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Abstract

In this paper we describe a new method
to reduce the complexity of support vector
machines by reducing the number of neces-
sary support vectors included in their solu-
tions. The reduction process iteratively se-
lects two nearest support vectors belonging to
the same class and replaces them by a newly
constructed vector. Through the analysis of
relation between vectors in the input and fea-
ture spaces, we present the construction of
new vectors that requires to find the unique
maximum point of a one-variable function on
the interval (0,1), not to minimize a func-
tion of many variables with local minimums
in former reduced set methods. Experimental
results on real life datasets show that the pro-
posed method is effective in reducing number
of support vectors and preserving machine’s
generalization performance.

1. Introduction

Support Vector Machines (SVMs) (Vapnik, 1995; Cris-
tianini & Shawe-Taylor, 2000) have been found to be
very robust in many applications, such as optical char-
acter recognition (LeCun et al., 1995; Liu et al., 2003),
text categorization (Joachims, 1998), face detection in
images (Osuna et al., 1997). The high generalization
ability of SVMs is ensured by special properties of the
optimal hyperplane that maximizes the distance from
it to the training patterns in a high dimensional fea-
ture space (Cortes & Vapnik, 1995; Boser et al., 1992;
Vapnik, 1995). However SVMs are considerably slower
in the test phase than other learning methods like de-
cision trees or neural networks (Burges, 1996; Burges,
1998; Burges & Schoelkopf, 1997; LeCun et al., 1995;
Liu et al., 2003).
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The solution of a SVM is parameterized by a set of
input vectors called support vectors (SVs) and their
corresponding weights. When a new test example is
introduced, SVMs compare it with these SVs via ker-
nel calculations; this computation becomes very ex-
pensive if the number of SVs is large. To reduce this
computational complexity, reduced set methods, e.g.,
(Burges, 1996; Schoelkopf & Smola, 2002), try to ap-
proximate the original SVM by another comprised by
a much smaller number of newly constructed vectors,
called the reduced vectors set. The former methods
described in (Burges, 1996; Schoelkopf et al., 1999;
Schoelkopf & Smola, 2002) start from approximating
the solution comprised by all original SVs by only one
new vector, and then incrementally construct the re-
duced set by finding vectors that minimize the differ-
ences between the original vector expansion and the
reduced set expansion in feature space. This approach
leads to the construction of each new vector required
to solve an unconstrained optimization problem in a
space of d+1 variables, where d is the dimension of the
input space. Hence the computation is very expensive
because the search must be repeated many times with
different initial points to escape from local minimums
(Burges, 1996; Mika et al., 1999; Schoelkopf et al.,
1999).

In this paper we describe a bottom-up method to sim-
plify support vector solutions in which the construc-
tion of new vectors only requires to find the unique
maximum point of a one-variable function on (0,1).
Instead of constructing the reduced vectors set incre-
mentally, the two nearest SVs belonging to the same
class will be iteratively considered and replaced by a
newly constructed vector. This approach leads to a
conceptually simpler and computationally less expen-
sive method, the local extremum problem does not
exist, and it also makes the vectors in the simplified
solution look more meaningful (e.g. character-like in
OCR applications). Experimental results on real life
datasets show the effectiveness of our proposed method
in reducing the number of support vectors and preserv-
ing generalization performance. On the US Postal Ser-
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vice (USPS) handwritten digit recognition database, a
91.3% (for polynomial kernel) and 90.0% (for Gaussian
kernel) reduction rate can be achieved, with a corre-
sponding 0.2% and 0.3% loss in predictive accuracy.
On the MNIST database, the numbers are 88.6% re-
duction rate and 0.1% loss in accuracy. The reduction
rates on other four datasets in the StatLog collection
are from 70.9% to 94.5% with almost no change in
performance.

The remainder of this paper is organized as follows.
We briefly describe the SVM simplification problem
and review the earlier reduced set methods in section
2. In section 3 we describe our proposed method that
constructs a new vector to replace two other support
vectors, and the iterative process to simplify support
vector solutions. Experiments are described in section
4. Section 5 discusses the results.

2. Reduced Support Vector Machines
2.1. Support Vector Machines

SVMs work in feature space indirectly via a kernel
function K (x,y) = ®(z) - ®(y) where ® : R? — F is a
map from the d-dimensional input space to a possibly
high-dimensional feature space (Vapnik, 1995). For a
two-class classification problem, the decision rule takes
the form

Ns
y = sign (Z a; K (z,x;) + b) (1)

where «; are weights of support vectors x;, x is the in-
put vector needed to classify, K(z,z;) = ®(x) - ®(x;)
is a kernel function calculating the dot product of
two vectors ®(z) and ®(x;) in the feature space, b
is the bias, and Ng is the number of support vectors.
The task of the SVMs training process is to deter-
mine all the parameters (x;, a;, b, Ng); the resulting
x;, © = 1...Ng are a subset of the training set and are
called support vectors.

2.2. Reduced Set Methods

The reduced set methods try to approximate the nor-
mal vector ¥ of the separating hyperplane

Ns
U= Zoz,@(xi) (2)

expanded in images of input vectors z; € R?, a; € R,
by a reduced set expansion

Nz
v = Zﬁiq’(zi) (3)

with N; < Ng, z € R?, 8; € R. To classify a new
test point z, calculation (1) is replaced by

Nz
Yy = sign (Z GiK(z,2;) + b) (4)
i=1

The goal of the reduced set methods is to choose the
smallest number Nz < Ng, and the corresponding re-
duced set {(zi, 3i)};—; .y, such that any resulting loss
in generation performance remains acceptable.

The method described in (Burges, 1996) starts by re-
placing the original expansion ¥ with the image of one
input vector and its corresponding weight (21, 81), and
then iteratively finds (241, Om+1) so that their im-
ages approximate the complement vectors ¥, (¥ =

v)
Ng m
U= iz = 3 8,0(2) (5)
i=1 j=1

Because in many situations it is impossible to find ex-
actly the z,, and 3, that make ¥,, = 0, (e.g. the
chosen kernel is a Gaussian RBF), z,, are pre-images
that minimize

p =Tt = B ®(zm)|? (6)

In general, an unconstrained optimization technique
is used to find the minimum of p. For a particular
kind of kernel K (z,y) = K(||lz — y||°) the fixed-point
iteration method can be used to improve the speed
of the finding (Schoelkopf et al., 1999; Schoelkopf &
Smola, 2002).

The drawback of the above methods is that they
may suffer from numerical instability and get trapped
in a local minimum of function p; to prevent this
circumstance, the finding for each new vector must
be repeated many times with different initial values
(Burges, 1996; Mika et al., 1999). In the next section
we describe a simpler and more efficient method for
simplifying support vector solutions.

3. The Bottom-up Method

3.1. Simplification of Two Support Vectors

The solution of SVMs can be analyzed from a mechan-
ical point of view: if each image of support vectors ex-
erts a force F; = o; ¥ on the decision hyperplane, then
the SVMs solution satisfies the conditions of equilib-
rium: the sum of the forces and the torque all van-
ish (¥ is the unit vector in the direction W)(Burges,
1998). In an equilibrium system, if we replace two
member forces by an equivalent one, then the equilib-
rium state of the system will not change. In a SVM
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solution, if we replace two images ®(z;) and ®(z;) of
two support vectors belonging to the same class x;
and z; by a vector M = m®(x;) + (1 — m)®(x;),
where m = «;/(oy; + «;) and weight vector M by
O = (@i+a;), then for any point « in the input space,
calculation (1) can be computed through (Ng—1) vec-
tors:

Ng

Yy = sign Z

k=1,k#i,k#j

apK(x,x) + M - O(x) + b

(7)
The difficulty is that M can not be used directly; we
must use its pre-image, and in many situations, we
cannot find the exact pre-image of M. This problem
was addressed in (Schoelkopf & Smola, 2002; Kwok
& Tsang, 2003) as the pre-image problem in kernel
methods.

Rather than trying to find the exact pre-image, we
will approximate M by the image ®(z) of some input
vector z. The optimal approximation can be made if
we choose a vector z that gives a minimum value of
|[M — ®(z)||?, or in other words, we have to solve the
optimization problem:

min|[|M — &(2)| (8)

The following propositions will give us the way to find
vector z efficiently. All that is required is to find the
unique maximum point of a one-variable function on
(0,1). The coefficient of z then can be calculated ana-
lytically.

Proposition 1 For Gaussian RBF kernels K(x,y) =

2 ) e
exp(—v ||z — y||”), the 2-norm optimal approximation
of M = m®(z;) + (1 — m)®(z;), m = a;/(0y + o),
aja; > 0, is the image of input vector z determined by

z="kx; + (1 —k)z, (9)
where k is the maximum point of
F(k)y =mCI™™" 4 (1 —m)cl (10)
with Cij == K(l’i7l’j)
Proof: For Gaussian RBF kernels, ® maps each in-
put vector onto the surface of the unit hypersphere in
the feature space, so we have ||®(z)|| = 1 for every z,

|[M]| is a constant and can be calculated via ®(z;) and
®(z;). (8) is equivalent to

max M - (z) (11)
For the extremum, we have 0 = V(M - &(z)).

To get the gradient in terms of K, we substi-
tute M = m®(z;) + (1 — m)®(x;) and K(z,y) =

Figure 1. f(k) = me;7k>2 + (1 - m)ijQ with m =

0.4,C;; =0.7.

exp(—v ||z — y||) to get the sufficient condition
0 = V., (M- 2(2))
= 2mexp(— [lo; — 2||*)(z; — 2)
+2(1 = m) exp(—7 ;= 2I|*)(; - 2) (12)

leading to

2
_.cagexp(—yl|les — 2|7 )Ts
o Segen(ale =P

2
Zs:i,j as exp(—[lzs — 2[|)

or
z=kx;+ (1 —k)z; (14)

where

o exp(— ||l — z*)
k= 5 (15)
Zs:m‘ as exp(—y[lzs — 2[|)

Because oja; > 0 (or z; and x; belong to the same
positive or negative class) then 0 < k£ < 1. (14) means
that z always lies on the segment connecting x; and
x;. To ease the finding of z we define f(k) = M - ®(z)
and search for the maximum point of f(k)

f(k)

M- ®(2)
= M- O(kx;+ (1-k)z;)
= mexp(—7 |z — 2" (1 - k)°)
+(1 —m) exp(—y [|z; — ;] k)
- (1-k)* k?
= mCy; + (1 —m)C; (16)

where C;; = exp(—7y||z; — xsz) = K(z;,x;)

f(k) is a one-variable function and has a unique max-
imum point on (0,1) (as illustrated in Figure 1). The
maximum point can be easily reached using common
univariate parameter optimization methods. In our ex-
periments, the inverse parabolic interpolation method
(Press et al., 2002) was used with three starting points
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k =0,k =m and k = 1, and the optimization process
converges quickly after several iterations (if m = 1/2
then £k = m = 1/2 is exactly the maximum point of

f(F)).

Proposition 2 For polynomial kernels K(x,y) =
(z - y)P, the 2-norm optimal approximation of M =
m®(x;) + (1 —m)®(z;), m = o;/(0s + ), a5 > 0,
is the image of input vector z determined by

et
E

(17)

where z* = kx;+(1—k)z; and k is the mazimum point

of h(k)

h(k) = [|M ]| u(k)v(k), (18)
where
u(k) = L
(222 + 22 - k(1 — k) + 22(1 — k:)z]p/2
(19)
v(k) = m ik + (2 25)(1 - k:)]p

+H(1=m) [(zi-z)k+23(1 - k)]° (20)

Proof: For polynomial kernels, & maps each input
vector x lying on the surface of a hypersphere of radius
r (]|z]| = r) onto the surface of a hypersphere of radius
7P in the feature space ((r? + 1)? for inhomogeneous
kernel K(z,y) = (z -y + 1)P). To approximate M by
®(z) we can constrain ®(z) to lay on the surface of the
same hypersphere with M in feature space without any
lost in generality. This is equivalent to constraining
z to lie on the surface of the hypersphere of radius
HM||1/p in the input space, and (8) becomes

max M - ®(z) (21)
subject to
2] = | MM (22)

The following lemma shows that the (vector) solution
of (21), z;, and x; are linearly dependent

Lemma 1 The input vector z that mazimizes M -®(z)
in (21) is linearly dependent with z; and x;.

Proof: Replace M = m®(x;)+(1—m)®(z,) into (21)
we have
M-®(z) = (m®(z;) + (1 —m)®(z;)) - &(2)
= m(z;-2)’ + (1 —m)(z; - 2)P (23)

Figure 2. Projection of vector z on the plane (x;,z;) in the
input space.

Suppose that z is an input vector satisfying constraint
(22) and z; is the orthogonal projection of z on the
plane determined by z; and x; (as described in Figure
2). Let’s consider input vector z’

P o)

 lall

We have: 2’ satisfies constraint (22) and z;- 2" > x; - 2,
xj -2 >xj-z, o0 M-®(2') > M- ®(z). This means
that the optimal vector z,p; for maximizing M - ®(z)
lies on the plane (z;, ), Or Zop¢ is linearly dependent
with z; and x;.

Because the solution of (21), called zp, lies on the
plane (x;, z;) and ||zopt|| = ||M||1/p7 there exits a vec-
tor z* and a scalar k such that

2" =kx; + (1 — k)z; (25)
and 1
M,
Zopt — - (26)
Y 2l

Call g(z) = M - ®(z), we have

9(zopt) = M- P(zop1)
= m(Ti - Zopt)” + (1 —m)(x; - 2opt)’
= m(l|zill [|zoptll cos(w:, zopt))*
+( =m)(llz;l [|zopt || cos(z;, zopt))”
* p
xX; -z
= Beol? [mlll? (25 )
* p
Tz
=) ol (2 ) ]
RN E R
_ Hzopth C_x\p _ L *\P
(27)
Because z,,; satisfies (22) then |zop|” = || M||. Re-
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placing z* = kz; + (1 — k)x; into (27) leads to
h(k) = [|M]| u(k)v(k) (28)

where u(k) and v(k) are defined in (19) and (20).

h(k) is also an one-variable function and has unique
maximum point on (0, 1) (corresponding to the unique
vector 2z’ in (24)). This means that the finding of
each new vector in the reduced set is much easier and
cheaper than that in former methods (in the space of
d + 1 variables with local minimums).

Proposition 3 The optimal coefficient 8 for approz-
imating oM = ; ®(z;) + o;O(z;) by BP(2) is

amM - D(2)

T

(29)

Proof: Once we replace x; and x; by z, or approx-
imate M by ®(z) in the feature space, the difference
between two solutions will be, for every input vector x

d(B) |am M - () — O(2) - ()]

(M — 5P(2)) - ®(x)] (30)

The difference will be minimized when d(3) gets the
minimum value. In (30) d(8) can be minimized by
minimizing dq1(8) = ||amM — 8P(2)|. Because dq ()
is a quadratic function of 3, its minimum point is at

amM - D(2)

T

(31)

Equation (29) is used to find the coefficient for one
newly constructed vector. For the whole reduced vec-
tors set, the following proposition is used to recompute
all the coefficients to get a better approximation.

Proposition 4 ((Schoelkopf et al., 1999)) The
optimal coefficients 8 = (B1, ..., On,) for approximat-
ing W= 315 05®(x:) by W = 0% B;8(z) (for
linearly independent ®(z1), ..., ®(z2n,)) are given by

8= (K) 'K*"a (32)
where K7, = ®(z;) - ®(z;) and K = ®(2;) - ®(z;)

As mentioned in (Schoelkopf et al., 1999), (32) always
gives the optimal coefficients to get a solution that is at
least as good as the original one. In our experiments,
(32) was used to recompute the final coefficients of all
vectors in the reduced set after the iterative simplifi-
cation process finished.

3.2. Simplification of Support Vector Solution

The simplification procedure iteratively replaces two
support vectors (including newly created vectors) x;
and x; by a new vector z using the method described
in section 3.1. This process can be viewed as a bottom-
up hierarchical clustering procedure, and there are two
problems we have to take into consideration. First,
how to select a good pair of support vectors to simplify,
and second, when the simplification process will stop.

3.2.1. SELECTION HEURISTIC

In general, a pair of two support vectors that gives a
minimum value of d(8) in (30) will produce the min-
imum difference between two solutions (solutions at
two consecutive steps). However, the cost of using this
criterion is rather expensive because we have to try
all possible pairs of support vectors and then evaluate
(30) for each of them. Moreover, we are more con-
cerned about the original solution and the final one,
so the strictly good approximation of the solutions at
every intermediate steps is not necessary. The alter-
native heuristic is based on the difference between two
vectors M = m®(x;) + (1 — m)®(z;) and ®(z) in (8).
For Gaussian RBF kernels, we can select x; and x;
that give a maximum value of C;; = K(z;,z;) in (10)
because the bigger the Cj;, the bigger the maximum
value of f(k), or smaller difference between M and
®(z) (f(k) = 1 gives zero difference). This is equiva-
lent to selecting two closest support vectors belonging
to the same positive or negative class. Another inter-
pretation for this selection heuristic is that we will try
to approximate two Gaussian RBFs by one Gaussian
RBF, and intuitively, the closer pair centers, the better
approximation. This selection heuristic also be reason-
ably applied to polynomial kernels because the input
vector z that maximizes M - ®(z) in (23) is linearly
dependent with z; and x; and the closer two vectors
x; and x; (or smaller angle between two vectors z;
and z;) will give a bigger maximum value of M - ®(z)
(given fixed values of m, ||z;||, and ||z||).

3.2.2. STOPPING CONDITION

The simplified solution is mostly different from the
original one, so the simplification of support vector
solutions will possibly cause a degradation in general-
ization performance. In the formed methods there is
no specific way to manage this possibility (DeCoste &
Mazzoni, 2003); instead, the size of the reduced set is
first specified, and the resulting accuracy loss is deter-
mined experimentally (Burges, 1996).

To control this circumstance, we can monitor the dif-
ference between the two solutions caused by the sim-
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plification process, and the simplification process will
stop when any replacement of two SVs by a new one
makes the difference exceed a given threshold. In
the following we define a quantity called Mazimum
Marginal Difference (MMD) to estimate the difference
between two support vector solutions.

Definition 1 Suppose that the distance from a point
®(x) to the original optimal hyperplane is d (d is 1
when x is a non-bounded support vector), and to the
new hyperplane determined by the simplified solution is
d'. The Marginal Difference (MD) on ®(x) regarding
to the two solutions is

MD(®(z)) < |d— (33)

and the difference between two solutions is defined as

MMD Y max MD(®(x;)) (34)

1=1...Ng

where x1,...,TNg are original support vectors.

The MMD uses the differences between two distances
from the image of the original support vectors to the
two discriminant hyperplanes to estimate the differ-
ence between two support vector solutions. The rea-
son for not using the difference between two normal
vectors of the two hyperplanes ||¥ — ¥'|| is that this
quantity depends too much on ||¥|| and ||¥’||. For
complicated problems (||| is large), a small differ-
ence between two hyperplanes may cause a big differ-
ence ||U — ¥’||, while for easy cases, a small ||U — ¥’||
corresponds to a big difference between hyperplanes,
so there is a big difference between the two solu-
tions. One note on the implementation of calculat-
ing MD(®(x;)) is that whenever two support vectors
(v1,0q) and (vg, ag) are replaced by a vector (v, @), the
marginal difference on ®(x;) will change an amount of
a1 K (v1, ;) + 0o K (ve, ;) — aK (v, z;)(ref. (7)); there-
fore, during the simplification process the marginal dif-
ferences on the original support vectors can be calcu-
lated accumulatively using only three vectors.

3.3. Pursuing a Better Approximation

A better approximate solution can be achieved by ap-
plying the unconstrained optimization process to min-
imize F' = ||¥ — ¥'|| with respect to all z; and 3; to-
gether (phase 2 in (Burges, 1996)). In spite of high cost
(working in a space of (d + 1)Ny variables), we also
found that this process can bring an effective reduction
in the objective function F', or effective improvement
of the simplified solution.

4. Experiments

To assess its effectiveness on real world applications,
we first used the proposed method to simplify ten bi-
nary classifiers trained to distinguish one digit from
others in the US Postal Service (USPS) handwritten
digit recognition database !. The dataset contains nor-
malized grayscale images of handwritten digits taken
from US zip codes; the size of each image is 16x16
pixels, and the data set is divided into a training set
of 7,291 images and a test set of 2,007 images. For
each binary classifier (using the one-versus-rest strat-
egy) trained by a Gaussian RBF kernel or by a poly-
nomial kernel, different values of MMD were used to
give a different reduction rate in number of SVs as well
as different levels of the loss in generalization perfor-
mance. The results are reported in Table 1. The first
column displays different values of threshold M M D
(MMD = 0.0 for original machines). The second col-
umn displays the total number of SVs in all ten binary
classifiers. There are two kinds of errors. The first,
named "Phase 1 Err.”, were produced by the simplified
classifiers using the simplification process described in
section 3.2 (phase 1), and the second, named ”Phase
2 Err.”, were produced by those using the optimiza-
tion process described in 3.3 (phase 2) after phase 1
finished. For both kernels we could reduce more than
90% of SVs with only a minor loss in generalization
performance.

Note that the achieved reduction rate depends on the
7 complexity” of the solution, or the difficulty of the
problem. To judge this argument we conducted exper-
iments on five other datasets: the MNIST database
of handwritten digits 2, four datasets DNA, Letter
Recognition, Satimage, and Shuttle in the StatLog col-
lection 3. These datasets are summarized in Table 2.
Parameter settings for these datasets were polynomial
kernel of degree five for the MNIST, Gaussian ker-
nels with the width of ggpr7—— (Liu et al., 2003)
for the StatLog datasets; the parameter MM D was
fixed at 1.0. Experimental results in Table 2 show that
with almost no change in generalization performance
the achieved reduction rates could vary from 70.9% to
94.5% (corresponding to a speed-up rate from 3.4 to
18.2 times) depending on application.

5. Discussion

We have described a method to reduce the computa-
tional complexity of support vector machines by reduc-

! Available at http://www kernel-machines.org/
2 Available at http://yann.lecun.com/exdb/mnist/
3 Available at http://www.liacc.up.pt/ML/
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Table 1. Reduction in number of support vectors and the corresponding loss in generalization performance with different

values of MMD on the USPS dataset.

RBF MACHINES: gamma = 0.0078, C = 10 | POLYNOMIAL MACHINES: degree = 3, C = 10
MMD | # or SVs | PHASE 1 ERR. | PHASE 2 ERR. | # OF SVs | PHASE 1 ERR. | PHASE 2 ERR.
0.0 5041 88(4.4%) 88(4.4%) 4538 88(4.4%) 88(4.4%)
0.1 3476 85(4.2%) 88(4.4%) 3024 88(4.4%) 88(4.4%)
0.2 2588 88(4.4%) 87(4.3%) 2269 91(4.5%) 88(4.4%)
0.5 1285 91(4.5%) 90(4.5%) 1114 93(4.6%) 89(4.4%)
0.7 864 97(4.8%) 94(4.7%) 795 104(5.2%) 89(4.4%)
1.0 502 108(5.4%) 95(4.7%) 522 110(5.5%) 91(4.5%)
1.2 343 124(6.2%) 97(4.8%) 397 116(5.8%) 93(4.6%)
1.5 246 144(7.2%) 101(5.0%) 270 147(7.3%) 95(4.7%)
Table 2. Experimental results on various applications.
# OF SI1ZE ORIGINAL MACHINES SIMPLIFIED MACHINES
DATASET | DIMENSIONS | CLASSES | TRAIN TEST | # OF SVs | ERROR (%) | # OF SVs | ERROR (%)
MNIST 784 10 | 60,000 | 10,000 22,294 1.5 2,538 1.6
DNa 180 3 2,000 1,186 1,686 6.0 93 6.4
LETTER 16 26 | 15,000 5,000 10,284 5.0 2,993 5.2
SATIMAGE 34 6 4,435 2,000 2,494 10.9 354 10.9
SHUTTLE 9 9 | 43,500 | 14,500 1,131 0.2 124 0.2

ing number of support vectors comprised in their solu-
tion. Our method has several advantages compared to
earlier reduced set methods. Firstly, the reduced vec-
tors are constructed in a more "natural” way, leading
to a more "meaningful” reduced set. Each vector in
the reduced set could be considered as representative
of several closed original SVs belonging to the same
class. In Figure 3 we display the whole reduced vec-
tor set of 10 simplified classifiers. Each reduced vec-
tor is constructed from the same positive or negative
closed original SVs, so the original shape of these SVs
is preserved. This is quite different from the former
reduced set methods that construct each new vector
from all original and newly constructed SVs. From
Figure 3 we can also see that different machine re-
quires a different number of reduced SVs. For exam-
ple, the machine distinguishing character ’1’ from the
other consists of only 6 SVs, while this number is 43
SVs for machine '8’. This indicates that it is unrea-
sonable to decide the same number of reduced SVs for
all machines. The second difference lies in the unique-
ness of the result in finding the reduced set. With our
proposed method, each reduced vector corresponds to
the unique maximum point of a one-variable function
on (0,1), and the result of the finding (for both two
phases) is unique because we start from the same ini-
tial point and use the same search strategy. All the re-
sults described in this paper can be reproduced easily

with a one-run test. Reproduction is difficult and very
expensive, if not impossible, for the former methods
because for each reduced vector they have to solve a
multivariate parameter optimization problem, and the
search has to restart many times with different initial
points. For the second phase optimization, as noted in
(Schoelkopf et al., 1999), the optimization also must
be restarted to make sure that the global minimum of
the cost function is actually found. The third advan-
tage is its competitive SVs reduction rate while pre-
serving well machine’s performance. Experiments on
the USPS dataset show that a reduction rate of 90.0%
can be achieved with only a 0.3% loss in predictive
accuracy (Gaussian kernel, MM D = 1.0), and 91.3%
with a 0.2% lost (polynomial kernel, MMD = 1.2).
The corresponding numbers reported in (Schoelkopf
et al., 1999) are (for Gaussian kernel) 90% reduction
rate with 0.3% loss (we report the reduction rate, not
the number of SVs reduced because we did experi-
ments on non-processed datasets and the total number
of SVs were different).

The proposed method is applicable for common ker-
nels like Gaussian RBFs and polynomial, and for both
support vector classification and regression machines.
For a further speed-up, other approximation methods,
e.g., (DeCoste & Mazzoni, 2003), can be applied to-
gether with the reduced set methods to accelerate the
test phase of support vector machines.
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Figure 3. Display of vectors in the simplified solutions. The
original 10 classifiers trained with polynomial kernel of de-
gree three and the cost C' = 10 consist of 4538 SVs and
produce 88 errors (on 2007 testing data). The simplified
10 classifiers consist of 270 vectors and produce 95 errors.
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