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Abstract ability, or use a discriminant function. Hence, the clas-
sification problem is solved by optimizing that which is
most important for classification accuracy. There are sev-
eral compelling reasons for using discriminative rathanth
generative classifiers, one of which is that the classifica-
tion problem should be solved most simply and directly,
and never via a more general problem such as the inter-
mediate step of estimating the joint distribution. This is
indeed the goal of the support-vector approach to classifi-
cation (Vapnik, 1998). Here, however, we attempt to form
a generative model that does not include the complexity
necessary to actuallgeneratesamples from the true dis-
tribution. Rather, we desire generative models that irelud
complexity enough only so that they discriminate well.
Indeed, Friedman et al. (Friedman et al., 1997) observed
that there can be a discrepancy between a Bayesian network
learned by optimizing likelihood and the predictive accu-
racy of using this network as classifier since the entire data
likelihood is optimized rather than only the class condi-
tional likelihood. A sufficient (but not necessary) conaiiti

for optimal classification is for the conditional likelihdo
(CL) to be exact. Hence, the network structure and parame-
ters which maximize the CL are of interest, since that crite-
rion is equivalent to minimizing the KL-divergence (Cover
& Thomas, 1991) between the true and the approximate
. conditional distribution (Bilmes, 2000). Unfortunatetlye

1. Introduction CL function does not decompose and there is no closed-

There are two paradigms for learning statistical classiiOM solution for determining its parameters.

fiers: Generative and discriminative methods (Bahl et al.|n current approaches, either the structure or the paramete
1986),(Jebara, 2001). Generative classifiers learn a modgte learned in a discriminative manner by maximizing CL.
of the joint probability of the features and the correspond-Greiner and Zhou (Greiner & Zhou, 2002) introduced an
ing class label and perform predictions (classification) byoptimization approach by computing the maximum CL pa-
using Bayes rule to compute the posterior probability of therameters using a conjugate gradient method after the struc-
class variable. The standard approach to learn a generativgre of the network has been established. In (Grossman
classifier is maximum likelihood (ML) estimation, possibly & Domingos, 2004) the CL function is used to learn the
augmented with a (Bayesian) smoothing prior. Discrim-structure of the network, where the parameters are deter-
inative classifiers directly model the class posterior prob mined by ML estimation. They use hill climbing search
with the CL function as a scoring measure, where at each

Appearing inProceedings of the2"™" International Conference jiaration one edge is added to the structure which complies

?hneI\QS&?&?&)&E;L”«;?(%?_O”“’ Germany, 2005. Copyright 2005 by with the restrictions of the network topology (e.g. tree

In this paper, we compare both discrimi-
native and generative parameter learning on
bothdiscriminativelyandgeneratively structured
Bayesian network classifiers. We use either max-
imum likelihood (ML) or conditional maximum
likelihood (CL) to optimize network parameters.
For structure learning, we use either conditional
mutual information (CMI), the explaining away
residual (EAR), or the classification rate (CR) as
objective functions. Experiments with the naive
Bayes classifier (NB), the tree augmented naive
Bayes classifier (TAN), and thRayesian multi-
nethave been performed on 25 data sets from the
UCl repository (Merz et al., 1997) and from (Ko-
havi & John, 1997). Our empirical study sug-
gests that discriminative structures learnt using
CR produces the most accurate classifiers on al-
most half the data sets. This approach is feasible,
however, only for rather small problems since
it is computationally expensive. Discriminative
parameter learning produces on average a better
classifier than ML parameter learning.
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augmented naive Bayes (TAN)) and the definitions of a2. Bayesian network classifier

Bayesian network. The classification rate (CR) has also i

been used as an objective function for discriminative struc”> Bayesian network (Pearl, 1988),(Cowell et al., 1999)
ture learning (Keogh & Pazzani, 1999),(Pernkopf, 2005).B - <_G’ Q> IS adlrec_ted acyclic Qra_p@ ‘_Nh'Ch represents
Bilmes (Bilmes, 2000),(Bilmes, 1999) introduced thwe- factorlza_non properties of the distribution of a set ofran
plaining away residuafEAR) for discriminative structure domvariabless = {C, Xy,.... Xy} = {Zy, ..., Zn11},

learning of dynamic Bayesian networks for enhancing thé"’hereI each variable i@ has hvalues denote_d tljy lower
performance in speech recognition. An empirical and the£35€ etter{c, z1,...,x}. The random variable’ &
., |C|} represents the classés) is the cardinality of

oretical comparison of discriminative and generative-clas{l’ s

sifiers (logistic regression and the naive Bayes (NB) clas® X 1:v denote the random variables of theattributes of

sifier) is given in (Ng & M., 2002). It is shown that for the classifier. Each graph node depicts a random variable,

small sample sizes the generative NB classifier can outpet¥Nile the lack of an edges specifies some independences
form the discriminatively trained model. Therefore, hybri property. Specifically, in a Bayesian network each node is

models have been proposed (Raina et al., 2004) to obtaiiﬁ'dependem of its non-descendants given its parentseThes
the best of both worlds. conditional independence relationships reduce both num-

In this paper, we empirically compare both discriminative ?€" Of parameters and required computation. Syntbol
and generative parameter training bath discriminative ~ '€Presents the set of parameters which quantify the net-
and generatively structured Bayesian network classifierdV0'k- Each nodeZ; is represented as a local conditional
(see Figure 1). As far as we know, our work is the first eval-Probability distribution given its parentsy, . We usef;,
uation of discriminative parameter training on discrimina t© denote a specific conditional probability table entrg th
tively structured networks. In our work, parameter tragnin Probability that variableZ; takes on itsith value assign-
has been performed either by ML estimation or by opti-Ment given that its parentgy;; take thekth assignment,
mizing the CL. For structure learning of the TAN and thei e gl —p (Zm — il — k) _ H“Z"‘ 0 (9?- >ui\’L’l
Bayesian multinet we use the following scoring functions: =~ ¥ J I =L Lk \Tilk)

The conditional mutual information (CMI) is utilized as a Where the last equality follows from the fact that," is
generative approach, and the CR or an approximation of for 2" = i and z;j, = k, and is O elsewhere, i.e.
the EAR measure as a discriminative method. We focus or&g‘);n =1

e . The training data consists aff
{=iosit =k}
samplesS = {zm}fff:l = {(c’”,a:{’}N)}ﬁf:l. We assume
Structure learning a complete data set with no missing data values. The joint
Ge(rée'\;;el\)tlve Di(sEcAri'rqni%ag‘i;’e probability distribution of the network is determined byth

p— local conditional probability distributions as

enerative

(ML) \/ \/ N+1

Discriminative J J P@ (Z) = H P@ (ZJ|ZH7) (1)

(CL) j=1

Parameter
learning

) _ _ -~ ~and the probability of a sampte is
Figure 1.0ur strategies for Bayesian network classifier learning

N41 N+117;] gim
Po(z==")=[[ o =TT TI11 (%)
three network topologies: naive Bayes (NB), the TAN clas- =t J=he=l ok @

sifier, and Bayesian multinets.

The paper is qrgamzed as follows: In ngctlon 2 we N"2.1. NB, TAN, and Bayesian multinet structures
troduce Bayesian networks. Then we briefly present the
different network topologies and the approaches for genThe NB network assumes that all the attributes are con-
erative and discriminative structure and parameter learnditionally independent given the class label. As reported
ing. In Section 3 we report classification results on 25in the literature (Friedman et al., 1997), the performance
data sets from the UCI repository (Merz et al., 1997) andof the NB classifier is surprisingly good even if the condi-
from (Kohavi & John, 1997) using all combinations of gen- tional independence assumption between attributes is unre
erative/discriminative structure/parameter learningldiA  alistic in most of the data. The structure of the naive Bayes
tionally, we give the number of parameters which have toclassifier represented as a Bayesian network is illustrated
be trained for the particular network structure and the numin Figure 2a. In order to correct some of the limitations of
ber of classifications it takes to establish the structuirgus the NB classifier, Friedman et al. (Friedman et al., 1997)
the CR scoring function for the TAN structure. Conclu- introduced the TAN classifier. A TAN is based on struc-
sions are presented in Section 4. tural augmentations of the NB network, where additional
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crimination (Bilmes, 2000).

Discriminative structure learning: Bilmes (Bilmes,
2000) introduced an objective functiah(X;; X;|C) —

I (X;; X;) which is calledexplaining away residual (EAR)
This measure prefers edges which are mutually informa-
tive conditioned on the class variable but simultaneously
are not mutually informative unconditionally. The EAR
measure is in fact an approximation to the expected log
posterior, and so improving EAR is likely to decrease the
KL-divergence (Cover & Thomas, 1991) between the true
posterior and the resultant approximate posterior. The EAR
measure is originally defined in terms of vectors of ran-
dom variables. In our work, we use a scalar approxima-
tion of the EAR. Moreover, to simplify further, our approx-
Figure 2.Bayesian Network: (a) NB, (b) TAN. imate EAR-based structure learning procedure sequentiall
adds edges with an EAR value larger than zero to form

. . the TAN network or Bayesian multinet, starting with the
edges are added between attributes in order to relax sor} 4 9
of

i

fge which corresponds to the largest EAR value. Addi-
of the most flagrant conditional independence properties 9 P g

; . onally, we consider additions only that correspond to the
NB. Each attribute may have at most one other attrlbutqi‘I Y y P

dditional which that the t idth ee-width unity constraint of the TAN and the Bayesian
as an additional parent which means that the tree-width of .o o+ ctructure.

_the attribute induced sub-graph is unity. Her_nce, the MaX\e also evaluate a second discriminative measure, namely
imum number of edges added to relax the mdependencg;1e CR (Keogh & Pazzani, 1999; Pernkopf, 2005)
assumption between the attributesMs— 1. Thus, two at- ' ' '

tributes might not be conditionally independent given the

class label in a TAN. An example of a TAN network is 1 &

shown in Figure 2b. A TAN network is typically initialized CR= 5] > 6 (Bs (#fiy),c™), (4)
as a NB network. Additional edges between attributes are meS

determined through structure learning.

Bayesian multinets (Geiger & Heckerman, 1996) furtheryhere|s| is the size of the training dats. The expres-
generalize the TAN approach. In the TAN network, the de-gjon 5 (B4 (zy) ,¢™) = 1 if the Bayesian network clas-

pendencies amongst the attributes are the same for all valjfier B¢ (z™,) trained with sample$ assigns the correct
ues of the class nod€. A Bayesian multinet has different 5355 |abelk™ to the attribute values™,.. Note that the

edges for each class. Hence, depending on the class labglr scoring measure is determined from a classifier trained

we can have a different (1-tree) network structure. and tested on the same dafa Exactly the same portion
_ of data is used for learning the structure of the classifiers
2.2. Structure learning either with CMI, EAR, or CR (see Section 3).

In this paper, the following approaches are used to learn thle(1 :\TIS caze (_)fhthe -I;]A_N str_ucture, tg(ej nhetW(()jrk is irr]l_itir?liz_ed
structure of the TAN network and the Bayesian multinet. to an W't each iteration we a .t. € edge which gives
the largest improvement of the classification rate. The CR

approach is the most computationally expensive, as a com-
glete re-classification of the training set is needed on each
ew evaluation of an edge. The CR, however, is the dis-

Generative structure learning: We use the CMI (Cover
& Thomas, 1991) between the attributes given the clas

variable criminative criterion that has the fewest number of approx-
P (z;,7jlc) imations, so we expect it to do well. The greedy hill climb-
I(X;; X;|0) = Y P(wi,2),¢)log P(wilo) P(a,jc)°  Ing searchis terminated when there is no edge which fur-
i ! / @) ther improves the score.

This measures the information betwe&pn and X; in the
context ofC'. Note, CMI isnot a discriminative structure
learning method, as it can be shown that augmenting th&enerative parameter learning: The parameters of the
structure according to CMI will produce a guaranteed non-generative model are learned by maximizing the log likeli-
decrease in likelihood but does not necessarily help dishood of the data which leads to the ML estimatiomg);.

2.3. Parameter learning
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The log likelihood function of a fixed structure & is The probabilityef‘k is constrained toeflk > 0 and

1Z;] gi
2 izt eglk 4
porate the constraints @f‘ . and use different parameters
ﬂfl . as follows

M = 1. We reparameterize the problem to incor-
LL(B|S) =) logPe(Z=2") =
m=1

M N+1

> D toePe ()= () "

m=1 j=1 Jj

M N Z 01|k: a ‘Zj‘ ﬁj ' (9)
+112;] 1=} exp 1k

PIDIDIPIHALICE
m=1 j=1 i=1 &k

3. Experiments

Itis easy to show that the ML estimate of the parameters Our goal in this paper is to evaluate both discriminative

EM W and generative parameter training bath discriminative
_ m=1 "ilk and generatively structured Bayesian networks. Addition-
ilk M 1Z;| , j,m’
D B | Uy g

ally, we use different Bayesian network topologies, the NB,
TAN, and Bayesian multinet classifier. To perform our

using Lagrange multipliers to constrain the parameters to avaluations, we compare all of the above techniques on the

valid normalized probability distribution. data sets from the UCI repository (Merz et al., 1997) and
from (Kohavi & John, 1997). The characteristics of the

Discriminative parameter learning: As mentioned data are summarized in Table 1.

above, for classification purposes, having a good approxye yse the same 5-fold cross-validation (CV) and train/test

imation to the posterior probability is sufficient. Hences w ) ; .
want to learn parameters so that CL is maximized. Un_Iearnlng schemes as in (Friedman et al., 1997). To make

fortunately, CL does not decompose as does ML. Consethe experimental setup clearer, the data have been split
quently, there is no closed-form solution and we have tanto five mutually exclusive subsets of approximately equal
resort to iterative optimization techniques. In our experi size D ¢ {S;,S,,Ss,S84,S5}. For parameter training

ments, discriminative parameter learning is performed af ;
ter the structure of the network has been determined. Th ML, C.'L) and structure Iggrnlng (CMI, EAR, CR) of the
ayesian network classifier we use the same data-

objective function for the conditional log likelihood is X -
D\S. (1 < ¢ < 5). Therefore, we might get different

structures for each CV-fold. Throughout the experiments,
we use exactly the same data partitioning. Hence, for learn-

(6)

M
CLL (B|S) =log H Pe (C =Xy =aliy) =
m=1

M M
P@ O:Cm XI:N:x”? P@ A . .
> log %l ( ’ v) > log o 2) Table 1.Data sets used in the experiments.
"=t Y Pe(C=cXun=aly) ™Y Y Pe(2)
c=1 Z1=1
! (7) DATASET # FEATURES  # CLASSES  # SAMPLES
Similar to (Greiner & Zhou, 2002) we use a conjugate 1 AUSTRALIAN 14 2 690 CV-5
gradient descent algorithm with line-search (Press et al., 3 BREAST o 2 58 Ve
1992). Therefore, the derivative of the objective function , CLEVE 13 5 296 CV.5
IS 5 CORRAL 6 2 128 CV-5
6 CRX 15 2 653 CV-5
M te] 7 DIABETES 8 2 768 CV-5
OCLL(B|S) _ dlog Pe (Z) Olog) .z 1 Pe(Z)| 4 FLARE 10 2 1066 CV-5
(99j 69j 59j 9 GERMAN 20 2 1000 CV-5
ilk m=1 ilk ilk 10 GLASS 9 7 214 CV-5
M Le] 11 GLASS2 9 2 163 CV-5
3 OPe(2) 1 2z,19Pe(2) 1 _ 12 HEART 13 2 270 CV-5
J J [C| 13 HEPATITIS 19 2 80 CV-5
) R Po (2) 00 7,1 Pe (2) 14 IRIS 4 3 150 CV-5
M 1, . 15 LETTER 16 26 15000 5000
Z {Zj :“ZHJ:’“} B 16 LYMPHOGRAPHY 18 4 148 CV-5
17 MOFN-3-7-10 10 2 300 1024
m=1 P (Zj = 2" Zn; = Zﬁ”]) 18 PIMA 8 2 768 CV-5
ol 19 SHUTTLE-SMALL 9 7 3866 1934
N+1 ) 20 VOTE 16 2 435 CV-5
w2 I Pe(Zn=2702n, =2 )0 21 SATIMAGE 36 6 4435 2000
Z1=1n=1,n#j {Zj ofm; T } 22 SEGMENT 19 7 1540 770
Z IC| N+1 23  SOYBEAN-LARGE 35 19 562 CV-5
m=1 —_ .m _ .m 24 VEHICLE 18 4 846 CV-5
ZIZ;I PINL (Zn = 20|Zm, = =) 25 WAVEFORM-21 21 3 300 4700

(8)



Table 2.Classification results: Empirical accuracy of the classifief§dhwith standard deviation.

CLASSIFIER NB NB TAN TAN TAN TAN TAN TAN MULITNET ~ MULTINET ~ MULTINET  MULTINET
STRUCT. LEARN. - - CMI CMI EAR EAR CR CR CMI CMI EAR EAR
PARAM. LEARN. ML CL ML CL ML CL ML CL ML CL ML CL

DATA SET

AUSTRALIAN 86.35 86.50 82.16 82.16 85.92 85.92 85.05 85.0% 81.86 81.77 84.47 84.47
+ 0.99 +1.05 +1.03 +1.03 +1.52 +152 +£1.06 £1.05 +1.44 + 1.56 +1.48 +1.48

BREAST 97.39 97.39 96.65 96.65 97.39 97.39 97.69 97.69 96.50 96.50 97.39 97.39
+ 0.59 + 0.59 +0.73 +£0.73 +059 +£059 +0.78 +0.78 + 0.44 + 0.44 + 0.59 + 0.59

CHESS 87.14 88.55 92.40 93.43 94.18 94.18 96.06 96.25 92.50 92.50 91.93 91.93
+1.03 + 0.98 +081 +£0.76 +072 +£0.72 +0.60 +0.58 +0.81 +0.81 + 0.83 + 0.83

CLEVE 84.12 83.44 79.38 79.72 81.07 81.07 80.06 81.42 79.38 80.40 80.06 80.06
+2.44 +2.60 +212 +£153 +£351 +£316 +£231 +1.61 + 2.05 + 2.07 +2.32 + 2.32

CORRAL 86.66 88.89 99.20 100.00 99.20 100.00 96.80 96.80 98.40 99.20 99.20 99.20
+ 3.29 +4.31 +0.80 +0.00 +0.80 +0.00 +1.96 +1.96 + 0.98 + 0.80 + 0.80 + 0.80

CRX 85.60 85.60 82.40 82.40 85.75 86.06 85.45 85.45 82.56 82.56 84.22 84.53
+2.25 +1.97 +1.02 +£102 +161 +1.66 +1.97 +1.97 +1.27 +1.27 +1.37 +1.25

DIABETES 72.80 74.75 70.45 74.36 72.80 74.88 75.79 75.79 75.39 75.54 74.86 75.51

+1.19 + 0.95 +141 +£127 +1.19 +£1.00 +1.38 +1.46 +1.20 +1.78 +1.72 +1.80
FLARE 83.11 83.11 82.93 82.93 83.11 83.11 82.64 82.92 81.71 81.71 80.58 81.43
+0.51 +0.51 +0.37 +0.37 +0.51 +0.51 +1.14  +1.19 +1.17 +1.09 +2.32 +2.15

GERMAN 70.00 69.90 69.20 69.00 69.70 69.60 72.30 72.2 72.40 72.60 73.40 73.30
+ 0.00 +0.19 +0.49 +£057 +043 +£043 +1.13 +1.16 +1.89 +1.92 +1.86 +1.99
GLASS 65.22 66.70 65.33 65.33 66.72 68.20 71.44 70.94 69.94 69.94 70.33 70.33
+1.62 +1.33 +1.41 +£141 +217 +£1.65 +1.27 +1.26 +1.09 +1.09 +2.72 +2.72
GLASS2 80.38 81.00 82.20 79.70 80.38 80.38 82.25 81.63 80.32 80.32 81.52 81.52
+ 2.50 8173 | £2.08 +£356 +250 +1.82 +2.38 +2.11 + 2.95 + 2.95 +2.10 +2.10

HEART 81.85 82.59 81.11 82.59 81.48 83.33 84.07 81.85 82.96 83.33 84.07 84.07
+2.22 +2.79 +1.36 +2.44 +2.49 +£2.93 +2.72 +2.95 +2.14 +1.94 +2.24 +2.53

HEPATITIS 87.00 88.33 84.33 85.66 84.33 85.67 91.67 91.67 84.33 84.33 85.67 85.67

+ 3.96 +4.15 +2.33 +£296 +3.14 +3.64 +3.42 +3.42 + 4.33 + 4.33 + 3.64 + 3.64

IRIS 93.33 93.33 94.00 94.00 93.33 93.33 93.33 92.67 94.67 94.67 93.33 93.33

+ 0.00 + 0.00 +125 +£+£125 4+£000 +0.00 +£1.06 <£0.67 +1.33 +1.33 + 0.00 + 0.00

LETTER 74.92 74.94 87.46 87.46 85.72 85.72 - - 88.26 88.26 86.72 86.72
+0.61 + 0.61 +0.47 +£0.47 +049 +£0.49 - - +0.46 +0.46 + 0.48 + 0.48

LYMPHOGRAPHY 84.77 84.18 85.39 85.98 81.24 81.83 85.39 85.39 85.98 85.98 83.01 82.42
+4.14 +4.16 + 2.52 +2.58 +4.75 +454 +£3.87 +£3.87 +4.02 +4.02 + 4.35 +4.79

MOFN-3-7-10 86.42 91.50 91.70 94.14 91.70 94.14 91.02 93.07 91.50 92.68 91.21 92.29

+1.07 + 0.87 +0.86 +0.73 +0.86 +0.73 +0.89 +0.79 + 0.87 +0.81 + 0.88 + 0.83

PIMA 71.36 73.56 69.66 71.49 70.71 73.05 75.65 75.39 75.39 75.39 75.13 75.26
+1.84 +1.35 +158 +£186 +1.40 +£1.00 +0.24 +0.44 + 0.68 + 0.68 +0.74 +0.77

SHUTTLE-SMALL 98.86 98.86 99.48 99.48 98.97 98.97 99.22 99.2 99.69 99.69 99.53 99.53
+0.24 + 0.24 +0.16 +£0.16 +0.23 +0.23 +0.20 +0.19 +0.13 +0.13 + 0.16 + 0.16

VOTE 91.50 91.73 93.58 93.58 92.65 92.88 93.82 93.59 93.80 93.80 91.48 91.25
+1.00 + 0.98 +1.05 +£105 +086 +098 +1.35 +1.45 + 0.58 + 0.58 + 0.46 +1.03

SATIMAGE 81.75 81.75 86.90 86.90 81.75 81.75 - - 87.25 87.25 85.40 85.40

+ 0.86 + 0.86 +0.75 +£0.75 +0.86 +0.86 - - +0.75 +0.75 +0.79 +0.79

SEGMENT 92.34 92.47 94.68 94.68 92.60 92.60 95.97 95.97 95.06 95.06 92.99 92.99

+ 0.96 + 0.95 +0.81 +£0.81 +094 +£0.94 +0.71 +0.71 +0.78 +0.78 +0.92 + 0.92

SOYBEAN-LARGE 93.94 93.94 89.29 89.29 92.18 92.18 - - 92.89 92.56 92.67 92.67

+0.19 +0.19 +1.30 +1.30 +0.85 +0.85 - - + 0.34 + 0.52 + 0.53 + 0.53

VEHICLE 58.78 58.78 68.21 68.21 62.00 61.89 67.88 67.64 67.25 67.25 63.46 63.46

+1.15 + 1.15 +1.23 +1.23 +2.19 +2.20 +0.84 + 0.84 + 0.93 + 0.80 +1.99 +1.99

WAVEFORM-21 78.02 78.45 77.74 77.72 75.30 76.00 78.19 78.57 77.53 77.47 76.83 76.85

+ 0.60 + 0.60 +0.61 +0.61 +0.63 +0.62 +0.60 +£0.60 + 0.61 + 0.61 + 0.62 + 0.62

AVG. PERFORMANCE \ 82.94 83.60 | 84.23 84.67 84.01 84.56 85.53 85.51 | 85.10 85.23 84.77 84.86
% OF BEINGBEST | 12 12 | 4 16 4 16 40.91 27.27 | 20 20 8 4

sJalISse|D YIoMlaN uelisakeq Jo BuilgaT ainjonilS pue Jajawesed aAlelauas) SNSIaA aAlfeuIwISIq
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Table 3.Comparison of different classifiers using the one-sided paired t-tash &ntry of the table gives the significance of the differ-
ence of the classification rate of two classifiers over the data sets. Tve @omts to the superior learning algorithm. We use a double
arrow if the difference is significant at the level of 0.05.

CLASSIFIER NB TAN TAN TAN TAN TAN TAN MULITNET  MULTINET  MULTINET _ MULTINET
STRUCT. LEARN. - CMI CMI EAR EAR CR CR CMI CMI EAR EAR
PARAM. LEARN. CL ML CL ML CL ML CL ML CL ML CL

NB-ML To.0071 | To.ore  To.041 To.080 To.029 fo.0007  To.0008 fo.014 fo.011 To.o1s8 To.015
NB-CL To.16 To.098 To.17 To.o7s To.0032  To.0027 M0.044 10.035 To.057 T0.046
TAN-CMI-ML T0.034 “0.18 To.16 MTo.0015  To.0013 To.021 Mo.o1 To.11 To.097
TAN-CMI-CL “=0.076 “0.19 To.00s To.0062 To.094 T0.049 To.19 To.1s
TAN-EAR-ML fTo.0018  To.0008  T0.0005 f0.022 fo.012 To.027 To.o16
TAN-EAR-CL fo.o1 10.0081 To.11 To.o7s To.16 To.13
TAN-CR-ML “0.19 <=0.0082 <0.025 <=0.0025 <=0.0055
TAN-CR-CL <=0.012 <=0.029 <=0.0045 <=0.0077
MULTINET-CMI-ML f0.041 “—0.11 “0.15
MULTINET-CMI-CL “—0.067 “0.10
MULTINET-EAR-ML To.087

ing and testing the classifiers the same information is-availplot corresponds to data sets where the TAN-CR-ML
able. classifier performs better. The CR score producegiif

The attributes in the data sets are multinomial andof the cases the best performing network structures. This
continuous-valued. Since the classifiers are construoted f generally says that discriminative structure learning is
multinomial attributes, the features have been discrétize sufficient to produce good generative classifiers, even
in a manner described in (Fayyad & Irani, 1993) where thewhen using maximum likelihood training. Indeed, it
codebook is produced using only the training data. Zerdias been suggested that a good discriminative structure
probabilities in the conditional probability tables are re might possibly obviate discriminative parameter learn-
placed with a small epsiloa = 0.00001, implementing ing (Bilmes, 2000). However, the evaluation of the CR
a simple but effective form of Dirichlet smoothing. measure is quite computationally expensive — the number
of classifications used to learn structure in the TAN-CR

Table 2 compares the recognition rate of the NB, the TAN,
‘case is shown in Figure 4.

and the Bayesian multinet classifier. We use discriminative
and non-discriminative structure learning (EAR or CR vs.
CMI) and parameter learning (CL vs. ML) approaches. 2¢000—— v v v v v o
The best achieved classification accuracy is emphasized [ 2 21500(1
boldface letters. The bottom two lines in the table give the g
average classification rate (Avg. Performance) over the 2: & Ei 3000
data sets of the selected parameter and structure Iearnn
approach and the percentage over the employed data s¢
where this technique is best. Note that this row (% of beinc 1000r
best) does not sum up to 100% since there can be sever
classifiers which perform best on a particular data set.
Table 3 presents a summary of the classification results
over all 25 data sets from Table 2. We compare al palr%:lgure 4.Number of classifier evaluations in TAN-CR structure
of classifiers using the one-sided paired t-test (Mltchell,earnlng
1997). The t-test determines whether the classifiers differ
significantly under the assumption that the paired classi-
fication differences over the data set are independent andoreover, during structure learning of the TAN-CR, ML
identically normally distributed. In this table each entry parameter training is used. Once the structure is detetmine
gives the significance of the difference in classificatide ra we use CL parameter optimization to get the TAN-CR-CL.
of two classification approaches. The arrow points to theThis might instead be the reason why TAN-CR-ML per-
superior learning algorithm and a double arrow indicatedorms in the majority of the cases better than TAN-CR-
whether the difference is significant at a level of 0.05. CL, 41% versus 27%. Optimizing the structure using
In Figure 3 we show the scatter plot of the classificationCR while learning the parameters using the CL is compu-
error comparing the different techniques against theationally infeasible. In general, discriminative paraene
TAN-CR-ML classifier which achieves on average the bestearning (CL) produces better average classification (Avg.
performance. Points above the diagonal line in the scattéPerformance) than ML parameter learning. As noticed
in (Bilmes, 2000),(Greiner & Zhou, 2002), discriminative
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Figure 3.Classification error: TAN-CR-ML versus competing NB, TAN, Bayegiauitinet classifiers. Points above the diagonal line in
the scatter plot corresponds to data sets where the TAN-CR-ML clagsfilarms better.

structure learning procedures work despite not reprasgnti forming network structures are obtained using the classifi-
well the generative structure. As mentioned earlier, this i cation rate as objective function. Thus, we have empigicall
because discriminative models need not represent the joifibund that discriminatively structured (using CR) and max-
distribution, rather they need only classify the data well. imum likelihood trained classifiers work best out of all the
Our EAR approximation sometimes produces very sparsgenerative classifiers we tried. This approach, however, is
networks which produce inferior performance for somethe most computationally expensive.

data sets. Currently, we add edges in the case of EAR larger

_than zero. Since this threshold can be inaqlequ_ate, we inter]qef(_:,renceS

in future work to use better EAR approximations. Note,

the EAR measure can be extended with terms that bettddahl, L., Brown, P., de Souza, P., & Mercer, R. (1986).
approximate the posterior (Bilmes, 1999; Cetin, 2004) and Maximum Mutual Information estimation of HMM pa-
better EAR optimizations have also recently been devel- rameters for speech recognitiofEEE Intern. Conf. on
oped (Narasimhan & Bilmes, 2005). Acoustics, Speech, and Signal Procesgpmg 49-52).

Lastly, the average number of parameters used for the dif- . - .
ferent classifier structures are summarized in Table 4. Bilmes, J. (1999)Natural statistical models for automatic

speech recognitian Doctoral dissertation, U.C. Berke-
ley.

S ) Bilmes, J. (2000). Dynamic Bayesian multinet§th Inter.
Discriminative and generative approaches for parameter conf. of Uncertainty in Avrtificial Intelligence (UA(pp.
and structure learning of Bayesian network classifiers have 3g_45).

been compared. For parameter training we compare maxi-

mum likelihood estimation and optimizing the conditional Cetin, O. (2004). Multi-rate modeling, model inference,
likelihood. For structure learning we use either the con- and estimation for statistical classifiersDoctoral dis-
ditional mutual information, the explaining away residual  sertation, University of Washington.

or the classification rate as a scoring function. The latter . .
two are discriminative measures. Experiments have beeff®V€": T & Thomas, J. (1991)Elements of information

performed with the naive Bayes, the tree augmented naive theory John Wiley & Sons.
Bayes, and the Bayesian multinet classifier using 25 dat@owell, R., Dawid, A., Lauritzen, S., & Spiegelhalter,

sets. In general, discriminative structure and/or paramet (1999). Probabilistic networks and expert systems
learning produces more accurate classifiers. The best per- Springer Verlag.

4. Conclusion
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Table 4.Average number of parameters for learned structure of diffetassifiers.

CLASSIFIER NB TAN MULITNET
STRUCT. LEARN. - CMI EAR CR CMI EAR
DATA SET
AUSTRALIAN 71.0 546.2 154.2 219.0] 534.2 162.8
BREAST 37.4 113.0 37.4 51.0 109.6 36.0
CHESS 75.0 149.0 149.0 151.0f 142.0 145.0
CLEVE 32.6 89.4 49.0 60.6 83.0 51.2
CORRAL 13.0 23.0 21.4 17.8 22.0 20.4
CRX 74.6 562.6 172.2 235.0 537.4 171.8
DIABETES 18.2 46.2 20.6 32.6 45.0 20.4
FLARE 37.0 169.4 39.4 69.4 171.8 49.4
GERMAN 88.2 581.0 241.8 441.0 551.6 234.0
GLASS 92.8 267.8 126.4 167.0 190.6 121.0
GLASS2 12.6 27.8 16.2 15.8 25.8 15.8
HEART 17.4 31.8 19.4 20.2 31.2 18.4
HEPATITIS 31.4 59.8 54.6 32.2 55.4 52.4
IRIS 21.8 46.4 21.8 32.6 35.6 19.8
LETTER 6265.0 | 94015.0 94015.0 - 93990.0 93990.0
LYMPHOGRAPHY 130.2 573.4 285.4 203.8| 398.0 256.2
MOFN-3-7-10 21.0 39.0 39.0 35.0 38.0 38.0
PIMA 17.0 37.8 18.6 26.6 37.4 18.6
SHUTTLE-SMALL 307.0 2085.0 1483.0 713.00 1204.0 1036.0
VOTE 65.0 185.0 111.4 105.0f 184.0 116.0
SATIMAGE 2093.0 | 21389.0 2093.0 - 21810.0 7102.0
SEGMENT 916.0 8931.0 1875.0 603.8 8438.0 3299.0
SOYBEAN-LARGE 974.0 3539.0 2750.0 - 2329.0 2081.8
VEHICLE 185.4 816.6 371.8 603.8| 789.8 369.0
WAVEFORM-21 80.0 221.0 212.0 125.0 213.0 189.0
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