traditional ICA preprocessing on the data was fol-
lowed by a series of Jacobi-rotations. For all rotations
the global minimum of cost function J was computed
by single dimensional (§ € [-7, §]) exhaustive search,
where entropy was estimated through Eq. (10). The
pseudo-code is provided below:

INITALIZATION
Sources: number d, dimension m
x(1),...,%x(n) € R™4: measured signals
PREPROCESSING
y € Rm4:
MAIN PROGRAM
Iterate until convergence
for p=1:md—m, q:mL%J +m+1:dm

ICA estimations from x

Choose 6* := arg _max }prq(ﬁ)
€l-3:%
where
Jyal0) = IS 0)) .+ HE0)
'O, ...y 0" = G(p,q,0)y,
and

H is computed by Eq. (10).
Set y := G(p,q,0")y

endfor
0UTPUT
Estimated sources: y*:=Yy
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5.3. Generalized Amari-Distance

We know for ICA that the product of a good estima-
tion for separation matrix W and the original mixing
matrix A is a permutation matrix. Deviation from
the permutation matrix is measured by the Amari-
distance (Amari et al., 1996). This measure is widely
used for performance estimation of ICA algorithms.
Let WA = B. Then the Amari-distance p(A, W) of
the estimated separation matrix W and mixing matrix
A is defined as:
1) ¥

j=1 | z]|
oA dz (maXJ |sz|
Z 7, 1 |b”| 1 (13)

2d max; |bi;|

Multi-dimensional generalization of the Amari-
distance is straightforward. Here, matrix
WA ¢ R™¥>Xmd j5 3 permutation matrix per-
muting m x m block matrices. Deviation from this
matrix can be computed as follows. Let b;; denote
the sum of the absolute values of elements at the
intersection of the i(m — 1) + 1,...,im rows and
the j(m — 1) + 1,...,jm columns of matrix WA.
Formally, let C = WA and for 1 <4,j <d let

im im

b= . >

p=i(m—1)+1qg=j(m—1)+1

|Cog| (14)

It is easy to see that p(A, W) > 0 and it is zero if and
only if matrix WA is a permutation matrix permuting
m x m block matrices.

6. Numerical Simulations

In this section numerical simulations will be used to
demonstrate the convergence of the ISA algorithm.

6.1. Simple 2D Letters and 3D Curves

13 (6) pieces of 2 (3) dimensional independent sources
were chosen, none of them were linearly separable in
2 (3) dimensional spaces. For the sake of visualiza-
tion, sources formed simple 2 (3) dimensional patterns.
First, the points on these patterns were sampled inde-
pendently. 2D samples were generated from letters,
alike in Fig. 1(a). For the 3D case, samples were
generated from noise-free 3D wirefames. The gener-
ated sample points (2000 in number) were whitened.
These 2 (3) dimensional sources are shown in Fig. 3(a)
(Fig. 3(e)). Random matrix of dimension 26 x 26

(18 x 18) was used to mix the sources. 13 (6) pieces
of 2 (3) dimensional projections of the mixed sources
are shown in Fig. 3(b) (Fig. 3(f)). The ISA algorithm
was applied to the mixed signals with k£ = 20 neigh-
bors and with v value equal to 0.01. Results of the
separation are shown in Fig. 3(c) (Fig. 3(g)). The ISA
algorithm could recover the sources up to permutation
and the directions within the subspaces. This feature
is illustrated in Fig. 3(d) (Fig. 3(h)) by the perfor-
mance matrix, which is the product of the true mix-
ing matrix and the estimated separation matrix. This
matrix, as expected, is close to a permutation matrix
made of m x m-sized blocks. Figs. 4(a) and 4(b) show
the Amari distances (Eq. (13)) of the estimated ma-
trices and the separation matrices during the course of
the iterations for the 2D and 3D curves, respectively.

6.2. Non-linear Speakers

In the well known cocktail party problem n indepen-
dent sources (speakers) and n microphones are as-
sumed in a room. The task is to recover the orig-
inal independent sources from the mixed signals re-
ceived by the microphones. Here we modify the orig-
inal problem. Assume d independent sources and to
each source assume m pieces of non-linear speakers.
The room also has md microphones. The task is to re-
cover the original signals from the signals detected by
the microphones. Traditional ICA algorithms can not
handle this task, because the md sources are not in-
dependent; we have only d independent sources. The
non-linear speakers distort the problem and to each
source we have an m-dimensional linearly inseparable
subspace. Clearly, for m = 1 the problem reduces to
the original cocktail party problem. In the numeri-
cal studies d = 4 and m = 2 were used. For each
source, one of the speakers had a cubic (f(x) = 2?)
non-linearity. For the sake of visualization, points of
the original signals are depicted as follows. Horizontal
coordinate represents the signals emitted by the non-
linear speaker, whereas vertical coordinate represents
its counterpart emitted by the linear speaker. Figure
5(a) shows the 2-dimensional independent sources af-
ter whitening. The sources were mixed by a random
matrix of size md x md modelling md microphones dis-
persed in the room. Projections of the mixed signals
are depicted in Fig. 5(b). Mixed signals were then an-
alyzed by algorithm (5.2) for neighbor number k=20
and for edge exponent v = 0.01. Estimated sources
are depicted in Fig. 5(c). The product of the original
mixing matrix and the estimated separation matrix is
shown in Fig. 5(d). This matrix closely approximates
a permutation block matrix.
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(a) 2D independent sources  (b) 2D mixed sources

5 10 15 20 25

(d) 2D performance ma-
trix

(c) 2D estimated sources

(e) 3D independent sources  (f) 3D mixed sources

5 10 15

(g) 3D estimated sources (h) 3D performance ma-

trix

Figure 3. ISA results for 2D and 3D curves
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Figure 4. Amari-distances versus iteration number.
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Figure 5. Non-linear speakers

6.3. Separation of Beatles Songs

One can consider the straightforward generalization of
the cocktail party problem, where the independent in-
dividual speakers are replaced by independent groups
of speakers. We have taken 3 different Beatles songs
modelling that three groups are playing. For each
songs there are 4 sound tracks (4 sources). In order to
strengthen the independence of the 3 songs, we have
shuffled each source in time separately. Then the 12
sources were mixed by a random matrix of size 12 x 12.
These mixed signals formed the inputs of the ISA al-
gorithm. If there were a single sound track for each
song then the task would reduce to the original cock-
tail party problem. The product of the original mixing
matrix and the separation matrix estimated by ISA al-
gorithm (5.2) is shown in Fig. 6. The product is close
to a permutation block matrix permuting blocks of size
4 x 4. Thus our method, which can not recover the
original individual tracks, is capable to recover the in-
dividual songs. The 1D ICA algorithms can not solve
this generalized task. We note however, that temporal
correlations are strong and ISA results are also poor
without shuffling the different songs differently.

6.4. Groups of Pairwise Independent Sources

We note that in the ICA task pairwise independence
of the variables and independence of all variables are
equivalent under mild conditions. This is, however,
not true for the ISA task as we shall see it below.
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|
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2 4 6 8 10 12

Figure 6. Product of the mixing matrix and the es-
timated separation matrix for mixed Beatles songs

Consider the following statement (Comon, 1994):

Lemma 6.1 Let x € R" be a stochastic vector vari-
able with independent components having at most a
single component of Gaussian probability distribution.
Let the distribution functions of all other components
continuwous, too. Let us mix the components by orthog-
onal matriz C € R™ ™, that is let z = Cx. Then the
following statements are equivalent:

1. Components z; are pairwise independent

2. Components z; are jointly independent

This theorem ensures that if we know that our data are
mixed from jointly independent sources, then for the
ICA task it is sufficient to require pairwise indepen-
dence. Algorithms, which take advantage of this the-
orem include, for example the diagonalization of the
non-linear covariance matrix (Jutten & Herault, 1991),
or kernel-ICA algorithms (Bach & Jordan, 2002).

The statement however does not carry over to
ISA tasks. Consider, for example, 3 groups of
3-dimensional sources {si,s},si}, i = 1...3, which
generate signals independently. Assume that for the
i*™™ group, pairs s}, s}, components are pairwise inde-
pendent if j # k, but si, s}, s} are not independent.
It is easy to see that if the independent groups are
shuffled by permutation matrix C € R%*Y, then the
new components, e.g.,

{s1,51, 57}, {52, 53, 53}, {s3, 53, 55}

are pairwise independent but are not solutions to the
ISA task, because they are not jointly independent.
The efficiency of our ISA algorithm is demonstrated
for this case below:

The following sources were prepared. 2 dices of 6 sides
were thrown. Assume that the results are u; and wuo.

Set the sources as follows: Let s} = 1 and s} = —1,
if u; is even or odd, respectively. Let s} = 1 and
sy = —1if uy is odd or even, respectively. Further,

let s = 1 and si = —1 if u; — uy is even or odd,

respectively. It is easy to see that any two of sources
s1, s}, s are independent, but there are dependencies
amongst them. For example, if s = s} = 1, then
we know that s} = —1. Slight modification can make
the distribution s' = (s, s}, s1) continuous. We have
used 3 of such 3D sources, mixed them by a random
mixing matrix of size 9 x 9 and applied the ISA al-
gorithm (5.2) with parameters k=20 and v = 0.01.
The algorithm recovered the original subspaces. This
is demonstrated by the Amari error curve (Fig. 7(a))
and by the block permutation form of the performance
matrix (Fig. 7(b)).

BN W s g o N

=

20 40 60 80

(a) Amari error during
learning

(b) Performance matrix

Figure 7. Separation of blocks of dependent sources,
which are pairwise independent

7. Discussion and Conclusions

We have introduced a cost function (Eq. (7)) for es-
timating the solutions of ISA problems by searching
for minimal costs. The cost function is the multi-
dimensional generalization of the -, 3, H(y?) 1D
cost, frequently applied in ICA tasks. Equation (11),
which is an equivalent form of Eq. (7), shows that it
might be useful to start ISA optimization by using
traditional ICA estimations. Also, the ISA task com-
bines the traditional ICA task and a number of under-
complete anti-ICA tasks, where anti-ICA means that
mutual information is to be maximized instead of min-
imization.

The multi-dimensional entropy terms of the cost func-
tion were estimated by means of minimal geodesic
spanning forests. During the minimization proce-
dure, Jacobi-rotations were applied, which correspond
to optimizations in single dimensions. In these one-
dimensional optimizations the one-dimensional spaces
were discretized and exhaustive searches were applied.
The efficiency of the algorithm was demonstrated on
a series of numerical examples.

Our method is relatively fast, because we need to do
exhaustive searches only for the Jacobi-rotations, i.e.,
only in one dimensions. Our method estimates joint
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dependencies and, in turn, it can overcome pitfalls that
might arise under the restricted assumption of pairwise
independence.

Our algorithm uses the information about the dimen-
sion of the sources and these dimensions were set equal
in the simulations. Generalization to sources of non-
equal dimensions is straightforward. The generaliza-
tion to unknown dimensions is, however, non-trivial.
Approximate solution has been suggested in (Bach &
Jordan, 2003).
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