Recycling Data for Multi-Agent Learning

Santiago Ontanén
Enric Plaza

IITA, Artificial Intelligence Research Institute,
CSIC, Spanish Council for Scientific Research.
Campus UAB, 08193 Bellaterra, Catalonia (Spain).

Abstract

Learning agents can improve performance
cooperating with other agents, particularly
learning agents forming a committee outper-
form individual agents. This “ensemble ef-
fect” is well known for multi-classifier sys-
tems in Machine Learning. However, multi-
classifier systems assume all data is known
to all classifiers while we focus on agents
that learn from cases (examples) that are
owned and stored individually. In this ar-
ticle we focus on how individual agents can
engage in bargaining activities that improve
the performance of both individual agents
and the committee. The agents are capable
of self-evaluation and determining that some
data used for learning is unnecessary. This
“refuse” data can then be exploited by other
agents that might found some part of it prof-
itable to improve their performance. The ex-
periments we performed show that this ap-
proach improves both individual and com-
mittee performance and we analyze how these
results in terms of the “ensemble effect”.

1. Motivation: Embracing Distributed
Data

Distributed data mining and knowledge discovery ac-
cepts the fact that some data are and will continue
to be essentially decentralized. Currently, the focus is
on incremental but centralized techniques capable of
working with distributed data. Our approach, how-
ever, focuses on decentralizing the process of learn-
ing and knowledge discovery as well. In the frame-
work of multi-agent systems, individual agents are not

Appearing in Proceedings of the 22™% International Confer-
ence on Machine Learning, Bonn, Germany, 2005. Copy-
right 2005 by the author(s)/owner(s).

SANTIQIIIA.CSIC.ES
ENRICQIIIA.CSIC.ES

merely repositories of knowledge, but active compo-
nents capable of problem solving and learning (from
their own data and possibly from data exchanged with
other agents).

A related notion to distributed data is ensemble learn-
ing, that is to say working with multiple learning mod-
els of data. These approaches study the advantages of
having more than one set of data and/or more than
one model of learning from data. The most common
way to describe ensemble learning is that, rather than
building a single predictive model, a collection (or en-
semble) of models is built and their predictions are
then efficiently combined (e.g. by voting). There are
different ways to achieve ensemble learning but they
always have to achieve the same property: that the
error of multiple learning models is not correlated. Es-
sentially, the ensemble effect amounts to the fact that
combining multiple predictions (such that predictors
are minimally competent and their errors are not cor-
related) is better than any individual predictor. Figure
1 shows two ways of achieving the ensemble effect: (a)
methods that transform a data set D into a collection
of data sets and (b) methods that use different learn-
ing techniques upon the same data set D. Two ex-
amples of (a) are bagging (Breiman, 1996) (a method
to create multiple subsets of D such that error corre-
lation is lowered) and feature subsets (Bay, 1998) (a
method to select different subsets of features represent-
ing data and thus constructing a collection); both are
ways to achieve error de-correlation from an original
set of data. Finally, (b) uses multiple classifiers built
with different ML techniques that in this way insure
their errors are not correlated.

The rationale of ensemble learning is thus that having
multiple data sets is, under certain conditions, even
better than having a single data set. On the other
hand, we have seen that data is inherently distributed
in real-life applications, so having multiple data sets
is a fact of life; there is no security however that they

Recycling Data for Multi-Agent Learning

Solution

Figure 1. Two forms of forcing the ensemble effect by de-
correlating multiple classifiers.

comply to the conditions needed for having the benefits
of the ensemble effect. Our research focuses on devel-
oping techniques that embracing the fact that data is
distributed are able to achieve (distributed) data sets
that comply to the conditions required by the ensemble
effect. Moreover, we focus on multi-agent techniques
to achieve this goal, in such a way that the autonomy
of decision concerning the data accessed, shared or ex-
changed, is always in the hands of individual agents
(and not some centralized process that simply accesses
remote data repositories). Finally, notice that most
ensemble learning techniques assume a centralized ap-
proach in that all data is available to a central process
that later decides unilaterally how it is distributed.

Recent work has proposed multi-agent techniques for
achieving comparable or even better performances
than a centralized approach (Ontanién & Plaza, 2001).
In this paper we present a new technique to re-
distribute data among individual agents in order to
achieve data sets that exhibit the ensemble effect.

2. Waste economy and recycling

To understand the data redistribution technique we
will propose it is useful to consider the metaphor of
recycling in an economy of refuse materials (wastes).
Figure 2 shows on the left a firm FIRM that consumes
input material and outputs both product and refuse
materials (shown in three colors in the example). Now,
waste economy is based on the fact that most refuse
can be reused as input for other firms (possibly after
some pre-processing) in the industrial ecology. The
refuse market of Fig. 2 is a decentralized mechanism
for coordinating the needs of different firms to acquire
input materials and the needs of other firms to get rid

of refuse materials. The firms offer in the refuse market
those refuse materials they produce and acquire input
materials that the can use (possibly after some pre-
processing). The intended effect is clearly the efficient
recycling of of most industrial by-products.

We will present a data redistribution technique based
on this idea of refuse recycling, although we will use
a simple bargain model that will not require a mone-
tary economy. Let us first consider the notion of refuse
in the context of systems that learn from data. Cur-
rently, machine learning and data mining researchers
have realized that the intuitive idea that “the more
data the better learning” is not true. In fact, the se-
lection of the data that should be fed to a particular
ML technique is itself a constituent part of the data
mining process. Moreover, any specific ML technique
treats data in a specific way that makes that some part
of the data may not be useful to improve the overall
performance. For instance, bagging (Breiman, 1996)
builds multiple subsets of data, that is to say elimi-
nates some part of the data for any particular data set
generated. In the context of case-based reasoning and
learning (CBR), retaining every known case may often
degrade the performance of the CBR system (Smyth,
1996; Arcos, 2003). Case base maintenance is needed
in order to decide which cases are retained (to learn
from them) and which should be considered refuse (in
order to improve the learning performance).

In the context of multi-agent systems, where each
agent is capable of learning from data to perform some
individual prediction, the existence of refuse data to-
gether with their autonomy requires the agents to
be capable of self-evaluating their own performance.
Once an agent has this capability it can autonomously
decide which data is refuse and, from that moment,
cooperate with other agents in a process of exchang-
ing refuse data. For this second purpose an agent will
clearly need a technique to evaluate the data refused
by others in order to decide which data is interesting
(or to which degree it is interesting for him to acquire
each datum). Once we have these two individual deci-
sion policies the third element needed is a market-like
bargaining process that allocates the (refuse) data to
that agent that is more interested. These three el-
ements are the building blocks of the data recycling
technique for multi-agent learning that we present in
the following sections.

The paper is organized as follows: Section 3 presents
the multi-agent framework used in our work and the
Committee Collaboration Strategy that the agents use
in order to act as an ensemble, while Section 4 presents
the Recycling Collaboration Strategy including both

Recycling Data for Multi-Agent Learning

PRODUCT

REFUSE A\

Yvy

REFUSE
MARKET

FIRM_2 —»(PRODUCT
REFUSE
>
FIRM_3 PRODUCT
REFUSE

Yyvy

Figure 2. Waste economy based on a refuse market.

the interaction protocol and the individual decision
policies that the agents need in order to implement
a refuse bargaining strategy with the cases in their in-
dividual case bases. Finally, Section 5 presents an ex-
perimental evaluation of the Recycling Collaboration
Strategy, and the paper closes with future work and
conclusions sections.

3. Multi-agent CBR Systems

A multi-agent CBR (MAC) system M =
{(4;,C:)}iz1..n is composed on n agents, where
each agent A; has a case base C;. A case base
Ci = {(P;,Sp,)}j=1..~n is a collection of prob-
lem/solution pairs. In the experiments reported
here we assume that initially case bases are disjunct
(VA;,A; € M : C;NC; = 0), e initially there is
no case shared by two agent’s case bases. In this
framework we restrict ourselves to analytical tasks,
i.e. tasks (like classification) where the solution is

achieved by selecting from an enumerated set of
solutions § = {S7...Sk}.

Agents in a MAC system can solve problems individu-
ally by using its individual case base, but can also col-
laborate with other agents in order to solve a problem.
In our framework, all the interaction among agents is
performed by means of collaboration strategies.

Definition 3.1 A collaboration strategy (I, D1,
ooy D) defines the way in which a group of agents
inside a MAC collaborate in order to achieve a
common goal and is composed of two parts:

e an interaction protocol I,

e a set of individual decision policies { Dy, ...

s D}

The interaction protocol of a collaboration strategy de-

fines a set of interaction states, a set of agent roles, and
the set of actions that each agent can perform in each
interaction state. Each agent use its individual deci-
sion policies to decide which action to perform, from
the set of possible actions, in each interaction state.

When a group of agents solve a problem together they
act as a committee: each individual agent solves the
problem independently, and then they aggregate the
individual solutions using a voting system. Specifi-
cally, the committee collaboration strategy can be sum-
marized as follows: when an agent A, is interested in
solving a problem P in a collaborative way, A. con-
venes a committee of agents A° that contains agents
willing to collaborate in solving P. Then, A. sends the
problem P to all the other agents in the committee.
Each agent individually solves the problem using the
cases in their individual case bases and communicate
their individual predictions to the convener agent A..
Finally, the convener agent aggregates all the individ-
ual predictions using a voting system. Thus, acting
as an ensemble. In our experiments we used BWAV
(Bounded Weighted Approval Voting) (Ontanén &
Plaza, 2001) as the voting system. The main idea
is that each agent votes for solution classes depending
on the number of retrieved cases for each class. Each
agent has 1 vote that can be fractionally assigned to
several solution classes; the larger the number of re-
trieved cases endorsing a solution class, the stronger
an agent will vote for that class.

4. Case Recycling in Multi-Agent
Systems
In this section we are going to present the Recycling

Collaboration Strategy (RCS) that allows a committee
of agents to preform recycling of the cases in their

Recycling Data for Multi-Agent Learning

individual case bases.

In general not all cases in the case base of a CBR
agent are useful: some of them could have been useful
in the past but become not useful because further cases
have been retained, or simply older cases may become
obsolete as time passes for the specific task that the
CBR agent must perform. The idea of RCS is that
every agent A; in a MAC system selects a set of refused
cases CF C C; from its case base. We can define the
refuse set C* = J,_, , CF as the set of all the refused
cases by the agents in a MAC system. Once every
agent has selected its cases to refuse, a bargaining may
take place where all the agents are able to make bids
in order to retain individually interesting cases refused
by other agents (since a case refused by an agent may
be useful for another agent). Bids are exchanged using
bid records. A bid record B = (A, ¢, b) is a tuple where
A is the agent, ¢ is the case and b is the bid value
(that is a real number in the interval [0, 1]). Bargaining
consists of a series of rounds and at each round every
agent casts a bid for each case in the refuse set. The
agent that has cast the highest bid retains the case
¢ for which that bid was made. Then, ¢ is removed
from the refuse set C® and a new round starts. The
bargaining ends when all cases in the refuse set have
been retained or when no agent is interested in any of
the remaining cases. Specifically, RCS can be defined
as follows:

Definition 4.1 The Recycle Collaboration Strategy
(RCS) is a collaboration strateqy (Ircs,Dr,Dg),
where Ircs is the RCS interaction protocol, Dy is the
Refuse Decision Policy that agents use to decide which
cases they refuse, and Dp is the Bidding Decision Pol-
icy, that agents use to make bids for the refused cases.

In the remaining of this section we will present both
the RCS protocol and the individual decision policies
that the agents need to use for engaging in RCS.

4.1. The RCS Interaction Protocol

In the RCS interaction protocol Ircs an agent will
take the role of the convener agent A.. Then, the con-
vener agent sends the initial message to start the pro-
tocol, receives the refused cases and the bids from the
other agents, and determines the highest bid. How-
ever, the convener agent has no special privileges over
the rest of the agents during the case recycling process.

Ircs is an iterative protocol based on rounds. We
will use ¢ to denote the current round; initially ¢ = 0.
Specifically, the Ircg protocol works as follows:

1. The protocol starts when the convener agent A,

broadcasts the parameter t; to the rest of the
agents, that specifies the amount of time that the
agents have to make bids for the cases during the
case bargaining.

2. When an agent A; receives the parameter ¢, A;
uses its individual Refuse Decision Policy Dg to
select a set of cases C’jR that is sent to the convener
agent. When the convener A. receives the refused
cases of the rest of agents and has computed its
own set of refused cases, A. builds the refuse set
C{, and sends it to the other agents.

3. From the moment that A. sends C{ to the rest of
agents, each agent A; is free to send a set of bid
records B;+ to the convener agent A..

4. Once the time t; is reached, no more bids are
accepted. The convener agent looks for the bid
record B; = (A,c,b) with the highest bid B;.b
among all received bids (ties are solved ran-
domly). Now, two situations may arise:

e If B,.b > 0, then, case B,.c is removed from
the refuse set, the winning bid is broadcast to
the rest of the agents and the protocol moves
again to step 3 where the agents will again be
allowed to make bids for the remaining cases
in the refuse set.

e If B;.b = 0 or the refuse set is empty, then ei-
ther no agent is interested in any case or there
are no more cases to be bargained. Then, the
convener agent will sent a termination mes-
sage to the rest of the agents and the protocol
ends. The remaining cases in the refuse set
are discarded.

In the next sections the individual decision policies
needed to use RCS are presented.

4.2. The RCS Refuse Decision Policy

In order to engage in RCS, individual agents must be
able to self-evaluate and detect if some of the cases
they have used for learning are unnecessary. The cases
considered unnecessary are refused and deleted from
the agents’ case bases. The Refuse Decision Policy Dg
is used by the agents to decide which cases to refuse
and which cases to retain.

In this section we propose a refuse decision pol-
icy based on JUST (Ontafién & Plaza, 2004b)
(JUstification-based Selection of Training Examples),
that has been experimentally shown to be a sound
technique for assessing the utility of having (or not
having) a case in a case base.

Recycling Data for Multi-Agent Learning

JUST is a technique based in the notion of justifica-
tions that given a case base C' obtains a reduced case
base C" C C that at least has the same expected clas-
sification accuracy than C. The cases not selected by
JUST are refused. A justification J built by an agent
to solve a problem P that has been classified into a
solution class Sy is a description of the relevant in-
formation of P used for predicting Sj as the solution
class, and can have many uses in multi-agent and CBR
systems. Specifically, justifications in JUST are used
to find counterexamples for a given incorrect predic-
tion made by an agent.

Summarily, JUST works as follows:

1. Initially, ¢ = 0 and the reduced case base C} is
empty.

2. An exam FE is selected by taking a sample of cases
from C}' = C — (Y, i.e. by selecting some of the
cases of C that are not present in the reduced case
base C".

3. The cases in the exam E are solved using C7. If

1 is empty, all the problems in E are considered

to be solved incorrectly, and with empty justifica-
tions.

4. By analyzing the justifications built to solve the
problems in the exam F, a set of cases B is ex-
tracted from Cf and added into C{, i.e. Cf,| =
C7JB. Intuitively, B is the minimum set of
cases that if present in the case base would have
prevented the errors detected in the exam F
(Ontandén & Plaza, 2004b).

5. The classification accuracy of the reduced case
base C” is assessed, and if it is estimated to be
at least the same as the accuracy of the complete
case base C' JUST terminates and outputs C} as
the reduced case base and C}* as the refused cases.
Otherwise t = t+1 and all the process is repeated
from step 2.

Let JUST(C) be the reduced case base obtained after
applying JUST to the case base C. We can define de
Refuse Decision Policy based on JUST as follows:

Definition 4.2 The Refuse Decision Policy selects
the refuse cases as those that have been discarded by
JUST:

Dr(C;) = C; — JUST(C;)

The next section presents the individual decision pol-
icy used for making bids over the refused cases.

4.3. The RCS Bidding Decision Policy

An agent needs a policy to determine which cases in
the refuse set CF can be useful to include in its case
base. The agents use their Bidding Decision Policy
Dp in order to make a bid for each of the cases in the
refuse set.

In this section we propose a specific bidding policy
based on estimating the utility of the cases. Specifi-
cally, the decision policy will use JCU (Justification-
based Case Utility) (Ontanién & Plaza, 2004a) to esti-
mate the utility of the cases.

JCU is a technique based on justifications that predicts
the expected utility of a new case, where a case with a
high utility is one that can prevent the CBR agent to
make errors in the future. The more errors that a case
can potentially prevent if incorporated into the case
base of an agent, the higher the utility of the case.

In fact, JCU requires a set of cases in order to evaluate
their utility. Specifically, JCU evaluates the utility of
the cases in the refuse set CF (in a round ¢ of the Ircs
interaction protocol) as follows:

1. First, a CBR agent solves the problems in CF and
provides justifications for all of its answers.

2. In general, some of the problems in C* will be
solved incorrectly. JCU stores the justifications
given for those incorrectly solved problems in the

set J .
3. The utility of each case ¢ € CF is assessed as:

(a) JCU contrasts the justifications in J~ with
its case base and tests whether the case ¢ con-
tradicts some of them. Specifically, we will
note by J,. to the set of incorrect justifica-
tions contradicted by c.

(b) Finally, the utility of ¢ is assessed as

T
JCU(c,CR) = i((cﬁ))'

The idea behind JCU is that if a case ¢ would have
been present in the case base of the agent, all the jus-
tifications that are in contradiction with ¢ would have
never been generated. Therefore, the number of in-
correct justifications contradicted by c represents the
number of errors that ¢ could have prevented while
solving the problems in CF. Finally, we divide that
number by #(C[) in order to normalize the utility be-
tween 0 and 1. Moreover, notice that JCU is only an
estimation of the utility of ¢ and that this estimation
depends on Cf: if CF* is a representative sample of
problems, then JCU provides an accurate measure of
the utility of a new case.

Recycling Data for Multi-Agent Learning

Committee Individual Committee Individual

Ag. Std [JUST [RCS Std [JUST [RCS Ag. Std [JUST [RCS Std [JUST [RCS
SPONGE SPONGE

3 88.14 | 87.79 | 90.50 || 81.71 | 81.78 | 85.36 3 90.07 | 90.78 | 90.36 || 83.43 | 84.64 | 87.50

5 88.71 | 86.78 | 91.43 || 77.64 | 76.79 | 84.28 5 90.45 | 90.50 | 92.07 || 81.50 | 78.21 | 87.14

7 88.64 | 87.85 | 91.14 || 69.00 | 70.35 | 84.64 7 91.57 | 91.35 | 91.07 || 75.21 | 73.57 | 85.00
SOYBEAN SOYBEAN

3 78.00 | 80.13 | 83.47 65.34 | 67.10 | 69.31 3 80.97 | 80.91 82.41 73.09 | 72.38 | 73.61

5 77.00 | 77.20 | 78.40 || 54.33 | 54.07 | 59.28 5 77.52 | 76.55 | 80.13 || 62.67 | 58.63 | 64.82

7 71.00 | 72.31 | 74.63 || 47.30 | 48.86 | 50.49 7 73.68 | 71.01 | 78.34 || 54.53 | 51.47 | 53.07
ZOOLOGY ZOOLOGY

3 87.72 | 89.11 | 90.28 || 81.58 | 78.05 | 87.53 3 88.71 | 89.70 | 90.10 || 87.52 | 85.54 | 88.12

5 88.12 | 85.54 | 88.32 68.32 | 66.14 | 82.57 5 88.71 87.92 | 88.31 82.77 | 78.01 | 86.13

7 83.00 | 85.94 | 85.15 || 60.99 | 56.23 | 74.66 7 84.75 | 84.15 | 84.75 || 73.24 | 77.22 | 78.02

Table 1. Biased scenario accuracy.

Finally, since the Bidding Decision Policy is used to
compute bids for all the cases in the refuse set CF, we
can define the Bidding Decision Policy Dp based on
JCU for an agent A; as:

Definition 4.3 The Bidding Decision Policy creates
a set of bid records. Specifically, it creates a bid record
for each case c; € CE using JOU to assess their utility:

Dp(Cf") = {4, ¢;, JCU(¢j,C)) Yo ecr

where JCU (c;,CE) represents the JCU utility of the
case c; computed with respect to the set of cases CF.

Moreover, notice that each agent is autonomous, and
free to use any bidding decision policy. For instance,
an agent A; could use a decision policy that decides to
send always the maximum bid for all the cases. How-
ever, that would not be rational for A; since if the rest
of the agents detect that an agent is always bidding
the maximum value for all the cases, they may also
use that policy. The result would then be a random
redistribution of the cases (since at each round there
will be a tie among all the agents, and a random case
will be selected and given to a random agent) that
will lead to suboptimal accuracy values both for the
individual agents and for the committee.

5. Experimental Results

In this section we empirically evaluate the Recycling
Collaboration Strategy (RCS). We have made experi-
ments in three different data sets: sponge, zoology and
soybean. The sponge data set is a marine sponge clas-
sification problem, contains 280 marine sponges repre-
sented in a relational way and pertaining to three dif-
ferent orders of the Demospongiae class. The zoology
and soybean data sets are two standard data sets from

Table 2. Uniform scenario accuracy.

the UCI machine learning repository. Specifically, the
zoology data set has 101 cases pertaining to 7 differ-
ent solution classes, and the soybean data set has 307
examples pertaining to 19 different solution classes.

In an experimental run, training cases are distributed
among the agents without replication, i.e. there is no
case shared by two agents. In the testing stage prob-
lems arrive randomly to one of the agents. The goal of
the agent receiving a problem is to identify the correct
biological order given the description of a new sponge.

We have made experiments with MAC systems com-
posed of 3, 5, and 7 agents, and each experiment con-
sists of a 10-fold cross validation run. Specifically, an
experimental run consists of the following steps:

1. The training set is distributed among the agents.

2. Both the individual accuracy and the committee
accuracy are measured using the test set.

3. An agent starts the RCS collaboration strategy,
and after having used JUST in order to refuse
cases the individual and committee accuracy val-
ues are measured again using the test set. The
number of refused cases is also measured.

4. When the agents finish the RCS collaboration
strategy, individual and committee accuracy val-
ues are measured using the test set. The number
of recycled cases is also measured.

Moreover, we have made experiments in two different
scenarios, namely the biased and the uniform scenar-
ios. In the biased scenario, when the training set is dis-
tributed among the agents some agents receive more
cases of some classes than others. The expected effect
is that agents that receive many cases of some class
may refuse some of them since they have more cases

Recycling Data for Multi-Agent Learning

of that class than they need. Moreover, it is also ex-
pected that agents that have received few cases of that
class can take benefit of those cases during the recy-
cling protocol. In the uniform scenario, we have forced
that every agent in the system has a perfect representa-
tive sample of cases of the training set. This scenario
is not realistic, but we use it to prove whether RCS
works correctly when there is little refuse.

Table 1 shows the classification accuracy results in the
biased scenario. Three columns are shown: Std rep-
resents the classification accuracy of the agents before
applying RCS; JUST represents the classification ac-
curacy of the agents just after having refused cases
(without recycling); and finally RCS represents the
classification accuracy of the agents after finishing the
recycling process. Moreover, individual and commit-
tee accuracy values are shown for MAC systems of 3,
5, and 7 agents. Notice that the classification accu-
racy achieved by the committee and by the individual
agents after RCS is clearly higher than that achieved
before RCS in all the data sets and MAC systems. For
instance, the committee classification accuracy of the
5 agents MAC system in the sponge data set increases
from 88.71% to 91.43% after using RCS, and the in-
dividual classification accuracy increases from 77.64%
to 84.28% in a 3 agents system for the sponge data
set. In general, notice that, regardless of the number
of agents in the MAC system or the data set, the indi-
vidual classification accuracy is much higher after RCS
than before.

Moreover, it is interesting to compare the classification
accuracy results achieved by a MAC system against a
centralized approach where a single CBR system will
have all the cases. A centralized CBR system achieves
an accuracy of 89.5% in the sponge data set (clearly
lower than the classification accuracy achieve by RCS
with any number of agents). However, in the soybean
and zoology data sets, a centralized approach achieves
higher classification accuracy than the MAC systems,
specifically: 89.12% and 95.64% for soybean and zo-
ology respectively. The problem in the soybean data
set is that partitioning the training set results in poor
individual training sets for the individual agents (as
can be seen by the low individual classification ac-
curacy). Thus, adding some redundancy (i.e. allow-
ing that some cases may be present in more than one
agent’s case base) may improve these results. We will
retake this discussion in the future work section.

The left hand part of Table 3 shows the average indi-
vidual case base size for the biased scenario. The table
shows that the agents refuse a significant amount of
cases. For instance, in the 3 agents MAC system for

Biased Uniform
Ag. Std | JUST [RCS Std [JUST | RCS
SPONGE
3 84.60 | 32.56 | 61.00 || 84.60 | 55.26 | 58.56
5 50.80 | 30.06 | 41.86 || 50.80 | 35.08 | 39.78
7 36.28 | 25.17 | 31.53 || 36.28 | 27.69 | 31.82
SOYBEAN
3 92.10 | 58.92 | 68.00 || 92.10 | 64.56 | 70.22
5 55.26 | 39.62 | 44.58 || 55.26 | 41.20 | 45.44
7 39.47 | 29.29 | 33.05 || 39.47 | 30.17 | 33.43
ZOOLOGY
3 30.30 | 16.15 | 19.23 || 30.30 | 21.87 | 22.07
5 18.18 | 13.98 | 15.87 || 18.18 | 14.20 | 14.98
7 12.99 | 10.49 | 12.01 12.99 | 10.60 | 11.43

Table 3. Average case base sizes.

the sponge data set, the agents reduce its case base
from an average of 84.60 cases to 32.56 cases. More-
over, the amount of recycled cases is also significant: in
the 3 agents system, the agents recycle a large amount
of the refused cases since the average case base sice af-
ter recycling is of 61.00. The explanation is that JUST
detects that there is a large number of cases with low
utility, and therefore they are refused; moreover there
are agents in the system that assess the refused cases
as interesting for them. The global effect of recycling
is that the agents have made an automatic redistri-
bution of cases that have improved their classification
accuracy both as a committee and as individuals. No-
tice that in the soybean data set the number of refused
cases is smaller, since JUST detects that in this data
set more cases per agent are needed.

Notice that sometimes the individual accuracy after
reducing the case base using JUST is lower than the
accuracy before reducing the case base (for instance, in
a b agents system for the soybean data set individual
accuracy is reduced from 54.33% to 54.07% after refus-
ing cases using JUST). Thus, sometimes JUST refuses
more cases than should be refused. The explanation
for this is that JUST uses an accuracy estimation tech-
nique that has a margin of error of £4%, moreover this
accuracy estimation technique assumes that the origi-
nal case base is large enough, and this is not the always
case in out partitioned data scenario (specially in the
zoology data set, where case bases are smaller).

Table 2 reports the classification accuracy results in
the uniform scenario, showing that the difference in
committee classification accuracy of the agents before
and after using RCS is smaller than in the biased sce-
nario (except in the soybean data set, where we still get
benefits from applying RCS). The explanation is that
the initial distribution of cases among the agents in the
uniform scenario is such that there is very little room
for improvement in the committee accuracy. However,

Recycling Data for Multi-Agent Learning

the individual classification accuracy improves signif-
icantly: for instance, in the 5 agents system for the
sponge data set, the individual classification accuracy
has increased from 81,50% to 87,14%.

The right part of Table 3 shows the average case base
size in the uniform scenario. The table shows that,
as expected, the agents have refused less cases in av-
erage than in the biased scenario. For instance, in a
MAC system with 3 agents in the sponge data set the
average size of the agents’ case bases drop from 84.60
to 55.26 cases after refusing cases, while in the biased
scenario the case bases drop from 84.60 to 32.56 cases.
Moreover, a smaller number of cases are recycled in the
uniform scenario; for instance, in the 3 agents system
for the sponge data set the case bases grow from 55.26
to 58.56 cases, while in the biased scenario the case
bases grow from 32.56 to 61.00 cases. This is because
the agents already have a good sample of the training
set (forced by the experimental settings). Therefore,
we can conclude that RCS does not force unwanted re-
cycling. Moreover, the small amount of recycled cases
are enough to increase the individual classification ac-
curacy of the agents.

6. Conclusions and Future Work

The experiments show that recycling data is a good
idea when there is refuse data and that the proposed
techniques are able to detect whether there is data
to be refused, which data is it, and which agents can
profit from them. Moreover, the process is completely
decentralized in the sense that although some infor-
mation is exchanged the decisions are all made indi-
vidually by the concerned agents. The bias we intro-
duced in the experiments is simply a way to control the
amount of “refuse” we are dealing with in those experi-
ments. In a more real scenario the amount of bias each
agent has would certainly be different but the behav-
ior of RCS would also be similar (some agents would
refuse less data than others). We know this is the
case because in the perfectly uniform (unbiased) sce-
nario RCS detects that less refuse exists, leaving the
behavior of the systems practically without apprecia-
ble change. Thus, RCS is able to detect and recycle
refuse when it exists (and in the measure in which it
exists) and is also able to detect when no such refuse
exists in appreciable quantities avoiding any degrada-
tion of performance that would be caused by forcing
unnecessary recycling.

We can conclude that RCS is a step forward in the di-
rection of achieving a general process for the redistri-
bution of data with the goal of achieving the ensemble
effect in a distributed data scenario. As future work,

we intend to continue investigating how to improve
multi-agent learning by decentralized redistribution of
data based on individual agents decision making and
shared interaction protocols. A way to improve our
current approach is, in addition to recycling refuse
data, learn how to increase the data redundancy with-
out increasing the error correlation among the agents
(that will help in certain domains like the soybean data
set). The experiments we have presented have zero re-
dundancy, i.e. there are not duplicated cases among
the agents. If redundancy increases too much, error
correlation also increases; however duplicating selected
cases (as is done in bagging) increases accuracy be-
cause the influence of cases are equalized (Grandvalet,
2004). Such a general process would insure that a a
collection of distributed data sets belonging to differ-
ent agents can redistribute the data and achieve the
maximum benefits of the ensemble effect.

References

Arcos, J. L. (2003). Innovation awareness in case-based
reasoning systems. ICCBR 2005 Workshop Proceed-
ings (pp. 97-104). NTNU.

Bay, S. D. (1998). Combining nearest neighbor clas-
sifiers through multiple feature subsets. Proc. 15th
International Conf. on Machine Learning (pp. 37—
45). Morgan Kaufmann, San Francisco, CA.

Breiman, L. (1996). Bagging predictors. Machine

Learning, 24, 123-140.

Grandvalet, Y. (2004). Bagging equalizes influence.
Machine Learning, 55, 251-270.

Ontanién, S., & Plaza, E. (2001). Learning when to
collaborate among learning agents. 12th European
Conference on Machine Learning.

Ontandn, S., & Plaza, E. (2004a). Justification-based
case retention. Furopean Conference on Case Based
Reasoning (ECCBR 2004) (pp. 346-360). Springer-
Verlag.

Ontanén, S., & Plaza, E. (2004b). Justification-based
selection of training examples for case base reduc-
tion. Machine Learning: ECML 2004 (pp. 310-321).
Springer-Verlag.

Smyth, B. (1996). The utility problem analysed: A
case-based reasoning persepctive. In Third european
workshop on case-based reasoning ewcbr-96, Lecture
Notes in Artificial Intelligence, 234-248. Springer
Verlag.

