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Abstract

This work provides a framework for learn-
ing sequential attention in real-world visual
object recognition, using an architecture of
three processing stages. The first stage re-
jects irrelevant local descriptors based on an
information theoretic saliency measure, pro-
viding candidates for foci of interest (FOI).
The second stage investigates the informa-
tion in the FOI using a codebook matcher
and providing weak object hypotheses. The
third stage integrates local information via
shifts of attention, resulting in chains of
descriptor-action pairs that characterize ob-
ject discrimination. A Q-learner adapts then
from explorative search and evaluative feed-
back from entropy decreases on the attention
sequences, eventually prioritizing shifts that
lead to a geometry of descriptor-action scan-
paths that is highly discriminative with re-
spect to object recognition. The method-
ology is successfully evaluated on indoors
(COIL-20 database) and outdoors (TSG-20
database) imagery, demonstrating significant
impact by learning, outperforming standard
local descriptor based methods both in recog-
nition accuracy and processing time.

1. Introduction

Interdependencies between learning, attention, and de-
cision making have been frequently emphasized (Ruff
& Rothbart, 1996; Dayan et al., 2000) but did not
yet lead to working solutions in real world environ-
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ments, particularly in computer vision. Recent re-
search in neuroscience (Deco, 2004; Deubel, 2004) and
experimental psychology (Henderson, 2003) has con-
firmed evidence that decision behavior plays a domi-
nant role in human selective attention in object and
scene recognition. KE.g., there is psychophysical ev-
idence that human observers represent visual scenes
not by re-constructing but merely by purposive en-
codings via meaningful attention patterns (Stark &
Choi, 1996; Rybak et al., 1998) probing only few rel-
evant features from a scene. This leads on the one
hand to the assumption of transsaccadic object mem-
ories (Deubel, 2004), and supports theories about the
effects of sparse information sampling due to change
blindness when humans cannot compare dynamically
built sparse representations of a scene under impact of
attentional blinks (Rensink et al., 1997). Current bio-
logically motivated computational models on sequen-
tial attention identify shift invariant descriptions of
sampling sequences (Li & Clark, 2004), and reflect the
encoding of scenes and relevant objects from sequen-
tial attention in the framework of neural network mod-
eling (Rybak et al., 1998) and probabilistic decision
processes (Bandera et al., 1996; Minut & Mahadevan,
2001).

The original contribution of this work is to provide
a scalable approach for the learning of visual atten-
tion patterns by means of a cascaded processing ar-
chitecture to enable object recognition in real-world
environments. Firstly, it proposes to integrate local
information only at locations that are relevant with
respect to the task, in terms of an information the-
oretic saliency measure. Secondly, it enables to ap-
ply efficient strategies to group informative local de-
scriptors using a decision maker. The decision making
agent uses Q-learning to associate shift of attention-
actions to cumulative reward with respect to a task
goal, i.e., object recognition. Reward is determined
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Figure 1. Concept of cascaded sequential attention for object recognition. In early vision, the system extracts informative
local descriptors and focus of interest, where descriptors are encoded with respect to codebook vectors. Descriptor-action
sequences define the state, posterior and entropy decrease to drive useful actions — closing the loop.

for the reduction of entropy for recognition. Objects
are represented in a framework of perception-action,
providing a transsaccadic working memory that stores
useful grouping strategies of a kind of hypothesize and
test behavior.

In computer vision, recent research has been focusing
on the integration of information received from local
descriptors into a more global analysis with respect to
object recognition (Weber et al., 2000; Lowe, 2004)).
The solutions are assuming statistical independence
of the local responses, exclude segmentation problems
by assuming single object hypotheses in the image, or
assume regions with uniformly labelled operator re-
sponses.

In object recognition terms, this method enables to
match not only between local feature responses, but
also taking the geometrical relations between the spe-
cific features into account, thereby defining their more
global visual configuration. The proposed method is
outlined in a perception-action framework, providing
a sensorimotor decision maker that selects appropriate
saccadic actions to focus on target descriptor locations.
The advantage of this framework is to become able to
start interpretation from a single local descriptor and,
to continuously and iteratively integrate local descrip-
tors ’on the fly’ while evaluating the current geometric
configuration for efficient discrimination.

Fig. 1 illustrates the closed loop object recognition
process. Visual information is attended for recogni-
tion exclusively at salient image locations, using a cas-
caded attention framework to keep complexity low. In
a first processing stage (early vision), salient image
locations are selected using an information theoretic
measure with respect to object discrimination (Fritz

et al., 2004). The information in the focus of interest
is then matched to codebook vectors to receive weak
object hypotheses (feature coding). Descriptor-action
sequences determine recognition states that are then
associated with object posteriors that define the decre-
asse in posterior entropy (reward) and drive selection
of shift-of-attention actions.

In the training stage, the reinforcement learner per-
forms trial and error search on useful actions, receiv-
ing reward from entropy decreases. In the test stage,
the decision maker demonstrates feature grouping and
matching between the encountered and the trained at-
tentive sensorimotor patterns. The method is evalu-
ated in experiments on object recognition using the
reference COIL-20 (indoor imagery) and the TSG-
20 object (outdoor imagery) database, proving the
method being computationally feasible and providing
rapid convergence in the discrimination of objects.

2. Informative Foci of Interest

In the first two processing stages, we determine infor-
mative local descriptors (Sec. 2.1) and investigate the
focus of interest for weak object hypotheses (Sec. 2.2).
Relating the information theoretic cost measure with
respect to all individual pixels, we extract a saliency
map, i.e., a biologically motivated intermediate repre-
sentation used in visual attention (Paletta et al., 2005)
(i) to relate image content directly to cost measure,
and (ii) to easily determine regions of interest from
maxima in the saliency map values.

In this work, descriptors are either represented by nor-
malized brightness (appearance) patterns (Fritz et al.,
2004), or by the Scale Invariant feature Transform
(SIFT) (Lowe, 2004). While appearance patterns pro-
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Figure 2. Extraction of foci of interest from an information theoretic saliency map (Sec. 2). (a) Saliency from the entropy
in local brightness patterns (dark=low entropy). (b) Binarization from thresholding for most informative regions. (c)
Distance transform on informative regions. (d) Masking of already processed regions (inhibition of return).

vide fundamental analysis for each pixel, SIFT descrip-
tors are more sparsely distributed, but they are known
to be rotation-, scale- and, to a high degree, illumina-
tion invariant.

2.1. Saliency from Local Information Content

We determine the saliency from an information theo-
retic measure to evaluate an early vision feature (de-
scriptor, i.e., a pattern of visual information) with re-
spect to its utility for a given task, i.e., object recog-
nition. The resulting local entropy value is then asso-
ciated to the corresponding pixel in the saliency map.

The object recognition task is formally related to the
sampling of local descriptors f; in feature space F,
f; € RIZ!, where o0; denotes an object hypothesis from
a given object set {2. We need to estimate the entropy
H(O|f;) of the posteriors P(og|f;), k =1...Q, Qis the
number of instantiations of the object class variable O.
Shannon conditional entropy denotes

H(OIf:) = = Pox|f:) log P(ox|f;)- (1)
!

Instead of a global estimate on the posterior, we ap-
proximate the posteriors at f; using only samples g;
inside a Parzen window of a local neighborhood e,

1f: — 5[] <, (2)

j = 1...J. We weight the contributions of specific
samples f;; - labeled by object o - that should in-
crease the posterior estimate P(oxlf;) by a Gaussian
kernel function value N (u, o) in order to favor samples
with smaller distance to observation f;, with 4 = f; and
o = ¢/2. The estimate about the conditional entropy
H(OIf;) provides then a measure of ambiguity in terms
of characterizing the information content with respect
to object identification within a single local observa-
tion f;. Since this local posterior estimate can be still
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Figure 3. Set of 20 codebook patterns for a prototypical
representation of the space of all informative patterns. The
patterns have been found by k-means clustering.

rather costly, the mapping from descriptors to entropy
values can be estimated with sufficient accuracy using
a decision tree (Fritz et al., 2004) which dramatically
reduces computing times.

2.2. Sequential Focus from Saliency Maps

Attention on local descriptors is shifted between the
largest local maxima of the information theoretic
saliency measure (Sec. 2.1). The sequence of local foci
originates at a randomly selected saliency maximum.
The shift-of-attention action targets then towards one
of next n-best ranked maxima — each represented by a
focus of interest (FOI) — in the saliency map. At each
local maximum, the extracted local pattern is associ-
ated to a codebook vector of nearest distance in feature
space, and the shift action is represented by the angle
of the translation vector between FOI at time instants
(t) and (t+1).

Fig. 2 depicts the principal stages in selecting the
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Figure 4. Generation of attention patterns. (a) The
Shift-of-attention action originates in a randonly selected
saliency maximum and is directed towards four next ranked
target foci. (b) Learned attention pattern (scanpath) to
characterize and recognize the object.

FOIs. From the saliency map (a), one computes a bi-
nary mask (b) that represents the most informative re-
gions with respect to the conditional entropy in Eq. 1,
by selecting each pixel’s contribution to the mask from
whether its entropy value H is smaller than a prede-
fined entropy threshold Hg, i.e., H < Heg. (c) apply-
ing a distance transform on the binary regions of in-
terest results mostly in the accurate localization of the
entropy minimum. The maximum of the local distance
transform value is selected as FOI. Minimum entropy
values and maximum transform values are combined to
give a location of interest for the first FOI, applying
a 'Winner-takes-it-all’ (WTA) principle (Itti & Koch,
2001). (d) Masking out the selected maximum of the
first FOI, one can apply the same WTA rule, select-
ing the maximum saliency. This masking is known as
‘inhibition of return’ (Tipper et al., 2003) in human
visual attention.

3. Sensorimotor Sequential Attention

Sequential attention shifts the focus of attention be-
tween the most informative patterns in the order of
associated saliency values. In this sense it represents
a step-wise generation of a scanpath (Stark & Choi,
1996), that will be the basis to provide an integration
of the visual information within the sampled attention
windows. There is two kind of information in the scan-
path that characterizes an object for discrimination,
(i) the visual information within the focus of atten-
tion, and (ii) the geometry between the sequentially
accessed FOls, i.e., the shift-of-attention action trans-
lating between FOIs. In this work we claim that the
pattern in the FOI must not necessarily be represented
in finest detail but an approximate characterization
will suffice to give a weak object hypothesis. This ren-

Figure 5. Discretization of the angle based encoding for
shifts of attention.

ders the algorithm tolerant to noise and failures in the
local interpretation, but on the other hand gives rise to
analyse the spatial context, i.e., the geometry between
the descriptors, in more detail.

Descriptor encodings The visual information in the
FOI is associated to a prototypical reference vector to
give a weak object hypothesis: At each local maxi-
mum, the extracted local pattern g; is associated to a
codebook vector I'; of nearest distance

d = argmin,||g; — T (3)

in feature space. The codebook vectors can be esti-
mated from k-means clustering of a training sample set
G =g, - ,gn of size N (k =20 in the experiments,
see Fig. 3). The focused local information pattern is
therefore associated to the label of the A-th prototype
vector, gaining discrimination merely from the geo-
metric relations between focus encodings in order to
discriminate attention patterns.

Action The shift-of-attention actions target in the
proposed method towards one out of next m best-
ranked maxima (e.g., n=4 in Fig. 4a) within the in-
formation theoretic saliency map. Saccadic actions
originate from a randomly selected local maximum of
saliency and target towards one of the remaining (n-
1) best-ranked maxima via a saccadic action a € A
(Fig. 4a). The individual action and its correspond-
ing angle a(x,y,a) is then categorized into one out of
|A| = 8 principal directions (Aa = 45°) (Fig. 5).

Scanpath An individual state s; is finally represented
by a complete (or part of) a sequential attention pat-
tern, i.e., the scanpath. The attention pattern of
length n is encoded by a sequence of descriptor en-
codings I'; and actions a € 4, i.e.,

si:(Fl,a2,~~,Fn_1,an,Fn). (4)

Posteriors In order to characterize the discrimina-
tive value of a scanpath, we determine an estimate
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on the posterior on object hypotheses, given a par-
ticular descriptior-action sequence. The posterior is
estimated from frequency histogramming: Within the
object learning stage, random actions will lead to ar-
bitrary descriptor-action sequences, i.e., attention pat-
terns. For each attention pattern, we protocol the
number of times it was experienced in the context of
the corresponding object in the database. From this
we are able to estimate a mapping from states s; to
posteriors, i.e., s; — P(0g|s;), by monitoring how fre-
quent states are visited under observation of particu-
lar objects. From the posterior we compute the condi-
tional entropy H; = H(O|s;) and the information gain
with respect to actions leading from state s; ; to 541
by

AHy 1 = Hy — Hyy . (5)

An efficient strategy aims then at selecting in each
state s; + the action a* that would maximize the infor-
mation gain AH;y1(s;, ak+1) received from attain-
ing state s;;11, i.e.,

a* = argmaz  AH11(8i ¢, Ok,e+1)- (6)

4. Q-Learning of Attentive Saccades

In each state of the sequential attention process
(Sec. 3), a decision making agent is asked to perform
a strategy to select an action to arrive at a most re-
liable recognition decision. Learning to recognize ob-
jects means then to explore different descriptor-action
sequences, to quantify consequences in terms of a util-
ity measure, and to adjust the control strategy there-
after. In the following we motivate to define sequential
attention as a decision process, and address to use rein-
forcement learning to extract the optimal policy from
explorative search since we lack a precise model of the
underlying statistics.

Markov decision processes (MDPs (Puterman, 1994))
have already been introduced for object recognition by
(Draper et al., 1999) in the sense of optimal selection
of visual procedures. Here, the MDP will provide the
general framework to outline sequential attention for
object recognition in a multistep decision task with
respect to the discrimination dynamics. An MDP is
defined by a tuple (S,.A4,d, R) with state recognition
set S, action set A, probabilistic transition function ¢
and reward function R : § x A +— II(S) describes a
probability distribution over subsequent states, given
the attention shift action a € A executable in state
s € §. In each transition, the agent receives reward
according to R : S x A — R, R; € R. The agent must
act to maximize the utility Q(s,a), i.e., the expected
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Figure 6. Performance evaluation on appearance patterns
(Sec. 2). (a) Learned strategies lead to lower posterior en-
tropy levels within shorter attention sequences. (b) Ran-
dom strategies require more actions to attain an entropy
threshold (task goal) (threshold Hgoa: = 1.2).

discounted reward

Q(s,a) =U(s,a) = E ZW”RHn(swmaHn)) )

n=0
(7)
where «y € [0, 1] is a constant controlling contributions
of delayed reward.

We formalize a sequence of action selections
ai,as,---,a, in sequential attention as an MDP and
are searching for optimal solutions with respect to find-
ing action selections so as to maximizing future reward
with respect to the object recognition task. With each
shift-of-attention, the entropy reduction gives feedback
about the reduction of uncertainty and therefore the
quality of a related recognition decision. With each ac-
tion, the reward in terms of information gain (Eq. 5)
in the posterior distribution on object hypotheses, is
received from attention shift a by

R(s,a) = AH. (8)
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Since the probabilistic transition function II(-) cannot
be known beforehand, the probabilistic model of the
task is estimated via reinforcement learning, e.g., by
Q-learning (Watkins & Dayan, 1992) which guarantees
convergence to an optimal policy applying sufficient
updates of the Q-function Q(s,a), mapping recogni-
tion states s and actions a to utility values. The Q-
function update rule is

Q(s,a) = Q(s,a)+a [R +y(mazs Q(s',d') — Q(s, a))]

(9)
where « is the learning rate, « controls the impact
of a current shift of attention action on future policy
returns.

The decision process in sequential attention is deter-
mined by the sequence of choices on shift actions at a
specific focus of interest (FOI). The agent selects then
the action a € A with largest Q(s,a), i.e.,

ar = argmazy Q(sr,a’). (10)

5. Experimental Results

The sequential attention methodology was applied
to experiments with (i) indoor imagery (COIL-20
database), and with (ii) outdoor imagery (TSG-20
database) on the task of object recognition. The in-
door images do not contain any illumination or noise
artefacts, therefore we expect and finally prove high
accuracy in the recognition results, similar to existing
methodologies but still proving superiority of learned
in contrast to random decision policies. Outdoor im-
ages are much more challenging with respect to vari-
ance in the viewpoints, the illumination, and also the
distance to the objects (scale). There, we proved that
the geometry in the sequential attention provided good
discrimination, but above all, that the learned pol-
icy can significantly outperform standard recognition
methodology, both with respect to recognition accu-
racy and computing times.

5.1. Local Appearance Descriptors (indoors)

The indoor experiments were performed on 1440 im-
ages of the COIL-20 database (20 objects and 72 views
by rotating each object by 5° around its vertical ro-
tation axis), investigating up to 5 FOIs in each obser-
vation sequence, associating to k = 20 codebook vec-
tors from informative appearance patterns, in order
to determine the recognition state, and deciding on
the next saccade action to integrate the information
from successive image locations. Fig. 6a represents
the learning process, illustrating more rapid entropy
decreases from the learned in contrast to random ac-
tion selection policy. Fig. 6b visualizes the advantages
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Figure 7. Informative descriptors for early vision. (a) Po-
sition and scale of local descriptors (SIFT (Lowe, 2004),
(b) Selection of most informative (dark coded) descriptors
for further processing (Sec. 2).

from learning by requiring less actions to attain more
informative recognition states. The recognition rate
after the second action was 92% (learned) in contrast
to 75% (random). A characteristic learned attention
scanpath is depicted in Fig. 4b.

5.2. SIFT Descriptors (outdoors)

In the outdoor experiments, we decided to use a lo-
cal descriptor, i.e., the SIFT descriptor (Sec. 2) due to
its superior robustness to viewpoint, illumination and
scale changes. The experimental results were obtained
from the images of the TSG-20 database! (Fig. Sa,
20 objects and 2 views by approx. 30° viewpoint
change), investigating up to 5 FOIs in each observa-
tion sequence, associating to k = 20 codebook vectors
to determine the recognition state, and deciding on
the next saccade action to integrate the information
from successive image locations. Fig. 9a visualizes the
progress gained from the learning process in requir-
ing less actions to attain more informative recognition
states. Fig. 9b reflects the corresponding learning pro-

'The TSG-20 database can be
http://dib.joanneum.at/cape/TSG-20.

downloaded at
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Table 1. Performance comparison between learned and
random sequential attention (SEQA) policies on TSG-20
(with SIFT), and state-of-the-art informative SIFT recog-
nition (Fritz et al., 2005), comparing recognition accuracy
and computing times.

METHOD Accuracy (%) TIME (MS)
Q-LEARN SEQA 98.8+ 0.4 1500
RanDOM SEQA 96.0+ 1.2 1200
I-SIFT 97.5+ 0.9 2800

cess, illustrating more rapid entropy decreases from
the learned in contrast to random action selection pol-
icy. The recognition rate after the second action was
~ 98.8% (learned) in contrast to ~ 96.0% (random, see
Table 1). A characteristic learned attention scanpath
is depicted in Fig. 4b.

Fig. 7 depicts the principal stages in the selection of
FOIs. (a) depicts the test image overlaid with squares
brightness-coded with respect to associated entropy
values (dark=low). (b) depicts the selection of the
most informative descriptors from (a). Fig. 8 illus-
trates (b) various opportunities for action from a given
FOI, and (c¢) a learned sequential attention sequence
using the SIFT descriptor.

6. Conclusions

The proposed methodology significantly extends previ-
ous work on sequential attention and decision making
by providing a scalable framework for learning atten-
tion in real world object recognition. The three-stage
process, (i) determining information theoretic saliency,
(ii) characterizing the visual information in the FOI,
and (iii) integrating local descriptive information in
a perception-action recognition process is robust with
respect to viewpoint, scale, and illumination changes
using the standrad descriptor SIFT (Lowe, 2004), and
finally provides rapid attentive matching by requiring
only very few local descriptor samples to be evaluated
for object discrimination. Future work will be directed
towards hierarchical reinforcement learning in order to
provide local grouping schemes that will be globally
integrated.
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