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Abstract

In this paper, we compare both discrimi-
native and generative parameter learning on
bothdiscriminativelyandgeneratively structured
Bayesian network classifiers. We use either max-
imum likelihood (ML) or conditional maximum
likelihood (CL) to optimize network parameters.
For structure learning, we use either conditional
mutual information (CMI), the explaining away
residual (EAR), or the classification rate (CR) as
objective functions. Experiments with the naive
Bayes classifier (NB), the tree augmented naive
Bayes classifier (TAN), and theBayesian multi-
nethave been performed on 25 data sets from the
UCI repository (Merz et al., 1997) and from (Ko-
havi & John, 1997). Our empirical study sug-
gests that discriminative structures learnt using
CR produces the most accurate classifiers on al-
most half the data sets. This approach is feasible,
however, only for rather small problems since
it is computationally expensive. Discriminative
parameter learning produces on average a better
classifier than ML parameter learning.

1. Introduction

There are two paradigms for learning statistical classi-
fiers: Generative and discriminative methods (Bahl et al.,
1986),(Jebara, 2001). Generative classifiers learn a model
of the joint probability of the features and the correspond-
ing class label and perform predictions (classification) by
using Bayes rule to compute the posterior probability of the
class variable. The standard approach to learn a generative
classifier is maximum likelihood (ML) estimation, possibly
augmented with a (Bayesian) smoothing prior. Discrim-
inative classifiers directly model the class posterior prob-
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ability, or use a discriminant function. Hence, the clas-
sification problem is solved by optimizing that which is
most important for classification accuracy. There are sev-
eral compelling reasons for using discriminative rather than
generative classifiers, one of which is that the classifica-
tion problem should be solved most simply and directly,
and never via a more general problem such as the inter-
mediate step of estimating the joint distribution. This is
indeed the goal of the support-vector approach to classifi-
cation (Vapnik, 1998). Here, however, we attempt to form
a generative model that does not include the complexity
necessary to actuallygeneratesamples from the true dis-
tribution. Rather, we desire generative models that include
complexity enough only so that they discriminate well.
Indeed, Friedman et al. (Friedman et al., 1997) observed
that there can be a discrepancy between a Bayesian network
learned by optimizing likelihood and the predictive accu-
racy of using this network as classifier since the entire data
likelihood is optimized rather than only the class condi-
tional likelihood. A sufficient (but not necessary) condition
for optimal classification is for the conditional likelihood
(CL) to be exact. Hence, the network structure and parame-
ters which maximize the CL are of interest, since that crite-
rion is equivalent to minimizing the KL-divergence (Cover
& Thomas, 1991) between the true and the approximate
conditional distribution (Bilmes, 2000). Unfortunately,the
CL function does not decompose and there is no closed-
form solution for determining its parameters.

In current approaches, either the structure or the parameters
are learned in a discriminative manner by maximizing CL.
Greiner and Zhou (Greiner & Zhou, 2002) introduced an
optimization approach by computing the maximum CL pa-
rameters using a conjugate gradient method after the struc-
ture of the network has been established. In (Grossman
& Domingos, 2004) the CL function is used to learn the
structure of the network, where the parameters are deter-
mined by ML estimation. They use hill climbing search
with the CL function as a scoring measure, where at each
iteration one edge is added to the structure which complies
with the restrictions of the network topology (e.g. tree
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augmented naive Bayes (TAN)) and the definitions of a
Bayesian network. The classification rate (CR) has also
been used as an objective function for discriminative struc-
ture learning (Keogh & Pazzani, 1999),(Pernkopf, 2005).
Bilmes (Bilmes, 2000),(Bilmes, 1999) introduced theex-
plaining away residual(EAR) for discriminative structure
learning of dynamic Bayesian networks for enhancing the
performance in speech recognition. An empirical and the-
oretical comparison of discriminative and generative clas-
sifiers (logistic regression and the naive Bayes (NB) clas-
sifier) is given in (Ng & M., 2002). It is shown that for
small sample sizes the generative NB classifier can outper-
form the discriminatively trained model. Therefore, hybrid
models have been proposed (Raina et al., 2004) to obtain
the best of both worlds.
In this paper, we empirically compare both discriminative
and generative parameter training onboth discriminative
and generatively structured Bayesian network classifiers
(see Figure 1). As far as we know, our work is the first eval-
uation of discriminative parameter training on discrimina-
tively structured networks. In our work, parameter training
has been performed either by ML estimation or by opti-
mizing the CL. For structure learning of the TAN and the
Bayesian multinet we use the following scoring functions:
The conditional mutual information (CMI) is utilized as a
generative approach, and the CR or an approximation of
the EAR measure as a discriminative method. We focus on
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Figure 1.Our strategies for Bayesian network classifier learning

three network topologies: naive Bayes (NB), the TAN clas-
sifier, and Bayesian multinets.
The paper is organized as follows: In Section 2 we in-
troduce Bayesian networks. Then we briefly present the
different network topologies and the approaches for gen-
erative and discriminative structure and parameter learn-
ing. In Section 3 we report classification results on 25
data sets from the UCI repository (Merz et al., 1997) and
from (Kohavi & John, 1997) using all combinations of gen-
erative/discriminative structure/parameter learning. Addi-
tionally, we give the number of parameters which have to
be trained for the particular network structure and the num-
ber of classifications it takes to establish the structure using
the CR scoring function for the TAN structure. Conclu-
sions are presented in Section 4.

2. Bayesian network classifier

A Bayesian network (Pearl, 1988),(Cowell et al., 1999)
B = 〈G,Θ〉 is a directed acyclic graphG which represents
factorization properties of the distribution of a set of ran-
dom variablesZ = {C,X1, . . . ,XN} = {Z1, . . . , ZN+1},
where each variable inZ has values denoted by lower
case letters{c, x1, . . . , xN}. The random variableC ∈
{1, . . . , |C|} represents the classes,|C| is the cardinality of
C, X1:N denote the random variables of theN attributes of
the classifier. Each graph node depicts a random variable,
while the lack of an edges specifies some independences
property. Specifically, in a Bayesian network each node is
independent of its non-descendants given its parents. These
conditional independence relationships reduce both num-
ber of parameters and required computation. SymbolΘ
represents the set of parameters which quantify the net-
work. Each nodeZj is represented as a local conditional
probability distribution given its parentsZΠj

. We useθj

i|k
to denote a specific conditional probability table entry, the
probability that variableZj takes on itsith value assign-
ment given that its parentsZΠj

take thekth assignment,

i.e. θ
j

i|k = P
(

zm
j = i|zm

Πj
= k

)

=
∏|Zj |

i=1

∏

k

(

θ
j

i|k

)u
j,m

i|k

,

where the last equality follows from the fact thatu
j,m

i|k is
1 for zm

j = i and zm
Πj

= k, and is 0 elsewhere, i.e.

u
j,m

i|k = 11{

zm
j

=i,zm
Πj

=k
} . The training data consists ofM

samplesS = {zm}
M

m=1
= {(cm, xm

1:N )}
M

m=1
. We assume

a complete data set with no missing data values. The joint
probability distribution of the network is determined by the
local conditional probability distributions as

PΘ (Z) =

N+1
∏

j=1

PΘ

(

Zj |ZΠj

)

(1)

and the probability of a samplem is

PΘ (Z = zm) =
N+1
∏

j=1

θ
j

i|k =
N+1
∏

j=1

|Zj |
∏

i=1

∏

k

(

θ
j

i|k

)u
j,m

i|k

.

(2)

2.1. NB, TAN, and Bayesian multinet structures

The NB network assumes that all the attributes are con-
ditionally independent given the class label. As reported
in the literature (Friedman et al., 1997), the performance
of the NB classifier is surprisingly good even if the condi-
tional independence assumption between attributes is unre-
alistic in most of the data. The structure of the naive Bayes
classifier represented as a Bayesian network is illustrated
in Figure 2a. In order to correct some of the limitations of
the NB classifier, Friedman et al. (Friedman et al., 1997)
introduced the TAN classifier. A TAN is based on struc-
tural augmentations of the NB network, where additional
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Figure 2.Bayesian Network: (a) NB, (b) TAN.

edges are added between attributes in order to relax some
of the most flagrant conditional independence properties of
NB. Each attribute may have at most one other attribute
as an additional parent which means that the tree-width of
the attribute induced sub-graph is unity. Hence, the max-
imum number of edges added to relax the independence
assumption between the attributes isN − 1. Thus, two at-
tributes might not be conditionally independent given the
class label in a TAN. An example of a TAN network is
shown in Figure 2b. A TAN network is typically initialized
as a NB network. Additional edges between attributes are
determined through structure learning.
Bayesian multinets (Geiger & Heckerman, 1996) further
generalize the TAN approach. In the TAN network, the de-
pendencies amongst the attributes are the same for all val-
ues of the class nodeC. A Bayesian multinet has different
edges for each class. Hence, depending on the class label,
we can have a different (1-tree) network structure.

2.2. Structure learning

In this paper, the following approaches are used to learn the
structure of the TAN network and the Bayesian multinet.

Generative structure learning: We use the CMI (Cover
& Thomas, 1991) between the attributes given the class
variable

I (Xi;Xj |C) =
∑

xi,xj ,c

P (xi, xj , c) log
P (xi, xj |c)

P (xi|c) P (xj |c)
.

(3)
This measures the information betweenXi andXj in the
context ofC. Note, CMI isnot a discriminative structure
learning method, as it can be shown that augmenting the
structure according to CMI will produce a guaranteed non-
decrease in likelihood but does not necessarily help dis-

crimination (Bilmes, 2000).

Discriminative structure learning: Bilmes (Bilmes,
2000) introduced an objective functionI (Xi;Xj |C) −
I (Xi;Xj) which is calledexplaining away residual (EAR).
This measure prefers edges which are mutually informa-
tive conditioned on the class variable but simultaneously
are not mutually informative unconditionally. The EAR
measure is in fact an approximation to the expected log
posterior, and so improving EAR is likely to decrease the
KL-divergence (Cover & Thomas, 1991) between the true
posterior and the resultant approximate posterior. The EAR
measure is originally defined in terms of vectors of ran-
dom variables. In our work, we use a scalar approxima-
tion of the EAR. Moreover, to simplify further, our approx-
imate EAR-based structure learning procedure sequentially
adds edges with an EAR value larger than zero to form
the TAN network or Bayesian multinet, starting with the
edge which corresponds to the largest EAR value. Addi-
tionally, we consider additions only that correspond to the
tree-width unity constraint of the TAN and the Bayesian
multinet structure.
We also evaluate a second discriminative measure, namely
the CR (Keogh & Pazzani, 1999; Pernkopf, 2005)

CR =
1

|S|

|S|
∑

m∈S

δ (BS (xm
1:N ) , cm) , (4)

where|S| is the size of the training dataS. The expres-
sionδ (BS (xm

1:N ) , cm) = 1 if the Bayesian network clas-
sifierBS (xm

1:N ) trained with samplesS assigns the correct
class labelcm to the attribute valuesxm

1:N . Note that the
CR scoring measure is determined from a classifier trained
and tested on the same dataS. Exactly the same portion
of data is used for learning the structure of the classifiers
either with CMI, EAR, or CR (see Section 3).
In the case of the TAN structure, the network is initialized
to NB and with each iteration we add the edge which gives
the largest improvement of the classification rate. The CR
approach is the most computationally expensive, as a com-
plete re-classification of the training set is needed on each
new evaluation of an edge. The CR, however, is the dis-
criminative criterion that has the fewest number of approx-
imations, so we expect it to do well. The greedy hill climb-
ing search is terminated when there is no edge which fur-
ther improves the score.

2.3. Parameter learning

Generative parameter learning: The parameters of the
generative model are learned by maximizing the log likeli-
hood of the data which leads to the ML estimation ofθ

j

i|k.
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The log likelihood function of a fixed structure ofB is

LL (B|S) =

M
∑

m=1

log PΘ (Z = zm) =

M
∑

m=1

N+1
∑

j=1

log PΘ

(

zm
j |zm

Πj

)

=

M
∑

m=1

N+1
∑

j=1

|Zj |
∑

i=1

∑

k

u
j,m

i|k log
(

θ
j

i|k

)

.

(5)

It is easy to show that the ML estimate of the parameters is

θ
j

i|k =

∑M

m=1
u

j,m

i|k
∑M

m=1

∑|Zj |
l=1

u
j,m

l|k

, (6)

using Lagrange multipliers to constrain the parameters to a
valid normalized probability distribution.

Discriminative parameter learning: As mentioned
above, for classification purposes, having a good approx-
imation to the posterior probability is sufficient. Hence, we
want to learn parameters so that CL is maximized. Un-
fortunately, CL does not decompose as does ML. Conse-
quently, there is no closed-form solution and we have to
resort to iterative optimization techniques. In our experi-
ments, discriminative parameter learning is performed af-
ter the structure of the network has been determined. The
objective function for the conditional log likelihood is

CLL (B|S) = log
M
∏

m=1

PΘ (C = c
m|X1:N = x

m
1:N ) =

M
∑

m=1

log
PΘ (C = cm, X1:N = xm

1:N )
|C|
∑

c=1

PΘ (C = c, X1:N = xm
1:N )

=
M
∑

m=1

log
PΘ (Z)

|C|
∑

Z1=1

PΘ (Z)

.

(7)

Similar to (Greiner & Zhou, 2002) we use a conjugate
gradient descent algorithm with line-search (Press et al.,
1992). Therefore, the derivative of the objective function
is

∂CLL (B|S)

∂θ
j

i|k

=

M
∑

m=1

[

∂ log PΘ (Z)

∂θ
j

i|k

−
∂ log

∑|C|
Z1=1 PΘ (Z)

∂θ
j

i|k

]

=

M
∑

m=1

[

∂PΘ (Z)

∂θ
j

i|k

1

PΘ (Z)
−

∑|C|
Z1=1 ∂PΘ (Z)

∂θ
j

i|k

1
∑|C|

Z1=1 PΘ (Z)

]

=

M
∑

m=1

11{

zm
j

=i,zΠj
=k

}

P
(

Zj = zm
j |ZΠj

= zm
Πj

)−

M
∑

m=1

|C|
∑

Z1=1

N+1
∏

n=1,n6=j

PΘ

(

Zn = zm
n |ZΠn = zm

Πn

)

11{

zm
j

=i,zm
Πj

=k

}

|C|
∑

Z1=1

N+1
∏

n=1

PΘ

(

Zn = zm
n |ZΠn = zm

Πn

)

.

(8)

The probability θ
j

i|k is constrained toθj

i|k ≥ 0 and
∑|Zj |

i=1 θ
j

i|k = 1. We reparameterize the problem to incor-

porate the constraints ofθj

i|k and use different parameters

β
j

i|k as follows

θ
j

i|k =
exp

β
j

i|k

∑|Zj |
l=1

exp
β

j

l|k

. (9)

3. Experiments

Our goal in this paper is to evaluate both discriminative
and generative parameter training onboth discriminative
andgeneratively structured Bayesian networks. Addition-
ally, we use different Bayesian network topologies, the NB,
TAN, and Bayesian multinet classifier. To perform our
evaluations, we compare all of the above techniques on the
data sets from the UCI repository (Merz et al., 1997) and
from (Kohavi & John, 1997). The characteristics of the
data are summarized in Table 1.
We use the same 5-fold cross-validation (CV) and train/test
learning schemes as in (Friedman et al., 1997). To make
the experimental setup clearer, the data have been split
into five mutually exclusive subsets of approximately equal
size D ∈ {S1,S2,S3,S4,S5}. For parameter training
(ML, CL) and structure learning (CMI, EAR, CR) of the
Bayesian network classifier we use the same dataS =
D\Sc (1 ≤ c ≤ 5). Therefore, we might get different
structures for each CV-fold. Throughout the experiments,
we use exactly the same data partitioning. Hence, for learn-

Table 1.Data sets used in the experiments.

DATASET # FEATURES # CLASSES # SAMPLES

1 AUSTRALIAN 14 2 690 CV-5
2 BREAST 10 2 683 CV-5
3 CHESS 36 2 2130 1066
4 CLEVE 13 2 296 CV-5
5 CORRAL 6 2 128 CV-5
6 CRX 15 2 653 CV-5
7 DIABETES 8 2 768 CV-5
8 FLARE 10 2 1066 CV-5
9 GERMAN 20 2 1000 CV-5
10 GLASS 9 7 214 CV-5
11 GLASS2 9 2 163 CV-5
12 HEART 13 2 270 CV-5
13 HEPATITIS 19 2 80 CV-5
14 IRIS 4 3 150 CV-5
15 LETTER 16 26 15000 5000
16 LYMPHOGRAPHY 18 4 148 CV-5
17 MOFN-3-7-10 10 2 300 1024
18 PIMA 8 2 768 CV-5
19 SHUTTLE-SMALL 9 7 3866 1934
20 VOTE 16 2 435 CV-5
21 SATIMAGE 36 6 4435 2000
22 SEGMENT 19 7 1540 770
23 SOYBEAN-LARGE 35 19 562 CV-5
24 VEHICLE 18 4 846 CV-5
25 WAVEFORM-21 21 3 300 4700
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Table 2.Classification results: Empirical accuracy of the classifiers in[%] with standard deviation.

CLASSIFIER NB NB TAN TAN TAN TAN TAN TAN MULITNET MULTINET MULTINET MULTINET

STRUCT. LEARN. - - CMI CMI EAR EAR CR CR CMI CMI EAR EAR
PARAM . LEARN. ML CL ML CL ML CL ML CL ML CL ML CL

DATA SET

AUSTRALIAN 86.35 86.50 82.16 82.16 85.92 85.92 85.05 85.05 81.86 81.77 84.47 84.47
± 0.99 ±1.05 ±1.03 ±1.03 ±1.52 ± 1.52 ± 1.06 ± 1.05 ± 1.44 ± 1.56 ± 1.48 ± 1.48

BREAST 97.39 97.39 96.65 96.65 97.39 97.39 97.69 97.69 96.50 96.50 97.39 97.39
± 0.59 ± 0.59 ± 0.73 ± 0.73 ± 0.59 ± 0.59 ±0.78 ±0.78 ± 0.44 ± 0.44 ± 0.59 ± 0.59

CHESS 87.14 88.55 92.40 93.43 94.18 94.18 96.06 96.25 92.50 92.50 91.93 91.93
± 1.03 ± 0.98 ± 0.81 ± 0.76 ± 0.72 ± 0.72 ± 0.60 ±0.58 ± 0.81 ± 0.81 ± 0.83 ± 0.83

CLEVE 84.12 83.44 79.38 79.72 81.07 81.07 80.06 81.42 79.38 80.40 80.06 80.06
±2.44 ±2.60 ± 2.12 ± 1.53 ± 3.51 ± 3.16 ± 2.31 ± 1.61 ± 2.05 ± 2.07 ± 2.32 ± 2.32

CORRAL 86.66 88.89 99.20 100.00 99.20 100.00 96.80 96.80 98.40 99.20 99.20 99.20
± 3.29 ± 4.31 ± 0.80 ±0.00 ±0.80 ±0.00 ±1.96 ±1.96 ± 0.98 ± 0.80 ± 0.80 ± 0.80

CRX 85.60 85.60 82.40 82.40 85.75 86.06 85.45 85.45 82.56 82.56 84.22 84.53
± 2.25 ± 1.97 ± 1.02 ± 1.02 ± 1.61 ±1.66 ± 1.97 ± 1.97 ± 1.27 ± 1.27 ± 1.37 ± 1.25

DIABETES 72.80 74.75 70.45 74.36 72.80 74.88 75.79 75.79 75.39 75.54 74.86 75.51
± 1.19 ± 0.95 ± 1.41 ± 1.27 ± 1.19 ± 1.00 ±1.38 ±1.46 ± 1.20 ± 1.78 ± 1.72 ± 1.80

FLARE 83.11 83.11 82.93 82.93 83.11 83.11 82.64 82.92 81.71 81.71 80.58 81.43
±0.51 ±0.51 ±0.37 ±0.37 ±0.51 ±0.51 ±1.14 ±1.19 ±1.17 ± 1.09 ± 2.32 ± 2.15

GERMAN 70.00 69.90 69.20 69.00 69.70 69.60 72.30 72.20 72.40 72.60 73.40 73.30
± 0.00 ± 0.19 ± 0.49 ± 0.57 ± 0.43 ± 0.43 ± 1.13 ± 1.16 ± 1.89 ± 1.92 ±1.86 ±1.99

GLASS 65.22 66.70 65.33 65.33 66.72 68.20 71.44 70.94 69.94 69.94 70.33 70.33
± 1.62 ± 1.33 ± 1.41 ± 1.41 ± 2.17 ± 1.65 ±1.27 ± 1.26 ± 1.09 ± 1.09 ± 2.72 ± 2.72

GLASS2 80.38 81.00 82.20 79.70 80.38 80.38 82.25 81.63 80.32 80.32 81.52 81.52
± 2.50 8± 1.73 ± 2.08 ± 3.56 ± 2.50 ± 1.82 ±2.38 ± 2.11 ± 2.95 ± 2.95 ± 2.10 ± 2.10

HEART 81.85 82.59 81.11 82.59 81.48 83.33 84.07 81.85 82.96 83.33 84.07 84.07
± 2.22 ± 2.79 ± 1.36 ± 2.44 ± 2.49 ± 2.93 ±2.72 ± 2.95 ± 2.14 ± 1.94 ±2.24 ±2.53

HEPATITIS 87.00 88.33 84.33 85.66 84.33 85.67 91.67 91.67 84.33 84.33 85.67 85.67
± 3.96 ± 4.15 ± 2.33 ± 2.96 ± 3.14 ± 3.64 ±3.42 ±3.42 ± 4.33 ± 4.33 ± 3.64 ± 3.64

IRIS 93.33 93.33 94.00 94.00 93.33 93.33 93.33 92.67 94.67 94.67 93.33 93.33
± 0.00 ± 0.00 ± 1.25 ± 1.25 ± 0.00 ± 0.00 ± 1.06 ± 0.67 ±1.33 ±1.33 ± 0.00 ± 0.00

LETTER 74.92 74.94 87.46 87.46 85.72 85.72 - - 88.26 88.26 86.72 86.72
± 0.61 ± 0.61 ± 0.47 ± 0.47 ± 0.49 ± 0.49 - - ±0.46 ±0.46 ± 0.48 ± 0.48

LYMPHOGRAPHY 84.77 84.18 85.39 85.98 81.24 81.83 85.39 85.39 85.98 85.98 83.01 82.42
± 4.14 ± 4.16 ± 2.52 ±2.58 ±4.75 ± 4.54 ± 3.87 ± 3.87 ±4.02 ±4.02 ± 4.35 ± 4.79

MOFN-3-7-10 86.42 91.50 91.70 94.14 91.70 94.14 91.02 93.07 91.50 92.68 91.21 92.29
± 1.07 ± 0.87 ± 0.86 ±0.73 ±0.86 ±0.73 ±0.89 ± 0.79 ± 0.87 ± 0.81 ± 0.88 ± 0.83

PIMA 71.36 73.56 69.66 71.49 70.71 73.05 75.65 75.39 75.39 75.39 75.13 75.26
± 1.84 ± 1.35 ± 1.58 ± 1.86 ± 1.40 ± 1.00 ±0.24 ± 0.44 ± 0.68 ± 0.68 ± 0.74 ± 0.77

SHUTTLE-SMALL 98.86 98.86 99.48 99.48 98.97 98.97 99.22 99.28 99.69 99.69 99.53 99.53
± 0.24 ± 0.24 ± 0.16 ± 0.16 ± 0.23 ± 0.23 ± 0.20 ± 0.19 ±0.13 ±0.13 ± 0.16 ± 0.16

VOTE 91.50 91.73 93.58 93.58 92.65 92.88 93.82 93.59 93.80 93.80 91.48 91.25
± 1.00 ± 0.98 ± 1.05 ± 1.05 ± 0.86 ± 0.98 ±1.35 ± 1.45 ± 0.58 ± 0.58 ± 0.46 ± 1.03

SATIMAGE 81.75 81.75 86.90 86.90 81.75 81.75 - - 87.25 87.25 85.40 85.40
± 0.86 ± 0.86 ± 0.75 ± 0.75 ± 0.86 ± 0.86 - - ±0.75 ±0.75 ± 0.79 ± 0.79

SEGMENT 92.34 92.47 94.68 94.68 92.60 92.60 95.97 95.97 95.06 95.06 92.99 92.99
± 0.96 ± 0.95 ± 0.81 ± 0.81 ± 0.94 ± 0.94 ±0.71 ±0.71 ± 0.78 ± 0.78 ± 0.92 ± 0.92

SOYBEAN-LARGE 93.94 93.94 89.29 89.29 92.18 92.18 - - 92.89 92.56 92.67 92.67
±0.19 ±0.19 ±1.30 ±1.30 ±0.85 ±0.85 - - ± 0.34 ± 0.52 ± 0.53 ± 0.53

VEHICLE 58.78 58.78 68.21 68.21 62.00 61.89 67.88 67.64 67.25 67.25 63.46 63.46
± 1.15 ± 1.15 ±1.23 ±1.23 ±2.19 ±2.20 ±0.84 ± 0.84 ± 0.93 ± 0.80 ± 1.99 ± 1.99

WAVEFORM-21 78.02 78.45 77.74 77.72 75.30 76.00 78.19 78.57 77.53 77.47 76.83 76.85
± 0.60 ± 0.60 ± 0.61 ± 0.61 ± 0.63 ± 0.62 ± 0.60 ± 0.60 ± 0.61 ± 0.61 ± 0.62 ± 0.62

AVG. PERFORMANCE 82.94 83.60 84.23 84.67 84.01 84.56 85.53 85.51 85.10 85.23 84.77 84.86
% OF BEING BEST 12 12 4 16 4 16 40.91 27.27 20 20 8 4
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Table 3.Comparison of different classifiers using the one-sided paired t-test: Each entry of the table gives the significance of the differ-
ence of the classification rate of two classifiers over the data sets. The arrow points to the superior learning algorithm. We use a double
arrow if the difference is significant at the level of 0.05.

CLASSIFIER NB TAN TAN TAN TAN TAN TAN MULITNET MULTINET MULTINET MULTINET

STRUCT. LEARN. - CMI CMI EAR EAR CR CR CMI CMI EAR EAR
PARAM . LEARN. CL ML CL ML CL ML CL ML CL ML CL

NB-ML ⇑0.0071 ↑0.079 ⇑0.041 ↑0.080 ⇑0.029 ⇑0.0007 ⇑0.0008 ⇑0.014 ⇑0.011 ⇑0.018 ⇑0.015

NB-CL ↑0.16 ↑0.098 ↑0.17 ↑0.078 ⇑0.0032 ⇑0.0027 ⇑0.044 ⇑0.035 ↑0.057 ⇑0.046

TAN-CMI-ML ⇑0.034 ←0.18 ↑0.16 ⇑0.0015 ⇑0.0013 ⇑0.021 ⇑0.01 ↑0.11 ↑0.097

TAN-CMI-CL ←0.076 ←0.19 ⇑0.008 ⇑0.0062 ↑0.094 ⇑0.049 ↑0.19 ↑0.18

TAN-EAR-ML ⇑0.0018 ⇑0.0008 ⇑0.0005 ⇑0.022 ⇑0.012 ⇑0.027 ⇑0.016

TAN-EAR-CL ⇑0.01 ⇑0.0081 ↑0.11 ↑0.078 ↑0.16 ↑0.13

TAN-CR-ML ←0.19 ⇐0.0082 ⇐0.025 ⇐0.0025 ⇐0.0055

TAN-CR-CL ⇐0.012 ⇐0.029 ⇐0.0045 ⇐0.0077

MULTINET-CMI-ML ⇑0.041 ←0.11 ←0.15

MULTINET-CMI-CL ←0.067 ←0.10

MULTINET-EAR-ML ↑0.087

ing and testing the classifiers the same information is avail-
able.
The attributes in the data sets are multinomial and
continuous-valued. Since the classifiers are constructed for
multinomial attributes, the features have been discretized
in a manner described in (Fayyad & Irani, 1993) where the
codebook is produced using only the training data. Zero
probabilities in the conditional probability tables are re-
placed with a small epsilonε = 0.00001, implementing
a simple but effective form of Dirichlet smoothing.

Table 2 compares the recognition rate of the NB, the TAN,
and the Bayesian multinet classifier. We use discriminative
and non-discriminative structure learning (EAR or CR vs.
CMI) and parameter learning (CL vs. ML) approaches.
The best achieved classification accuracy is emphasized by
boldface letters. The bottom two lines in the table give the
average classification rate (Avg. Performance) over the 25
data sets of the selected parameter and structure learning
approach and the percentage over the employed data sets
where this technique is best. Note that this row (% of being
best) does not sum up to 100% since there can be several
classifiers which perform best on a particular data set.
Table 3 presents a summary of the classification results
over all 25 data sets from Table 2. We compare all pairs
of classifiers using the one-sided paired t-test (Mitchell,
1997). The t-test determines whether the classifiers differ
significantly under the assumption that the paired classi-
fication differences over the data set are independent and
identically normally distributed. In this table each entry
gives the significance of the difference in classification rate
of two classification approaches. The arrow points to the
superior learning algorithm and a double arrow indicates
whether the difference is significant at a level of 0.05.
In Figure 3 we show the scatter plot of the classification
error comparing the different techniques against the
TAN-CR-ML classifier which achieves on average the best
performance. Points above the diagonal line in the scatter

plot corresponds to data sets where the TAN-CR-ML
classifier performs better. The CR score produces in41%
of the cases the best performing network structures. This
generally says that discriminative structure learning is
sufficient to produce good generative classifiers, even
when using maximum likelihood training. Indeed, it
has been suggested that a good discriminative structure
might possibly obviate discriminative parameter learn-
ing (Bilmes, 2000). However, the evaluation of the CR
measure is quite computationally expensive — the number
of classifications used to learn structure in the TAN-CR
case is shown in Figure 4.
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Figure 4.Number of classifier evaluations in TAN-CR structure
learning.

Moreover, during structure learning of the TAN-CR, ML
parameter training is used. Once the structure is determined
we use CL parameter optimization to get the TAN-CR-CL.
This might instead be the reason why TAN-CR-ML per-
forms in the majority of the cases better than TAN-CR-
CL, 41% versus 27%. Optimizing the structure using
CR while learning the parameters using the CL is compu-
tationally infeasible. In general, discriminative parameter
learning (CL) produces better average classification (Avg.
Performance) than ML parameter learning. As noticed
in (Bilmes, 2000),(Greiner & Zhou, 2002), discriminative
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Figure 3.Classification error: TAN-CR-ML versus competing NB, TAN, Bayesianmultinet classifiers. Points above the diagonal line in
the scatter plot corresponds to data sets where the TAN-CR-ML classifierperforms better.

structure learning procedures work despite not representing
well the generative structure. As mentioned earlier, this is
because discriminative models need not represent the joint
distribution, rather they need only classify the data well.
Our EAR approximation sometimes produces very sparse
networks which produce inferior performance for some
data sets. Currently, we add edges in the case of EAR larger
than zero. Since this threshold can be inadequate, we intend
in future work to use better EAR approximations. Note,
the EAR measure can be extended with terms that better
approximate the posterior (Bilmes, 1999; Çetin, 2004) and
better EAR optimizations have also recently been devel-
oped (Narasimhan & Bilmes, 2005).
Lastly, the average number of parameters used for the dif-
ferent classifier structures are summarized in Table 4.

4. Conclusion

Discriminative and generative approaches for parameter
and structure learning of Bayesian network classifiers have
been compared. For parameter training we compare maxi-
mum likelihood estimation and optimizing the conditional
likelihood. For structure learning we use either the con-
ditional mutual information, the explaining away residual,
or the classification rate as a scoring function. The latter
two are discriminative measures. Experiments have been
performed with the naive Bayes, the tree augmented naive
Bayes, and the Bayesian multinet classifier using 25 data
sets. In general, discriminative structure and/or parameter
learning produces more accurate classifiers. The best per-

forming network structures are obtained using the classifi-
cation rate as objective function. Thus, we have empirically
found that discriminatively structured (using CR) and max-
imum likelihood trained classifiers work best out of all the
generative classifiers we tried. This approach, however, is
the most computationally expensive.
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