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Abstract

Classifiers that refrain from classification in
certain cases can significantly reduce the mis-
classification cost. However, the parameters
for such abstaining classifiers are often set
in a rather ad-hoc manner. We propose a
method to optimally build a specific type of
abstaining binary classifiers using ROC anal-
ysis. These classifiers are built based on
optimization criteria in the following three
models: cost-based, bounded-abstention and
bounded-improvement. We demonstrate the
usage and applications of these models to ef-
fectively reduce misclassification cost in real
classification systems. The method has been
validated with a ROC building algorithm and
cross-validation on 15 UCI KDD datasets.

1. Introduction

In recent years, there has been much work on ROC
analysis (Fawcett, 2003; Flach & Wu, 2003; Provost
& Fawcett, 1998). An advantage of ROC analysis in
machine learning is that it offers a flexible and robust
framework for evaluating classifier performance with
varying class distributions or misclassification costs.

Abstaining classifiers are classifiers that can refrain
from classification in certain cases and are analogous
to a human expert, who in certain cases can say “I
don’t know”. In many domains (e.g., medical diag-
nosis) such experts are preferred to those who always
make a decision and are sometimes are wrong.

Machine learning has frequently used abstaining clas-
sifiers (Chow, 1970; Ferri & Hernéndez-Orallo, 2004;
Pazzani et al., 1994; Tortorella, 2000) and also as parts
of other techniques (Ferri et al., 2004; Gamberger &
Lavrac, 2000; Lewis & Catlett, 1994). Similarly to the
human expert analogy, the motivation is that such a
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classifier, when it makes a decision, will perform bet-
ter than a normal classifier. However, as these classi-
fiers are not directly comparable, the comparison is
often limited to coverage-accuracy graphs (Ferri &
Herndndez-Orallo, 2004; Pazzani et al., 1994).

In our paper, we apply ROC analysis to build an ab-
staining classifier that minimizes the misclassification
cost. Our method is based solely on ROC curves
and is independent of the classifiers used. We look
at a particular type of abstaining binary classifiers—
metaclassifiers constructed from two classifiers de-
scribed by a single ROC curve—and show how to select
such classifiers optimally.

The contribution of the paper is twofold: We de-
fine an abstaining binary classifier built as a meta-
classifier and propose three models of practical rele-
vance: the cost-based model (an extension of (Tor-
torella, 2000)), the bounded-abstention model, and
the bounded-improvement model. These models de-
fine the optimization criteria and allow us to compare
binary and abstaining classifiers. Second, we show how
to practically build an optimal abstaining classifier in
each of these models using ROC analysis.

The paper is organized as follows: Section 2 presents
the notation and introduces the ROCCH method. In
Section 3 we introduce the concept of ROC-optimal
abstaining classifiers in three models. In Section 4 we
discuss their construction. Section 5 discusses the eval-
uation methodology and presents the experimental re-
sults. In Section 6 we present related work. Finally,
Section 7 contains the conclusions and future work.

2. Background and Notation

A binary classifier C is a function that assigns a binary
class label to an instance, usually testing an instance
with respect to a particular property. We will denote
the class labels of a binary classifier as “+” and “—”.

A ranker R (also known as scoring classifier) is a spe-
cial type of binary classifier that assigns ranks to in-
stances. The value of the rank denotes the likelihood
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that the instance is “4+” and can be used to sort in-
stances from the most likely to the least likely positive.
A ranker R can be converted to a binary classifier C;
as follows: Vi : C,;(i) = + <= R(i) > 7. Variable 7
in C; denotes parameter (in this case a threshold) that
was used to construct the classifier.

Abstaining binary classifiers A (or abstaining classi-
fiers for short) are classifiers that in certain situations
abstain from classification. We denote this as assign-
ing a third class “?”. Such non-classified instances can
be classified using another (possibly more reliable, but
more expensive) classifier or a human domain expert.
This classification exceeds the scope of this paper.

The performance of a binary classifier is described
by means of a 2 x 2-dimensional confusion matriz C.
Rows in C' represent actual class labels, and columns
represent class labels predicted by the classifier. Ele-
ment Cj ; represents the number of instances of class
i classified as class j by the system. For a binary clas-
sifier the elements are called true positives (TP), false
negatives (FN), false positives (FP), and true nega-
tives (TN) as shown in Table la. The sum of TP and
FN is equal to the number of positive instances (P).
Similarly the number of negative instances (N) equals
FP +1TN.

Asymmetrical classification problems can be modelled
by a cost matriz Co with identical meanings of rows
and columns as in the confusion matrix. Element Co; ;
represents the cost of assigning a class j to an instance
of class i. Most often the cost of correct classifica-
tion is zero, i.e., Co;; = 0. In such cases, the matrix
has only two non-zero values for binary classifiers (Ta-
ble 1b): co1 (cost of misclassifying a negative instance
as a positive) and c12 (cost of misclassifying a positive
instance as a negative). In fact, such a cost matrix has

only one degree of freedom, the cost ratio CR = 2’;’—;

Classifiers in a cost-sensitive setup can be character-
ized by the cost rc—a cost-weighted sum of misclassi-
fications divided by the number of classified instances:

FN - C12 +FP C21

_ . 1
"“T TPYEN ¥ FP+ TN (1)

2.1. ROC Analysis

Very briefly, a ROC plane has axes ranging from 0 to

1 and labeled false positive mteT P( fp= %.?ipTN = I”;V—P)
and true positive rate (tp = 7p5py = ). Evaluat-

ing a binary classifier C; on a dataset produces exactly
one point (fp;,tp,) on the ROC plane. Many classi-
fiers (e.g., Bayesian classifiers) or methods for building
classifiers have parameters 7 that can be varied to pro-
duce different points on the ROC plane. In particular,

Table 1: Confusion and cost matrices for binary classifica-
tion. The columns (C) represent classes assigned by the
classifier; the rows (A) represent actual classes.

(a) Confusion matrix C (b) Cost matrix Co

C C
A + - A + -
¥ TP [ FN | P
= FP | TN | N + 0 | c
— C21 0

a single ranker can be used to efficiently generate a set
of points on the ROC plane (Fawcett, 2003).

Given a set of points on a ROC plane, the ROC
Convex Hull (ROCCH) method (Provost & Fawcett,
1998) constructs a piecewise-linear convex down curve
(called ROCCH) fr : fp — tp, having the following
properties: (i) fr(0) = 0, (ii) fr(1) = 1, and (iii)
the slope of fr is monotonically non-increasing. We
denote the slope of a point on the ROCCH as fl’%T.

To find the classifier that minimizes the misclassifi-
cation cost rc, we rewrite Equation (1) as a function
of one variable, FP, calculate the first derivative dd;f,
and set it equal to 0. This yields a known equation of

iso-performance lines

. N
Th(ip) = R )
which shows the optimal slope of the curve given a
certain cost ratio (CR), N negative, and P positive
instances. Similarly to Provost and Fawcett (1998), we

assume that for any real m > 0 there exists at least one
point (fp*,tp*) on the ROCCH having f,(fp*) = m.

Note that the solution of this equation can be used
to find a classifier that minimizes the misclassification
cost for the instances used to create the ROCCH. We
call such a classifier ROC-optimal. Note that it may
not be optimal on other instances. However, if the test-
ing instances used to build the ROCCH and the other
instances are representative, such a ROC-optimal clas-
sifier will also perform well on other testing sets.

3. ROC-Optimal Abstaining Classifier

Our method builds an ROC-optimal abstaining clas-
sifier as a metaclassifier using a ROC curve and the
binary classifiers used to construct it. A ROC-optimal
classifier is defined as described in Sect. 2.1. The
method constructs an abstaining metaclassifier A, g
using two binary classifiers C, and Cg as follows:

+ Calw) =+ A Cpla) = +
Aupl@) =47 Cale) == ACs@) =+ . (3)
— Cpla) = — A Ca(z) = —
TFor this paper we assume that the slope at vertices of a

convex hull takes all values between the slopes of adjacent
line segments.
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Each classifier has a corresponding confusion matrix,
(TP,,FN,,FP,,TN,) and (TPg,FNg, FPg,TNg),
which will be used in the next sections. Classifiers C,,
and Cg belong to a family of classifiers C,, described
by a single ROC curve with FFP, < FPg.

Our method is independent of the machine-learning
technique used. However, we require that for any two
points (fpa,tpa), (frg,tpg) on the ROC curve, with
fpa < fps, corresponding to C, and Cg, the following
conditions hold:

Vi:(Ca(i) =+ = Cg(i) =+)A 0
(Cs(i) = — = Cali) =—) .

Conditions (4) are the ones used in (Flach & Wu,
2003). These are met in particular if the ROC curve
and C, and Cg are built from a single ranker R (e.g.,
a Bayesian classifier) with two threshold values o and
B (a > ). The advantage is that for such a classifier,
a simple and efficient algorithm exists for constructing
a ROC curve (Fawcett, 2003). For arbitrary classifiers
(e.g., rule learners), (4) is generally violated. How-
ever, we observed that the fraction of instances with
Ca(i) = + AN Cg(i) = — is typically small, and that
applying our method is such cases still yields good re-
sults. As this is an interesting class of applications, we
plan to elaborate on it as a future work item.

Given a particular cost matrix and class distribution
%, the optimal binary classifier can easily be chosen
as a one that minimizes the misclassification cost (1).
However, no such notion exists for abstaining classi-
fiers, as the tradeoff between non-classified instances
and the cost is undefined. Therefore, we propose and
investigate three different criteria and models of opti-
mization: the cost-based, the bounded-abstention and
the bounded-improvement model, which we discuss in
the following sections. We formulate our goals as:

Given — A ROC curve generated using classifiers
C;, such that (4) holds.
— A Cost matrix Co.
— Evaluation model €.

Find A classifier A, g such that A, g is optimal

in model £.

3.1. Cost-Based Model

In this model, we compare the misclassification cost,
rc, incurred by a binary and an abstaining classi-
fier. We use an extended 2 x 3 cost matrix, with
the the third column representing the cost associated
with classifying an instance as “?”. Note that this
cost can be different for instances belonging to differ-
ent classes, which extends the cost matrix introduced
in (Tortorella, 2000).

Table 2: Cost matrix Co for an abstaining classifier.
Columns and rows are the same as in Table 1. The third
column denotes the abstention class.

C
_ ?
A + ?
+ 0 ci2 | cis
— Cc21 0 C23

Having defined the cost matrix, we use a similar ap-
proach as in Sect. 2.1 for finding the optimal classifier.
Note that the classifications made by C,, and Cg are not
independent. Equation (4) implies that false positives
for C, imply false positives for Cg. The similar holds
for false negatives, and we can thus formulate (5). The
misclassification cost 7c is defined using a 2 x 3 cost
matrix similarly to (1), with the denominator equal to
the total number of instances.

rec= ((Fpg —FPa)623+(FNa —FN@) C13

Cq, Cp disagree, —
+FPa'021+FN5'012) (5)
FP for both

Ca, Cp disagree, +

———
FN for both

We rewrite (5) as a function of only two variables: FP,
and FPg, so that to find the local minimum we calcu-
late partial derivatives for these variables. After cal-
culations, setting the derivatives to zero, making sure
that the function has a local extremum, and replacing
FP, and FPs with the corresponding rates fp, and
fpa, we obtain the final result:

popsy . C3 N

fR(fPﬁ) 12 —c13 P ©)
Fhlrp) = 2= Y

R [e] ci3 P ?

which, similarly to (2), allows us to find fp7, and fpj,
and corresponding classifiers C, and Cg.

This derivation is valid only for metaclassifiers (3)
with (4), which implies fp; < fpj and fr(fps) <
fr(fpj). As a ROCCH is increasing and convex, its
first derivative is non-negative and non-increasing, and
we obtain f(fpj) > fr(fpj) > 0. Using the 2 x 3

cost matrix these conditions can be rewritten as:

(€21 > c23) A (c12 > c13) A (ca1c12 > 21013+ C23C12)
(7)

If condition (7) is not met, our derivation is not valid;

however the solution is trivial in this case.

Theorem 1. If (7) is not met, the classifier min-

imizing the misclassification cost is a trivial binary
classifier—a single classifier described by (2).

Proof. We omit the complete proof for space reasons
and only briefly outline it. First, we have to show that
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for a ROC-optimal abstaining classifier ff(fpl) >
fr(fp*) > fr(fph) > 0, where fp* describes the
ROC-optimal binary classifier. Second, we have to

show that if (7) is not met, partial derivatives B%C
orc

and Bfps Are positive for fp;, < fp* and fpj; > fp*.
Therefore we conclude that the ROC-optimal classifier
is a binary classifier in this case. O

Equation (7) allows us to determine whether for a
given 2 x 3 cost matrix Co exists a trivial abstain-
ing classifier minimizing rc, but gives little guidance to
setting parameters in this matrix. For this we consider
two interesting cases: (i) a symmetric case c13 = co3,

and (ii) a proportional case €2 = €1,
C13 C12

The first case has some misclassification cost CR with
identical costs of classifying instances as “?”. This case
typically occurs when, for example, the cost incurred
by the human expert to investigate such instances is
irrespective of their true class. In this case, (7) sim-
plifies to the harmonic mean of two misclassification
costs: c13 = co3 < % The second case gives
us the condition ¢;3 < 42 (equivalent to co3 < ).
This case occurs if the cost of classifying an event as
the third class is proportional to the misclassification
cost. These simplified equations allow a meaningful
adjustment of parameters ci3 and ca3 for abstaining

classifiers.

To summarize, the ROC-optimal abstaining classifier
in a cost-based model can be found using (6) if (7)
(or the special cases discussed below) holds on a given
cost matrix. In the opposite case, our derivation is not
valid; however the ROC-optimal classifier is a trivial
binary classifier (Co, = Cg).

3.2. Bounded Models

In the simulations using a cost-based model (see
Sect. 5.3.1) we noticed that the cost matrix and in
particular cost values c13 and ca3 have a large impact
on the number of instances classified as“?”. Therefore
we think that, while the cost-based model can be used
in domains where the 2 x 3 cost matrix is explicitly
given, it may be difficult to apply in other domains,
where parameters c13, ca3 would have to be estimated.

To address this shortcoming we propose a model that
uses a standard 2 x 2 cost matrix. In such a setup, we
calculate the misclassification cost per instance actu-
ally classified. The motivation is to calculate the cost
only for instances the classifier attempts to classify.

Using a standard cost equation, (1), with the denomi-
nator TP + FP + FN + TN = (1 — k)(N + P), where

k is the fraction of non-classified instances, we obtain:

1
rc= m (FPy - c21 + FNg - c12) ®
k 1 ((FPs — FPs) + (FNo — FNp))

“N+P

which determine the relationship between the fraction
of classified instances k and the misclassification cost
rc as a function of C, and Cz. By putting boundary
constraints on k£ and rc and trying to optimize rc and
k, respectively, we create two interesting evaluation
models, which we discuss below.

3.2.1. BOUNDED-ABSTENTION MODEL

By limiting k to some threshold value knyax (K < Kmax)
we obtain a model in which the classifier can abstain
for at most a fraction k of instances. In this case the
optimization criterion is that the classifier should have
the lowest misclassification cost rc.

This has several real-life applications, e.g., in situa-
tions where non-classified instances will be handled by
a classifier with limited processing speed (e.g., a hu-
man expert). In such cases, assuming a constant flow
of instances with speed ¢ and a constant manual pro-

cessing speed m, m < ¢, we obtain kpyax = .

We rewrite Equations (8) as functions of two variables
fpa and fps and introduce two auxiliary functions
re(fpa, fpg), expressing the relative misclassification
cost, and k(fpa, fps), denoting the number of non-
classified instances. The minimization goal can be ex-
pressed as follows: Among all pairs (fpj,, fpj;) that
satisfy k(fp, fPj) < kmax(N + P), find the ones that
minimize re(fp,, fps)-

N - fpa - c21 + P (1 — fr(fpp)) - c12
N+ P = k(fpa, frs)

k(fpa, frs) = P (fr(fps) — fr(fpa)) (9)

+ N(fpg — fra)

Unfortunately, unlike (6), the Equations (9) for a
bounded-abstention model have no algebraic solution
in the general case. Therefore we minimize it using
numerical methods.

rc( fra, frs) =

3.2.2. BOUNDED-IMPROVEMENT MODEL

The second bounded model is when we limit rc to a
threshold value repmax (¢ < remax) and require that
the classifier abstain for the smallest number of in-
stances. Similarly to the previous model, optimiz-
ing this model requires the use of numerical methods.
Using the definitions of k(fpa, frg) and re( fpa, fvs)
in (9), we express the minimization goal as follows:
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Among all pairs (fp, fpj;) such that re(fpg, fps) <
TCmax, find the ones that minimize k(fpy,, fpj;)-

This model has several real-life applications, e.g., in
a medical domain, where given a certain test and its
characteristics (ROC curve) the goal is to reduce the
misclassification cost to a user-defined value reg ., al-
lowing for the smallest number of abstentions.

For the evaluation of this model the following remark
is in place. As different datasets yield different ROC
curves and misclassification costs, we could not use a
constant value of rcp.x for all datasets. Instead we
used a fraction cost improvement f and calculated rc’
as follows: Tcmax = (1 — f)rc, where rc is the mis-
classification cost of the ROC-optimal binary classifier
found using (2).

4. Constructing Abstaining Classifiers

In this section we discuss how to construct an opti-
mal abstaining classifier in the three models. Based
on (Provost & Fawcett, 1998; Tortorella, 2000), in the
cost-based model, the ROC-optimal classifier is always
located on the vertices of the ROCCH. This is intuitive
as classifiers corresponding to two adjacent vertices of
the ROCCH have the same slopes and the same mis-
classification costs as classifiers corresponding to the
line segment joining these vertices. However, this is
not always the case in the two bounded models we
introduced in Sections 3.2.1 and 3.2.2.

Theorem 2. In the (i) bounded-abstention and (ii)
bounded-improvement models, the optimal classifier is
not always located on the vertices of the ROCCH.

Proof. (by counterexample)

(1) Assume the optimal classifier A, g has its classifiers
C. and Cg located on the vertices of the particular
convex hull (0,0), (0.5,1), (1,1) with ¢12 = ¢21 = 1,
N = P and kyax < 0.25. In this case C, must be equal
to Cg (otherwise k > 0.25). Therefore, fpo = fpg =
0.5 and from (9) re(fpa, frg) = 0.25.

Assume a classifier A, 3 has fp, = 0.5 — § and fpﬂ =
0.5, with a small positive § so that k(fpa, fpﬁ) < 0.25).

In this case (9) simplifies to rc(fpa,fpﬁ) = 025 —

ﬁ—%é < 0.25. This contradicts the assumption that
Aq,p is an optimal classifier in a bounded-abstention

model and completes the proof.

(ii) A similar proof can be shown for a bounded-
improvement model. We omit it for space reasons. [

To conclude, vertices on the ROCCH can be used to
find a ROC-optimal classifier only in the cost-based
model. In the remaining two models, the ROC-optimal

classifier uses arbitrary points on the ROCCH. Such
classifiers, corresponding to points lying on the line
segment can be constructed using a weighted random
selection of votes of classifiers corresponding to two
adjacent vertices (Fawcett, 2003). However, our pro-
totype uses another method, which was more stable
and produced less variance than the random selection.

A ROCCH can be considered a function f : 7 —
(fp,tp), where 7 € T is a set of discrete parameters,
varying which one constructs classifiers C, correspond-
ing to different points on the ROCCH. In our algo-
rithm we compute an inverse function f=! : (fp,tp)
7 and interpolate it using splines with a function f ;1,
defined for a continuous range of values 7. Given an
arbitrary point (fp*, tp*) on the curve, we use the
function f -1 yielding 7* to construct a classifier C,~

5. Experiments

To analyze the performance of our method we tested
it on 15 well-known datasets from the UCI KDD (Het-
tich & Bay, 1999) database: breast-cancer,
breast-w, colic, credit-a, credit-g, diabetes,
heart-statlog, hepatitis, ionosphere, kr-vs-kp,
labor, mushroom, sick, sonar, and vote.

We tested our method in all three models described
above. In the model 1, the input data is a 2 X 3 cost
matrix in the symmetric case (¢13 = ¢23). In the model
2, we use a 2 x 2 cost matrix and k (a fraction of
instances that the system does not classify). In the
model 3, the input data is also a 2 x 2 cost matrix and
a fraction f, i.e., a relative cost improvement over the
optimal binary classifier (defined as ~“binary _TCtrizstate )

TCbhinary

5.1. Testing Methodology

The experiment for each dataset was a two-fold cross-
validation repeated five times with different seed val-
ues for the pseudo-random generator (we used 5 x 2
cv, as it has a low-level Type-I error for significance
testing (Dietterich, 1998)). We averaged the results
for these runs and calculated 95% confidence inter-
vals, shown as error bars on each plot. In the cross-
validation, we used a training set to build an abstain-
ing classifier, which was subsequently evaluated on the
testing set.

The process of building an abstaining classifier is
shown in Fig. 1. We used another two-fold cross-
validation (n = 2) to construct a ROC curve. The
cross-validation was executed five times (m = 5), and
the resulting ROC curves were averaged (threshold av-
eraging (Fawcett, 2003)) to generate a smooth curve.
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While the method is applicable for any machine learn-
ing algorithm that satisfies (4), we used a simple Naive
Bayes classifier as a base classifier, converting it to a
ranker by calculating the prediction ratio %.

Given the ROC curve and the input parameters (cost
matrix and a value k), the program numerically finds
values o and 3 describing C, and Cg and the ROC-
optimal classifier (in each model). These values were
used to set the thresholds in a Naive Bayes classifier
built using the entire training set to create A, 3.

(1) 2x3 cost matrix or
(2) 2x2 cost matrix and fraction k

training

hresholds

Classifier A a»
A

Binary Classifier

P»| Build Classifier |—

* - algorithm described in the paper

Figure 1: Building an abstaining classifier A, g.

Such an experiment was run for every dataset and ev-
ery combination of input parameters, CR, c¢13 (respec-
tively k or f), thus producing multiple plots (one for
each dataset), multiple series (one for each cost ratio),
and multiple points (one for each value of ¢13, k or f).

We used three values of the cost ratio (CR): 0.5, 1 and
2, and four different values of ¢13 (first model), k: 0.1,
0.2, 0.3 and 0.5 (second model), and f: 0.1, 0.2, 0.3
and 0.5 (third model), yielding 180 experiment runs
(15 x 3 x 4) for each model. The values of CR, ¢13, k
and f were chosen from the range of values the models
are expected to be used with.

We used Bayesian classifier from Weka toolkit (Wit-
ten & Frank, 2000) as a machine-learning method.
For the numerical optimization for bounded models we
used the Nelder-Mead optimization algorithm (Nedler
& Mead, 1965).

5.2. Results—Cost-Based Model

Out of 180 simulations (15 datasets, four values of
c13, and three cost values) 152 are significantly better
(lower rc) than the corresponding optimal binary clas-
sifier (one-sided paired t-test with a significance level
of 0.95). The optimal binary classifier was the same
Bayesian classifier with a single threshold set using (2).

The results for a representative dataset are shown in
Fig. 2. The complete results are shown in a techni-
cal report (Pietraszek, 2004). The X-axes correspond
to the cost value in a symmetric case c13 = co3 (left

Build Abstaining | Classifier

ionosphere.arff ionosphere.arff ionosphere.arff

°
2 —
H b S v | % 5 *%
2 <« | % % o g < o—%
g ° \ 8 ﬁ{ g ° &
s A £ 2 I\ s e
s 8 o =3
£ S A I\\ £ S /
@ 4 > P=R— g 3 @
PRI I Got [ B I I
°© T T T T T £ T T T T T °© T T T T T
01 02 03 04 05 01 02 03 04 05 0.1 0.3 0.5

cost value c13=c23 cost value ¢13=c23 fraction instances skipped

Figure 2: Cost-based model: Relative cost improvement
and fraction of non-classified instances for a representative
dataset (o : CR=0.5,0:CR =1, {: CR=2).

and center panel), and the Y-axes show the relative
cost improvement (left panel) and the fraction of non-
classified instances (center panel). The right panel dis-
plays the relationship between the fraction of skipped
instances and the overall cost improvement. Horizon-
tal error bars show 95% confidence intervals for the
fraction of non-classified instances, only indirectly de-
termined by cy3.

We clearly observe that lower misclassification costs
€13 = c23 result in a higher number of instances being
classified as “7” and higher relative cost improvement.
Moreover, an almost linear relationship exists between
the fraction of non-classified instances and the relative
cost improvement (right panel).

5.3. Results—Bounded Models
5.3.1. BOUNDED-ABSTENTION MODEL

Out of 180 simulations (15 datasets, four values of frac-
tions of non-classified instances and three cost values)
179 have significantly lower rc than the corresponding
optimal binary classifier (one-sided paired t-test with
a significance level of 0.95). The optimal binary clas-
sifier is a Bayesian classifier with a single threshold.

We also observed that in most cases the resulting clas-
sifier classified the desired fraction of instances as the
third class; the mean of the relative difference of k
(4%) for all runs is 0.078 (o = 0.19). This is particu-
larly important as it is only indirectly determined by
the two thresholds the algorithm calculates.

The results for a representative dataset are shown in
Fig. 3. The X-axes correspond to the actual fraction of
non-classified instances and the Y-axes show the rela-
tive cost improvement (left panel) and the misclassi-
fication cost (right panel). The left panel shows the
relative cost improvement as a function of the fraction
of instances handled by operator k. In general, the
higher the values of k, the higher the cost improve-
ment; for 8 datasets, namely: breast-w, credit-a,
credit-g, diabetes, heart-statlog, ionosphere,
kr-vs-kp and sonar, we can observe an almost lin-
ear dependence between these variables. The right
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panel shows the same data with the absolute values
of rc. The dashed arrows show the difference between
an optimal binary classifier and an abstaining one.

ionosphere.arff
1 A
1

T T T T T
01 02 03 04 05

ionosphere.arff

relative cost improvement
02 04 06 08

misclassification cost (rc)

01 02 03 04 05

fraction skipped (k) fraction skipped (k)

Figure 3: Bounded-abstention model: Relative cost im-
provement and the absolute cost for one representative
dataset (o : CR=0.5,0:CR =1, $:CR=2).

5.3.2. BOUNDED-IMPROVEMENT MODEL

This model is in fact the inverse of the previous model,
and thus we expected very similar results. The results
for a representative dataset are shown in Fig. 4. The
X-axes correspond to relative cost improvement (left
panel) and the misclassification cost (right panel). The
Y-axes show the actual fraction of non-classified in-
stances.

The left panel shows the fraction of instances handled
by the operator as a function of the actual misclas-
sification cost. It is interesting to compare the ac-
tual relative cost improvement f and the assumed one
(0.1, 0.2, 0.3, 0.5), as the former is only indirectly
determined through two thresholds determined by the
performance on the training set. The mean of the rela-
tive difference of f (%) for all runs is 0.31 (o = 1.18).
The positive value of the mean shows that the system
has, on average, a lower misclassification cost than re-
quired. Note that this value is higher than the corre-
sponding difference in the previous model. We con-
clude that this model is more sensitive to parame-
ter changes than the previous one. The right panel
shows the same data with the X-axis viewed as abso-
lute values of costs. In addition the horizontal arrows
(dashed) indicate the absolute values for the optimal
binary classifier and the desired cost at the head of an
arrow.
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Figure 4: Bounded-improvement model: Fraction of non-

classified instances for a representative dataset (o : CR =
05, 0:CR=1,:CR=2).

6. Related Work

Classifiers with reject rules were first investigated
by Chow (1970) and further developed by Tortorella
(2000). The latter uses ROC analysis in a model corre-
sponding to our cost-based model in a more restrictive
setup (c13 = c23). Our work extends this model further
and shows conditions, under which a non-trivial ab-
staining classifier exists. We also propose two bounded
models with other optimization criteria.

Cautious classifiers (Ferri & Herndndez-Orallo, 2004)
propose abstaining classifiers with a class bias K and
an abstention window w, which make them similar
to our second evaluation model, where an abstention
window is defined. However, although for w = 0
abstention is zero and the classifier abstains for ap-
proximately all instances for w = 1, the relationship
between w and the abstention is neither continuous
nor linear (Ferri & Herndndez-Orallo, 2004). There-
fore our model cannot be compared easily with cau-
tious classifiers. Similarly, cautious classifiers require
calibrated probabilities assigned to instances (other-
wise the class bias might be difficult to interpret). In
contrast our model, if used with a scoring classifier,
uses only information about the ordering of instances,
not the absolute values of probabilities. This makes
our model more general. On the other hand, cautious
classifiers are more general in the sense that they can
be used with a multi-class classification, whereas our
model is based on ROC analysis and is only applicable
to two-class classification problems.

Delegating classifiers (Ferri et al., 2004) use a cascad-
ing model, in which classifiers at every level classify
only a certain percentage of the instances. In this way
every classifier, except for the last one is a cautious
classifier. The authors present their results with an
iterative system, using up to n — 1 cautious classifiers.

Pazzani et al. (1994) showed how different learning al-
gorithms can be modified to increase accuracy at the
cost of not classifying some of the instances, thus cre-
ating an abstaining classifier. However, this approach
does not select the optimal classifier, is cost-insensitive
and specific to the algorithms used.

Confirmation rule sets (Gamberger & Lavra¢, 2000)
are another example of classifiers that may abstain
from classification. Confirmation rule sets use a special
set of highly specific classification rules. The results
of the classification (and whether the classifier makes
the classification at all) depend on the number of rules
that fired. Similarly to the previous approach, the au-
thors do not maximize the accuracy.
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7. Conclusions and Future Work

We proposed a method to build the ROC-optimal ab-
staining classifier using ROC analysis. Such a clas-
sifier minimizes the misclassification cost on instances
used to build the ROC curve. It also has a low misclas-
sification cost on other datasets from the same popu-
lation as the one used to build the curve.

We defined the misclassification cost in three mod-
els: A cost-based model, a bounded-abstention and
bounded-improvement models, which are relevant for
numerous practical applications. In the first model,
we used a 2 X 3 cost matrix, showed the conditions
under which the abstaining classifier has a non-trivial
minimum cost, and presented a simple analytical solu-
tion. In the bounded model, we showed how to build
the abstaining classifier assuming that no more than
a fraction kpax of instances is classified as the third
class. Finally, in the third model, we showed how to
build an abstaining classifier having a misclassification
cost that is no greater than a user-defined value. In
the latter two models, we redefined the problem as
a numerical optimization problem. We presented an
implementation and verified our method in all three
models on a variety of UCI datasets.

As future work, we intend to extend our experiments
to include other machine-learning algorithms. We will
also analyze the performance of our method for algo-
rithms for which (4) does not hold. We plan to inves-
tigate the convexity of ROC curves and how to apply
our method efficiently in real-world applications, also
with multi-class classification.
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