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Abstract

Chord progressions are the building blocks
from which tonal music is constructed. Infer-
ring chord progressions is thus an essential
step towards modeling long term dependen-
cies in music. In this paper, a distributed
representation for chords is designed such
that Euclidean distances roughly correspond
to psychoacoustic dissimilarities. Parame-
ters in the graphical models are learnt with
the EM algorithm and the classical Junction
Tree algorithm. Various model architectures
are compared in terms of conditional out-
of-sample likelihood. Both perceptual and
statistical evidence show that binary trees
related to meter are well suited to capture
chord dependencies.

1. Introduction

Probabilistic models for analysis and generation of
polyphonic music would be useful in a broad range of
applications, from contextual music generation to on-
line music recommendation and retrieval. However,
modeling music in general involves long term depen-
dencies in time series that have proved very difficult
to capture with traditional statistical methods. Note
that the problem of long-term dependencies is not lim-
ited to music, nor to one particular probabilistic model
(Bengio et al., 1994). This difficulty motivates our ex-
ploration of chord progressions. Chord progressions
constitute a fixed, non-dynamic structure in time and
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thus can be used to aid in describing long-term musical
structure.

Tonal music comprises most of the music that has been
written since J.-S. Bach (including contemporary pop
music.) One of the main features of tonal music is its
organization around chord progressions. A chord is a
group of three or more notes (generally five or less.) A
chord progression is simply a sequence of chords. In
general, the chord progression itself is not played di-
rectly in a given musical composition. Instead, notes
comprising the current chord act as central polarities
for the choice of notes at a given moment in a musical
piece. Given that a particular temporal region in a
musical piece is associated with a certain chord, notes
comprising that chord or sharing some harmonics with
notes of that chord are more likely to be present. In
typical tonal music, most chord progressions are re-
peated in a cyclic fashion as the piece unfolds, with
each chord having in general a length equal to integer
multiples of the shortest chord length.

The interaction between the notes that are actually
played and the notes comprising the chord progres-
sion are related to the meter of the piece. Meter is
the sense of strong and weak beats that arises from
the interaction among hierarchical levels of sequences
having nested periodic components. Such a hierarchy
is implied in Western music notation, where different
levels are indicated by kinds of notes (whole notes,
half notes, quarter notes, etc.) and where bars estab-
lish measures of an equal number of beats (Handel,
1993). For instance, most contemporary pop songs
are built on four-beat meters. In such songs, the first
and third beats are usually emphasized. In terms of
melodic structure, this indicates that notes perceptu-
ally closer to the chord progression are more likely to
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be played on these beats while more “dissonant” notes
can be played on weaker beats.

The strong link between chord structure and overall
structure motivate our attempt to model chord se-
quencing directly. The space of sensible chord pro-
gressions is much more constrained than the space
of sensible melodies, suggesting that a low-capacity
model of chord progressions could form an important
part of a system that analyzes or automatically gen-
erates melodies. As an example, consider blues music.
Most blues compositions are variations of a single 12
bar chord progression1. Identification of that chord
progression in a sequence would greatly contribute to
genre recognition.

In this paper, we present a graphical model that cap-
tures the chord structures in a given musical style us-
ing as evidence a limited amount of symbolic MIDI2

data. One advantage of graphical models is their flex-
ibility, suggesting that our model could be used either
as an analytical or generative tool to model chord pro-
gressions. Moreover, a model like ours can be inte-
grated into a more complex probabilistic transcription
model (Cemgil, 2004), genre classifier, or automatic
composer (Eck & Schmidhuber, 2002).

Cemgil (2004) uses a somewhat complex graphical
model that generates a mapping from audio to a piano-
roll using a simple model for representing note tran-
sitions based on Markovian assumptions. This model
takes as input audio data, without any form of pre-
processing. While being very costly, this approach
has the advantage of being completely data-dependent.
However, strong Markovian assumptions are necessary
in order to model the temporal dependencies between
notes. Hence, a proper chord transition model could be
appended to such a transcription model in order to im-
prove polyphonic transcription performance. Raphael
and Stoddard (2003) use graphical models for labeling
MIDI data with traditional Western chord symbols.
In this work, a Markovian assumption is made such
that each chord symbol depends only on the preceding
one. This assumption seems sufficient to infer chord
symbols, but we show in Section 4 that longer term
dependencies are necessary to model chord progres-
sions by themselves in a generative context, without
regard to any form of analysis. Lavrenko and Pickens

1In this paper, chord progressions are considered rela-
tive to the key of each song. Thus, transposition of a whole
piece has no effect on our analysis.

2MIDI stands for Musical Instrument Digital Interface,
an industry-standard interface used on electronic musical
keyboards and PCs for computer control of musical instru-
ments and devices. In our work, we only consider notes
onsets and offsets in the MIDI signal.

(2003) propose a generative model of polyphonic mu-
sic that employs Markov random fields. Though the
model is not restricted to chord progressions, the de-
pendencies it considers are much shorter than in the
present work. Also, octave information is discarded,
making the model unsuitable for modeling realistic
chord voicings. For instance, low notes tend to have
more salience in chords than high notes (Levine, 1990).
Allan and Williams (2005) designed a harmonization
model for Bach chorales using Hidden Markov Mod-
els. A harmonization is a particular choice of notes
given a sequence of chord labels. While generating ex-
cellent musical results, this model has to be provided
sequences of chords as input, restricting its applica-
bility in more general settings. Our work goes a step
further by modeling directly chord progressions in an
unsupervised manner. This allows our proposed model
to be directly appended to any supervised model with-
out the need for additional data labeling.

The first contribution in this paper is the introduc-
tion in Section 2 of a similarity measure for chords
guided by psychoacoustic considerations. A proba-
bilistic model for chord progressions taking into ac-
count long term dependencies is then described in Sec-
tion 3 as the other main contribution in this paper.
The model uses our proposed similarity measure for
chords to distribute the probability mass of the train-
ing set to unseen events appropriately. In Section 4.1
we evaluate the likelihood of the model against refer-
ence data. Finally, in Section 4.2 we show that chord
sequences generated by the proposed model are more
realistic than the ones generated by simpler models in
terms of global dependencies.

2. Representation

The generalization performance of a generative model
depends strongly on how observed data is represented.
A good representation encapsulates some of the psy-
choacoustic similarities between chords. One possi-
bility we chose not to consider was to represent di-
rectly some attributes of Western chord notation such
as “minor”, “major”, “diminished”, etc. Though in-
ferring these chord qualities could have aided in build-
ing a similarity measure between chords, we found it
more convenient to build a more general representa-
tion directly tied to the acoustic properties of chords.
Another possibility for describing chord similarities is
set-class theory, a method that has been compared
to perceived closeness (Kuusi, 2001) with some suc-
cess. In this paper, we consider a simpler approach
where each group of observed notes forming a chord
are seen as a single timbre (Vassilakis, 1999) and we



A Graphical Model for Chord Progressions

design a continuous distributed representation where
close chords with respect to Euclidean distance tend
to be similar to listeners.

More specifically, the frequency content of an ideal-
ized musical note i is composed of a fundamental fre-
quency f0,i and integer multiples of that frequency.
The amplitude of the h-th harmonic fh,i = hf1,i of
note i can be modeled with geometric decaying ρh,
with 0 < ρ < 1 (Valimaki et al., 1996). Consider the
function

m(f) = 12(log2(f) − log2(8.1758))

that maps frequency f to MIDI note m(f). Then, for
a given chord, we associate to each MIDI note n a
perceived loudness l(n) with

l(n) = max({ρh|round(m(fh,i)) = n} ∪ {0}) (1)

where the function round maps a real number to the
nearest integer. The max function is used instead
of a sum in order to account for the masking effect
(Moore, 1982). The quantization given by the round-
ing function corresponds to the fact that most of the
tonal music is composed using the well-tempered tun-
ing. For instance, the 3rd harmonic f3,i corresponds
to a note which is located one perfect fifth (i.e. 7
semi-tones) over the note corresponding to the funda-
mental frequency. Building the whole set of possible
notes from that principle leads to a system where flat
and sharp notes are not the same, which was found
to be impractical by musical instrument designers in
the baroque era. Since then, musicians used a com-
promise called the well-tempered scale, where semi-
tones are separated by an equal ratio of frequencies.
Hence, the rounding function in Equation (1) provides
a frequency quantization that corresponds to what an
average contemporary music listener experiences on a
regular basis.

For each chord, we then have a distributed represen-
tation l = {l(n1), . . . , l(nd)} corresponding to the per-
ceived strength of the harmonics related to every note
ni of the well-tempered scale. Using octave invariance,
we can go further and define a chord representation
v = {v(0), . . . , v(11)} where

v(i) =
∑

nj :1≤j≤d, (nj mod 12)=i

l(nj). (2)

This representation gives a measure of the relative
strength of each pitch class3 in a given chord. For in-
stance, value v(0) is associated to pitch class c, value

3All notes with the same note name (e.g. C#) are said
to be part of the same pitch class.

Table 1. Euclidean distances between the chord in the first
row and other chords when chord representation is given
by Equation (2).

c1a2e3g3 0.000 c1d#2a#2d3 0.000

c1a2c3e3 1.230 c1a#2d#3g3 1.814
c1a2d3g3 1.436 c1e2a#2d#3 2.725
c1a1d2g2 2.259 c1a#2e3g#3 3.442
c1a#2e3a3 2.491 c1e2a#2d3 3.691
a0c3g3b3 2.920 a#0d#2g#2c3 3.923
c1e2b2d3 3.162 a#0d2g#2c3 4.155
a0g#2c3e3 3.643 c1e2a#2c#3 4.612
c1d#2a#2d3 4.295 f1a2d#3g3 5.030
g1a#2f3a3 4.758 a0c3g3b3 5.473
f#0e2a2c3 5.181 b0d2a2c3 5.902
f#1d#2a2c3 5.601 f#1e2a#2d#3 6.329
g1f2a#2c#3 6.035 g#0b2f3g#3 6.746

v(1) to pitch class c#, and so on4. We see in Figure 1
that this representation gives similar results for two
different voicings of the C major chord, as defined in
Levine (1990). By implicitly quantifying psychoacous-
tic similarities between chords, such a low dimensional
representation has considerable interest for develop-
ping complex probabilistic models for chords progres-
sions and is thus a main contribution of our work.

We have computed Euclidean distances between
chords represented in the distributed chord space given
by Equation (2) and found that they roughly corre-
spond to perceptual closeness, as shown in Table 1.
Each column gives Euclidean distances between the
chord in the first row and some other chords that are
represented as described here. The trained musician
should see that these distances roughly correspond to
perceived closeness. For instance, the second column is
related to a particular inversion of the C minor chord
(c1d#2a#2d3). We see that the closest chord in the
dataset (c1a#2d#3g3) is the second inversion of the
same chord, as described in Levine (1990). Hence, we
raise the note d#2 by one octave and replace the note
d3 by g3 (separated by a perfect fourth.) These two
notes are sharing some harmonics, leading to a close
vectorial representation. This distance measure could
have considerable interest in a broad range of compu-
tational generative models in music as well as for music
composition.

4Throughout this paper, we define chords by giving the
pitch class letter, sometimes followed by symbol # (sharp)
to raise a given pitch class by one semi-tone. Finally, each
pitch class is followed by a digit representing the actual
octave where the note is played. For instance, the symbol
c1e2a#2d3 stands for a 4-note chord with a c on the first
octave, an e and an a sharp (b flat) on the second octave,
and finally a d on the third octave.
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Figure 1. Normalized values given by Equation (2) for 2 voicings of the C major chord. We see that perceptual emphasis
is higher for pitch classes present in the chord. These two chord representations have similar values for pitch classes that
are not present in either chords, which makes their Euclidean distance small.

3. Graphical Model

We now propose a graphical model that generates
chord sequences using the input representation de-
scribed in Section 2. The main assumption behind
the proposed model is that conditional dependencies
between chords in a typical chord progression are
strongly tied to the metrical structure associated to
it. Another important aspect of this model is that it
is not restricted to local dependencies, like a simpler
Hidden Markov Model (HMM) would be. This choice
of structure reflects the fact that a chord progression is
seen in this model as a two dimensional architecture.
Every chord in a chord progression depends both on its
position in the chord structure (global dependencies)
and on the surrounding chords (local dependencies.)
We show in Section 4 that considering both aspects
leads to better generalization performance as well as
better generated results than by only considering local
dependencies.

The design of our model is motivated by theories of
musical rhythm (Cooper & Meyer, 1960) and music
structure (Lerdahl & Jackendoff, 1983). A given mu-
sical note does not itself have a certain meaning. Its
meaning, if any, is defined by the role it plays in longer
musical elaborations such as melodies. To make an
analogy to language, musical notes are perhaps more
similar to letters than to words. However, the analogy
is not entirely correct because even musical phrases do
not have meaning in isolation in the same way that
words do. A principal source of music structure is the
meter of a piece. Almost all Western music is metered,
indicating a fixed hierarchical temporal structure with
small integer relationships between levels. We used

meter to guide the construction of probabilistic trees,
employing a binary tree structure suggested by the
meter of the jazz standards in our database. Though
this tree structure differs from that of other forms of
music (thus representing a built-in stylistic prior mo-
tivated by music theory) the difference is not as great
as it might seem. Most meters yield binary trees sim-
ilar to the one we employ. Furthermore, if a tree is
non-binary, then it is usually so only on a single level.
For example, in a typical 3/4 piece of waltz music, the
quarter-note level is indeed ternary (3:1). However,
the higher-level relationships remain binary, with mu-
sical phrases being formed out of 2, 4 or 8 measures.

Figure 2 shows a graphical model constructed as de-
scribed above. Discrete nodes in levels 1 and 2 are not
observed. The purpose of the nodes in level 1 is to cap-
ture global chord dependencies related to the meter.
Nodes in level 2 are modeling local chord dependen-
cies conditionally to the global dependencies captured
in level 1. For instance, the fact that the algorithm
is accurately generating proper endings is constrained
by the upper tree structure. On the other hand, the
smoothness of the voice leadings (e.g. small distances
between generated notes in two successive chords) is
modeled by the horizontal links in level 2.

The bottom nodes of the model are continuous ob-
servations conditioned by discrete hidden variables.
Hence, a mixture of Gaussians can be used to model
each observation given by the distributed representa-
tion described in Section 2. Suppose a Gaussian node
G has a discrete parent D, then the conditional density
p(G|D) is given by

p(G|D = i) ∼ N (µi, σi) (3)
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Figure 2. A probabilistic graphical model for chord progressions. White nodes correspond to discrete hidden variables
while gray nodes correspond to observed multivariate mixtures of Gaussians nodes. Nodes in level 1 directly model the
contextual dependencies related to the meter. Nodes in level 2 combine this information with local dependencies in order
to model smooth chord progressions. Finally, continuous nodes in level 3 are observing chords embedded in the continuous
space defined by Equation (2). Numbers in level 1 nodes indicate a particular form of parameter sharing that has proven
to be useful for generalization (see Section 4.1).

where N (µ, σ) is a k-dimensional Gaussian distribu-
tion with mean µ ∈ R

k and diagonal covariance ma-
trix Σ ∈ R

k ×R
k determined by its diagonal elements

σ ∈ R
k.

The Expectation-Maximization (EM) algorithm
(Dempster et al., 1977) can be used to estimate the
conditional probabilities of the hidden variables in a
graphical model. This algorithm proceeds in two steps
applied iteratively over a dataset until convergence
of the parameters. First, the E step computes the
expectation of the hidden variables, given the current
parameters of the model and the observations of the
dataset. Secondly, the M step updates the values of
the parameters in order to maximize the likelihood
of the observations using the expected values of the
hidden variables.

Marginalization must be carried out in the proposed
model both for learning (during the expectation step of
the EM algorithm) and for evaluation. The inference
in a graphical model can be achieved using the Junc-
tion Tree Algorithm (JTA) (Lauritzen, 1996). In order
to build the junction tree representation of the joint
distribution of all the variables of the model, we start
by moralizing the original graph (i.e. connecting the
non-connected parents of a common child and then re-
moving the directionality of all edges) so the indepen-
dence properties in the original graph are preserved.
In the next step (called triangulation), we add edges
to remove all chord-less cycles of length greater than 4.
Finally, we can form clusters with the maximal cliques

of the triangulated graph. The junction tree represen-
tation is formed by joining these clusters together. To
each cluster, we associate a potential function which
can be normalized to give the marginalized probabil-
ities of the variables in that cluster. Given evidence,
the properties of the junction tree allow these poten-
tial functions to be updated by local message passing.
Exact marginalization techniques are tractable in the
proposed model given its limited complexity.

Many variations of the proposed graphical structure
are possible, some of which are compared in Section 4.
For instance, conditional probability tables can be tied
in various ways. Also, more horizontal links in the
model can be added to reinforce the dependencies be-
tween higher level hidden variables. The chord pro-
gressions are intimately tied to the metrical structure,
which has obviously binary structure in the corpus of
data. However, other tree structures may be more
suitable for music having different meters (e.g. ternary
structures for waltzes). Using a tree structure has the
advantage of reducing the complexity of the consid-
ered dependencies from the order m to the order log m,
where m is the length of a given chord sequence. It
should be pointed out that in this paper we only con-
sider musical productions with fixed length. Fortu-
nately, the current model could be easily extended to
chords sequences with variable length by adding condi-
tional dependencies arrows between many normalized
subtrees.

Considering global dependencies to model time series



A Graphical Model for Chord Progressions

is a general issue also present in other domains. For in-
stance, tree models with structures derived from com-
mon syntactical patterns could be used to learn global
dependencies in natural language processing applica-
tions. However, it should be noted that dependencies
are much more complex in natural language than in
chord progressions.

4. Experiments

52 jazz standards excerpts from Sher (1988) were
interpreted and recorded by the first author in
MIDI format on a Yamaha Disklavier piano. See
http://www.idiap.ch/∼paiement/icml2005 for a
listing. Standard 4-note jazz piano voicings as de-
scribed in Levine (1990) were used to convert the chord
symbols into musical notes. Thus, the model is consid-
ering chord progressions as they might be expressed by
a trained jazz musician in a realistic musical context.
The complexity of the chord sequences found in the
corpus is representative of the complexity of common
chord progressions in most jazz and pop music. We
chose to record actual voiced chords rather than sym-
bolic chord names (e.g. Em7) because the symbolic
names are ineffective at capturing the specific voicings
made by a trained jazz musician.

Every jazz standard excerpt was 8 bars long, with a 4
beats meter, and with one chord change every 2 beats
(yielding observed sequences of length 16.) Longer
chords were repeated multiple times (e.g. a 6 beats
chord is represented as 3 distinct 2-beat observations.)
This simplification has a limited impact on the quality
of the model since generating a chord progression is
simply a first (but very important) step toward gen-
erating complete polyphonic music, where modeling
actual event lengths would be more crucial. The jazz
standards were carefully chosen to exhibit a 16 bars
global structure. We used the last 8 bars of each stan-
dards to train the model. Since every standard ends
with a cadenza (i.e. a musical ending), the chosen ex-
cerpts exhibits strong regularities.

4.1. Generalization

The chosen discrete chord sequences were converted
into sequences of 12-dimensional continuous vectors as
described in Section 2. Frequencies ranging from 20Hz
to 20kHz (MIDI notes going from the lowest note in
the corpus to note number 135) were considered in or-
der to build the representation given by Equation (1).
A value of ρ of 0.96 was arbitrarily chosen for the ex-
periments. It should be pointed out that since the gen-
erative models have been trained in an unsupervised
setting, it is irrelevant to compare different chord rep-

Table 2. Average conditional negative out-of-sample log-
likelihoods of sub-sequences of length 4 on positions 1,
5, 9 and 13. These results are computed using double
cross-validation in order to optimize the number of pos-
sible values for hidden variables. The numbers in paren-
theses indicate which levels of the tree are tied as described
in Section 4.1. We see that some combinations of param-
eter tying in the trees performs better than the standard
HMM.

Model (tying) Negative log-likelihood

Tree (2, 3) 93.8910
Tree (1, 3) 94.0037
Tree (1, 2, 3) 94.9309
Tree (3) 98.2446

HMM 98.2611

resentations in terms of likelihood. However, it is pos-
sible to measure how well a given architecture is model-
ing conditional dependencies between sub-sequences of
chords. In order to do so, average negative conditional
out-of-sample likelihoods of sub-sequences of length 4
on positions 1, 5, 9 and 13 have been computed. The
likelihood of each subsequence is conditional on the
rest of the sequence (taken in the validation set) from
which it originates. Double cross-validation has been
used to optimize the number of possible values of hid-
den variables for various architectures. Results are
given in Table 2. This measure is similar to perplexity
or prediction ability. We chose this particular measure
of generalization in order to account for the binary
metrical structure of chord progressions, which is not
present in natural language processing, for instance.

Different forms of parameter tying for the tree model
shown in Figure 2 have been tested. All nodes in
level 3 share the same parameters for all tested mod-
els. Hence, we use only one 12-dimensional mixture of
Gaussians (as in Equation (3)) independently of time,
in order to constrain the capacity of the model. More-
over, a diagonal covariance matrix Σ has been used,
thus reducing the number of free parameters to 24 in
level 3 (12 for µ and 12 for Σ). Hidden variables in
level 1 and 2 can be tied or not. Tying for level 1 is
done as illustrated in Figure 2 by the numbers inside
the nodes.

The fact that the contextual out-of-sample likelihoods
presented in Table 2 are better for the different trees
than for the HMM indicates that time-dependent reg-
ularities are present in the data. Sharing parame-
ters in levels 1 or 2 of the tree increases the out-of-
sample likelihood. This indicates that regularities are
repeated over time in the signal. Further investigations
would be necessary in order to assess to what extent
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chord structures are hierarchically related to the me-
ter. On the other hand, the relatively high values ob-
tained in terms of conditional out-of-sample negative
log-likelihood indicates that the number of sequences
may not be sufficient to efficiently represent the vari-
ability of the data. Unfortunately, reliable chord pro-
gressions data is difficult to generate. However, the au-
thors plan to extend the chord database significantly
in the short term.

4.2. Generation

One can sample the proposed model in order to gener-
ate novel chord progressions. Fortunately, Euclidean
distances are relevant in the observation space created
in Section 2. Thus, a simple approach to generate
chord progressions is to take the nearest neighbors
(nearest chords in the training set) of each sampled
values obtained by sampling the observation nodes.

Chord progressions generated by the mod-
els presented in this paper are available at
http://www.idiap.ch/∼paiement/icml2005. For
instance, Figure 3 shows a chord progression that
has been generated by the graphical model shown
in Figure 2. This chord progression has all the
characteristics of a standard jazz chord progression.
For instance, the trained musician can observe that
the last 8 bars of the sequence is a II-V-I5 chord
progression (Levine, 1990), which is very common.
Figure 4 shows a chord progression generated by the
HMM model. While the chords are following each
other in a smooth fashion, there is no global relation
between chords. For instance, one can see that the
lowest note of the last chord is not a c, which was the
case for all the chord sequences in the training set.
The fundamental qualitative difference between both
methods should be obvious even for the non-musician
when listening to the generated chord sequences.

5. Conclusion

In this paper, we introduced a low dimensional rep-
resentation for chords that can be used as observa-
tions for probabilistic models. This constitutes the
first main contribution in our work. Moreover, we
have shown empirically that chord progressions ex-
hibit global dependencies that can be better captured
with a tree structure related to the meter than with a
simple dynamical HMM that concentrates on local de-
pendencies. The importance of contextual information
for modeling chord progressions is even more apparent
when one compares sequences of chords sampled from

5The lowest notes are d, g and c.

both models. The time-dependent hidden variables
enable the tree structure to generate coherent chord
progressions both locally and globally.

However, the low difference in terms of conditional
out-of-sample likelihood between the tree model and
the HMM, and the relatively low number of degrees of
freedom for optimal generalization (including the low
optimal number of possible states for hidden variables)
are a good indication that increasing the number of se-
quences in the dataset would probably be necessary in
further developments of probabilistic models for chord
progressions. Also, a better evaluation of such models
could be achieved by including them for a supervised
task. Applications where a chord progression model
could be included range from music transcription, mu-
sic information retrieval, musical genre recognition to
music analysis applications.

Chord progressions are regular and simple structures
that condition dramatically the actual choice of notes
in polyphonic tonal music. Hence, we argue that chord
models are crucial in the design of efficient algorithms
that deal with such music data. Moreover, generat-
ing interesting chord progressions may be one of the
most important aspects in generating realistic poly-
phonic music. Our model constitutes a first step in
that direction.

Acknowledgements

The first author would like to thank Yves Grandvalet
for helpful discussions. This work was supported in
part by the IST Program of the European Commu-
nity, under the PASCAL Network of Excellence, IST-
2002-506778, funded in part by the Swiss Federal Of-
fice for Education and Science (OFES) and the Swiss
NSF through the NCCR on IM2.

References

Allan, M., & Williams, C. K. I. (2005). Harmonis-
ing chorales by probabilistic inference. Advances in

Neural Information Processing Systems.

Bengio, Y., Simard, P., & Frasconi, P. (1994). Learn-
ing long-term dependencies with gradient descent is
difficult. IEEE Transactions on Neural Networks, 5,
157–166.

Cemgil, A. T. (2004). Bayesian music transcription.
Doctoral dissertation, Radboud University of Ni-
jmegen.

Cooper, G., & Meyer, L. B. (1960). The Rhythmic

Structure of Music. The Univ. of Chicago Press.



A Graphical Model for Chord Progressions

���
�

���
�

� ���
�

� ���
�

� ���
�

� ���
�

� ���

�

� ���
�

� �

���
�

���
�

���

�

���
�

���
�

���
�

���
�

���
�

�

Figure 3. A chord progression generated by the proposed model. This chord progression is very similar to a standard jazz
chord progression.
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Figure 4. A chord progression generated by the HMM model. While the individual chord transitions are smooth and
likely, there is no global chord structure.
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