The cross entropy method for classification

Shie Mannor

SHIEQECE.MCGILL.CA

Dept. of Electrical and Computer Engineering, McGill University, Montreal, Canada

Dori Peleg

DORIP@QTECHUNIX.TECHNION.AC.IL

Dept. of Electrical Engineering, Technion Institute of Technology, Haifa 32000, Israel

Reuven Rubinstein

IERRRO1QIE. TECHNION.AC.IL

Faculty of Industrial Engineering and Management, Technion Institute of Technology, Haifa 32000, Israel

Abstract

We consider support vector machines for bi-
nary classification. As opposed to most ap-
proaches we use the number of support vec-
tors (the “Lo norm”) as a regularizing term
instead of the L, or Ls norms. In order to
solve the optimization problem we use the
cross entropy method to search over the pos-
sible sets of support vectors. The algorithm
consists of solving a sequence of efficient lin-
ear programs. We report experiments where
our method produces generalization errors
that are similar to support vector machines,
while using a considerably smaller number of
support vectors.

1. Introduction

Many classification algorithms are focused on finding
a classifier which minimizes the sum of the training
error (or some related cost functional) and a complex-
ity penalty. The intuition is that a classifier which
is too complex might be tailored to the data and re-
sult in overfitting. The exact choice of a complex-
ity penalty is often motivated by generalization abil-
ities of the resulting classifier. However, this choice
is also restricted by guaranteeing that the optimiza-
tion problem is tractable. In Support Vector Ma-
chines (SVMs) one typically considers an Lo complex-
ity term (e.g., Cristianini & Shawe-Taylor, 2000; Vap-
nik, 1998), which can be justified in terms of minimiz-
ing the margin. This yields a quadratic optimization
problem which can be solved remarkably efficiently up
to a few thousand samples (see Platt, 1998; Keerthi
et al., 2001). The main problem with using the Lo

Appearing in Proceedings of the 22™% International Confer-
ence on Machine Learning, Bonn, Germany, 2005. Copy-
right 2005 by the author(s)/owner(s).

complexity term is that it does not encourage sparse
solutions. That is, the resulting classifier involves a
significant fraction of the training points. Moreover,
it was observed (e.g., Downs et al., 2001) that the
solution produced by SVMs can even be made more
sparse without changing the resulting classifier. Other
kernel-based methods (e.g., Scholkopf & Smola, 2002)
attempt to guarantee that the obtained classifier is
sparse using different ideas. Most notably, the v-SVM
formulation (Chang & Lin, 2002) attempts to control
the fraction of Support Vectors (SVs) by introducing
a parameter used to tradeoff the number of SVs with
the size of errors. Still, regularization is done using
Lo norm. In the context of classification, using the
Lq norm for regularization was used in Bradley and
Mangasarian (1998) and Zhu et al. (2003).

A classifier with a small number of SVs is termed
“sparse”. Such classifiers enjoy several merits. First,
sparse classifiers typically have better generalization
error (e.g., Floyd & Warmuth, 1995 and more re-
cently within the luckiness framework of Herbrich and
Williamson (2002) and via compression bounds of Her-
brich, 2002). Second, such classifiers are considered
more robust to noise in the data (in the context of
Ly classification see Zhu et al., 2003, for a discussion).
Third, the resulting classifier can be computed more
quickly on test data, as it involves less terms. Improv-
ing the complexity of classification (over the test data)
was considered Burges (1996); Burges and Scholkopf
(1997); Downs et al. (2001), who considered simpli-
fying a classifier obtained from solving an SVM. Typ-
ically, some SVs are discarded with little (or no, as
in Downs et al., 2001) effect on the resulting classifier.
Our approach is different. Instead of trying to simplify
a solution obtained from solving an SVM, we directly
solve an optimization problem aimed at producing a
sparse classifier.

In this paper we consider the classical soft SVM prob-

The cross entropy method for classification

lem, but regularize using the number of SVs (the so-
called Ly norm). As a result we obtain a discontin-
uous and non-convex optimization problem. We for-
mulate the problem as a search problem where one
looks for the set of SVs. We apply the Cross Entropy
(CE) method for efficiently searching for the set of
SVs. The CE method provides a sequence of candi-
date sets of SVs. For each such candidate set, find-
ing the weights of the SVs amounts to solving a rea-
sonably sized linear program provided that the size of
the candidate set is not too large. The CE method is
a state-of-the-art heuristic method for solving combi-
natorial optimization problems and continuous multi-
extremal problems (Rubinstein & Kroese., 2004). The
basic idea behind the CE method is to transform a
combinatorial optimization problem into a stochastic
optimization problem, and then solve the stochastic
optimization method adaptively. In many problems
of practical interest, such as the travelling salesperson
problem and the Max-cut problem, the CE method
was observed to quickly reach a solution close to op-
timal (for a discussion and examples, see Rubinstein
& Kroese., 2004). We note that it is not claimed that
the CE method is capable of solving every instance of
some NP-hard problem efficiently, but rather that it
typically performs well. For a convergence proof of the
CE method see Rubinstein and Kroese. (2004). We
will use the CE-method to search over possible subsets
of SVs.

We are concerned with the classical classification
setup, i.e., given a training set of pairs {x¥, y(i)}?zl,
where x(") € R? are input patterns and 3 € {-1,1}
are the corresponding labels, find a classifier f(x)
which will classify new patterns with as few errors as
possible. We are also given a kernel K : R x R — R.
For a vector o € R" let [Ja|lo = D7, 1{a, 0} denote
the “Lg norm” that counts how many elements are
not zero. The objective of this paper is to solve the
problem

minimize
subject to

oo+ Ol 6ix) ()

0<a<C(,

with variables & € R™ and b € R, and where the hinge
loss ¢ : R — R, is defined as ¢(z) =1 -z if 2 < 1,
and zero otherwise; C is a hyperparameter; and the
classifier f is defined by:

fx) = Z iy K (x;,%x) + b.
i—1

The reminder of the paper is organized as follows. In
Section 2 we review the CE method and provide the

essential details needed here. In Section 3 we describe
the classification algorithm based on the CE method.
In Section 4 we report experimental results with an
artificial data set and with several common data sets.
In Section 5 we discuss the results and offer some con-
clusions.

2. The Cross Entropy Method

In this section we recapitulate the principles of the
CE method. The reader is referred to Rubinstein and
Kroese. (2004); de-Boer et al. (2005) and references
therein for context, extensions, and applications. As
mentioned, the basic idea behind the CE method is
to transform the original (combinatorial) optimization
problem to an associated stochastic optimization prob-
lem, and then to tackle the stochastic problem effi-
ciently by an adaptive sampling algorithm. By doing
so one constructs a random sequence of solutions which
converges (probabilistically) to the optimal or at least
a reasonable solution. Once the associated stochastic
optimization is defined, the CE method alternates the
following two phases:

1. Generation of a sample of random data (trajecto-
ries, vectors, etc.) according to a specified random
mechanism.

2. Update of the parameters of the random mecha-
nism, on the basis of the data, in order to produce
a “better” sample in the next iteration.

We now present a proto-typical version of the CE
method. Suppose we wish to minimize some cost func-
tion S(z) over all z in some set Z. Let us denote the
minimum by v*, thus

* = mi . 2
7" = min 5(z) (2)
We randomize our deterministic problem by defining a
family of auxiliary pdfs {f(:;v),v € V} on Z and we
associate with Eq. (2) the following estimation prob-
lem for a given scalar ~:

Pu(S(Z) <v) = EBu [I{sz)<}] »

where w is some known (initial) parameter. We con-
sider the event “cost is low” to be the rare event
Iis(z)<~y of interest. To estimate this event, the CE
method generates a sequence of tuples {(9, v¢)}, that
converge (with high probability) to a small neighbor-
hood of the optimal tuple (v*,v*), where v* is the
solution of the program (2) and v* is a pdf that em-
phasizes values in Z with a low cost. We note that

The cross entropy method for classification

typically the optimal v* is degenerated as it concen-
trates on the optimal solution (or a small neighbor-
hood thereof). Let p denote the fraction of the best
samples used to find the threshold . The process that
is based on sampled data is termed the stochastic coun-
terpart since it is based on stochastic samples of data.
The number of samples in each stage of the stochas-
tic counterpart is denoted by N, which is a predefined
parameter. The following is a standard CE procedure
for minimization borrowed from de-Boer et al. (2005).
We initialize by setting vo = vg = u and choose a not
very small p, say 1072 < p. We then proceed itera-
tively as follows:

1. Adaptive updating of ;. For a fixed v;_1,
let v+ be a p100%-percentile of S(Z) under v;_;.
That is, ; satisfies Py, ,(S(Z) < 4:) > p and
]PVt71(S(Z) > ’775) > l—pwhere Z~ f(a Vt—l)- A
simple estimator 7; of 74 can be obtained by tak-
ing a random sample Z(), ..., Z(M) from the pdf
f(:;vi_1), calculating the performances S(Z(®))
for all ¢, ordering them from smallest to biggest
as S(l) < ... < S(N) and finally evaluating the
p100% sample percentile as 7, = S(1,n7)-

2. Adaptive updating of v;. For a fixed ~; and
vi_1, derive v; from the solution of the program

max D(v) = m‘iiX]EvtflI{S(Z)g%} log f(Z;v) .

(3)
The stochastic counterpart of (3) is as follows: for
fixed 7; and v;_1, derive v; from the following
program:

N

v

(4)

We note that if f belongs to the Natural Exponen-
tial Family (e.g., Gaussian, Bernoulli), then Eq. (4)
has a closed form solution (see de-Boer et al., 2005).
The CE optimization algorithm is summarized in Al-
gorithm 2.1. In this paper we will assume that f be-
longs to a Bernoulli family. In our case Z = {0,1}"
and v is an n dimensional vector of numbers between
0 and 1. The update formula of the kth element in v
(Eq. (4)) in this case simply becomes:

N
_ 2= lisaoy<an g0y

V¢ k)

N
D=1 Iszo)<aiy

This formula has the interpretation that it counts how
many times a value of 1 (in I{Z“Ll}) led to a signifi-
-

cant result (matches with the indicator I;g(zw)<3,});

how many times a value of 0 led to a significant result,
and normalize the value of the parameter accordingly.
Instead of the updating the parameter vector v di-
rectly via the solution of Eq. (4) we use the following
smoothed version

Vi =BV + (1= B)vio1, (5)

where v, is the parameter vector obtained from the
solution of (4), and f is a smoothing parameter, with
0.7 < f < 1. The reason for using the smoothed (5)
instead of the original updating rule is to smooth out
the values of v;, and to reduce the probability that
some component v;; of v, will be zeros or unities at
an early stage, and the algorithm will get stuck in a
local maxima. Note that for 0 < § < 1 we always
have that v;; > 0, while for 8 = 1 one might have
(even at the first iterations) that either 7,; = 0 or
Ut = 1 for some indices i. As a result, the algorithm
may converge to a wrong solution.

1
max D(v) = max - ;I{g(zu))gat} log f(Z';v) .

Algorithm 2.1 The CE Method for Stochas-
tic Optimization

1. Choose some V. Set t =1 (level counter).

2. Generate a sample ZW) ... Z(N) from the den-
sity f(+; vi—1) and compute the sample p100%-
percentile 7; of the sample scores.

3. Use the same sample Z(V), ... Z(N) and solve
the stochastic program (4). Denote the solu-
tion by Qt-

4. Apply (5) to smooth out the vector vy.

5. If for some t > d,say d=3, 9 =Fp_1 =+ =
~¢_q then stop; otherwise set t = t + 1 and
reiterate from step 2.

Figure 1. A proto-typical CE algorithm.

It is found empirically (Rubinstein & Kroese., 2004)
that the CE method is robust with respect to the
choice of its parameters N, p and (3, as long as p is
not too small, § < 1, and N is large enough. Typ-
ically those parameters satisfy that 0.01 < p < 0.1,
0.5 < 3 <0.9, and N > 3n, where n is the number
of parameters. Improvements of Algorithm 2.1 include
the Fully Adaptive CE (FACE) variant, where the pa-
rameters N and p are updated online. See de-Boer
et al. (2005) for more details.

3. The CE classifier algorithm

Problem (1) is a difficult non-convex discontinuous op-
timization problem due to the ‘zero norm’ of a. In

The cross entropy method for classification

order to circumvent the discontinuity we introduce a
vector of n binary variables o € {0,1}" and define
¥ = diag(oy,...,0,). We replace a with ¥é&, i.e., the
vector o multiplies the n dimensional vector & com-
ponentwise. Thus (1) is transformed to the problem

minimize ||Xé&ljo + C1T¢

subject to YV (KYX&+0b1)>1—¢
£>0 (6)
0<3¥a<C
o< {0,1}",

with variables &, o,b and £ € R™, where 1 is a vec-
tor of ones, K is the kernel matrix satisfying K;; =
K(xi,x%;), and Y = diag(y1,...,yn). Since any com-
ponent of a can be written as 1-& if « > 0 or 0- & if
a = 0 then problems (1) and (6) are equivalent.

The zero norm counts the number of non-zero elements
in a vector. Therefore |Eé|lo = Y1, 0; equals the
number of SVs (in practice & is never exactly zero).
Denote by & the vector of non-zero elements of vec-
tor ©é&. Denote K as the kernel matrix K without
the columns indicated by the zeros of o and Y as the
diagonal matrix of labels without the labels indicated
by the zeros of o. For a given vector o, the problem
(6) is reduced to:

minimize 17T¢
subject to Y (f(}}& + bl) >1-¢& (7)

0<a<C,

with variables &, &, b. Notice that the dimension of &
is equal to the number of SVs, ie., Y. | o;. This is
typically a much smaller number than the number of
training patterns n. Problem (7) is a Linear Program-
ming (LP) problem which can be solved with highly
efficient optimization algorithms. The number of vari-
ablesis (3°1" ; 0;)+n+1 and the number of constraints
is 2n+2 (3", 0;). Therefore the algorithm is affected
by the number of features only when the kernel matrix
is initially calculated. We propose to solve problem (1)
by using the CE algorithm for the combinatorial opti-
mization problem of selecting the set of SVs. We use
Bernoulli distribution for f(-;v), with the variable o
playing the role of z in the CE method. The objective
function is
Se)=1"e+C17¢,

where 1T ¢ was calculated by solving (7). We chose p =
0.03,8=0.7,d = 3, N = 5n, where n is the number of
training patterns. The values of parameters p, 3, d are
standard! and the value of N was determined via trial

"We found that the CE algorithm is not sensitive to

and error to be the lowest number which consistently
produces the same results as with a larger V.

Consider the following optimization problem, known
as the “one norm SVM”:

minimize 1Ta+C17¢

subject to YV (KYa+0b1)>1—¢ ()
£>0
0<ac<dC,

4

Problem (8) is an upper bound on the “zero norm”
problem (1). This approach was introduced by Smola
et al., (2000, pp. 141-142) and produces less sparse
solutions than those generated by the “zero norm”
problem. From a computational point of view, this
problem can be solved efficiently. In order to reduce
the complexity of our algorithm, we first run a one
norm SVM, and then only consider the SVs that were
computed by the one norm as potential SVs. It is rea-
sonable to assume that the majority of SVs of the zero
norm problem are SVs of the one-norm problem be-
cause these SVs are representative in some sense. A
similar approach was adopted in Burges and Scholkopf
(1997). Thus we suggest to use the solution of problem
(8) as an initial solution for problem (6).

Three modifications were made to the standard CE
algorithm:

1. The solution & of (7) may have nearly zero ele-
ments. To remove redundancy and to make the
term of number of SVs in the target function S(o)
slightly less rigid, we decided that if the value of
@j < 107° then the corresponding o; was set to
zZero.

2. In a CE iteration frequently identical o vec-
tors are generated (especially near convergence).
Given the same o, the solution of the convex prob-
lem (7) is identical. Thus computing (7) again is
superfluous. To avoid this redundancy we used a
cache for the results of (7). We note that caching
can be done in an extremely simple way. Each o
(a vector of ones and zeros) is assigned a binary
number corresponding to its value. The o’s are
sorted in ascending order. For each o problem (7)
is computed only if its value does not appear in
the (sorted) list of already computed values?.

3. Before the CE algorithm is executed the non SVs
of the solution of Problem (8) are excluded from

these parameters as long as they are chosen from the ranges
specified at the end of Section 2.

2 After the target function is calculated without redun-
dancy, the o vectors are sorted according to the value of
their target function as explained in (2.1).

The cross entropy method for classification

consideration as potential SVs. All the training
points (including the “removed” SVs) are still
taken into account when solving (7). Note that
this steps guarantees sparser solution than those
generated by Smola et al. (2000).

In summary, the training phase of the CE classifier al-
gorithm consists of solving typically several thousand
LP problems. We note that the number of variables
used by each LP is independent of the number of fea-
tures that only affects the computation of the kernel
matrix, which is performed once.

4. Experiments

The CE classifier algorithm was compared to the SVM
and the one-norm SVM (Smola et al., 2000) algorithms
on one synthetic dataset and five real world two class

problem datasets taken from the UCI repository (see
Table 1).

4.1. Synthetic data

The synthetic dataset was generated in the following
manner. The probability of y = 1 or —1 was equal.
Features x1, 2z were drawn as x|y ~ N (y1,A), with
the covariance matrix A = VDV7T and 1 a vector
of ones. The matrix D was diagonal with the values
1,2 and V a randomly generated unitary matrix. The
number of training patterns was 300 and the test set
consisted of 1000 patterns.

The linear kernel was used for all algorithms. The
value of hyperparameter C' for each algorithm was set
as the minimizer of the errors on the test set. The SVM
algorithm achieved 24.5% with 56.7% of the train-
ing patterns. The one-norm SVM algorithm achieved
24.5% with 0.667% of the training patterns. The CE
algorithm achieved 24.3% with 0.333% of the train-
ing patterns. Figures 2-4 illustrate the sparsity of the
one-norm SVM and CE algorithm in comparison to the
SVM algorithm. The class of each training pattern is
marked by a circle or a square. If the shape is full,
this means that the training pattern acts as a support
vector. Note that the CE algorithm utilizes only one
training pattern out of 300 for the best results.

4.2. Real-world data

Each dataset was divided ten times into a training set
of 150 patterns and a test set of the remaining pat-
terns. Three kernels were used:

1. Linear: K; ; = (x;,Xx;).

2. Polynomial of degree 5: K; ; = ({x;,x;) + 1)°.

Figure 2. SVM classifier for synthetic problem (56.7%
SVs).

Figure 3. One-norm SVM classifier for synthetic problem
(0.667% SVs).

Figure 4. CE classifier for synthetic problem (0.333% SVs).

3. Gaussian, or radial basis functions (RBF): K, ; =
exp(=((xi,x;)*)/ (20 pr))-

The cross entropy method for classification

For the linear and polynomial kernels the 5-fold cross
validation error was calculated for C' = A/(1 — \),
where A had values between 0.1 and 0.9 in increments
of 0.1. The RBF kernel is strongly dependant on its
hyperparameter ogpp. Therefore we set C' = 1 and
the 5-fold cross validation error was calculated for 9
linearly spaced values of ogpr between 1 and 5. Nine
values were used to match the number of hyperparame-
ter values for the other kernels. This particular range
of value of hyperparameter orpr was used because
we observed that typically for these datasets the kernel
matrix shifted from an almost unit matrix (cgppr = 1)
to a matrix of ones (crpp = 5).

The training features of all the datasets, algorithms
and kernels were preprocessed to have zero mean. In
the case of the linear kernel only zero mean preprocess-
ing was used. In the case of the polynomial kernel
all datasets but the first dataset were preprocessed to
have a unit variance (in addition to zero mean). In the
case of the Gaussian kernel for all but the first dataset
and only the SVM algorithm for the second and third
datasets the data were preprocessed to have a unit
variance (all datasets were preprocessed to have zero
mean). The test examples were processed accordingly.

Table 1. The real-world datasets. The value of hyperpa-
rameter C' was equal to A for the Bupa dataset to allow

convergence.
No. | Name Features | Patterns
1 Tonosphere 34 351
2 Pima 8 768
3 Wdbc 30 569
4 | Bupa 6 345
5 Sonar 60 208

The algorithms are compared by two criteria: the er-
ror rate and the number of Support Vectors (SVs). Re-
sults for linear kernel, polynomial kernel, and Gaussian
kernel are presented in Tables 2, 3, and 4, respec-
tively. The criteria was averaged over the partitions
into training and test sets.

The CE classifier produced error rates comparable
to the standard SVM algorithm. Yet it consistently
did so by using a significantly smaller percentage of
SVs. On average, across the real-world datasets, the
CE classifier used 29%, 70%,40% less SVs than the
one-norm algorithm with the linear, polynomial and
Gaussian kernels, respectively. It is interesting to note
that this behavior was observed for both a “local” ker-
nel (such as the RBF kernel) and a “global” kernel
(such as the linear kernel), indicating that this phe-
nomena cannot be attributed to the locality of the
kernel.

5. Discussion

In this paper we considered solving SVM type classifi-
cation problems with zero norm regularization. Since
the optimization problem is non-convex and even dis-
continuous we formulated it as a combinatorial opti-
mization problem and applied the CE method to solve
it. The suggested method was shown to be able to cope
well with several rather difficult problems. It produced
test errors that were statistically similar to SVMs with
Ly regularization. The main benefit of the method is
the sparsity of the solution which was significant in all
the instances we experienced with.

A natural question at this point would be why did we
employ the CE method and not some other heuristic
search method such as genetic algorithms or simulated
annealing for searching over the set of SVs. There are
two broad types of heuristic search methods. The first
type is based on having a proximity relation that fa-
cilitates efficient local search. Examples of this type
include simulated annealing (Aarts & Korst, 1989) and
guided local search (Voudouris & Tsang, 1999). The
second type includes global methods that are typically
based on iteratively creating collections of solutions,
improving the quality of the collection from iteration
to iteration. The first type of search algorithms is
not suitable for the zero-norm minimization problem
because the problem has many discontinuities, and al-
gorithms that are based on local search are likely to
get stuck. Algorithms that employ some penalty func-
tion on traversed areas (such as the guided local search
algorithm) are not likely to perform well since there
are many discontinuities leading to an overly compli-
cated penalty function. The CE method belongs to
the second type of algorithms. As opposed to other
algorithms of this type, such as genetic algorithms,
the CE method naturally fits the classification prob-
lem and is easy to use. The CE method does not
require tedious tweaking or definition of unnatural op-
erators as genetic algorithms do. Finally, similarly to
simulated annealing the CE method is guaranteed to
converge to the optimal solution in the large sample
limit. This provides some theoretical guarantees on
the performance of the algorithm.

The computational cost of running the CE based clas-
sifier is determined by the size of the LP problems and
by the available computational resources. Currently,
there are excellent and highly optimized LP solvers
that are readily available. In the problems we describe
above, a typical run of the CE method required solv-
ing a few thousand small linear programs, which can
be done rather efficiently. It is worth noting that the
CE classification algorithm is “embarrassingly paral-

The cross entropy method for classification

Table 2. The error and SV percentage (in parentheses) for the real-world datasets with a linear kernel. The number
after the 4 represents the standard deviation of either the error or the percentage of SVs. The lowest error and sparsest

solution for every dataset are in boldface.

No. SVM One-norm SVM CE
1 14.7+2.0 (36.4£8.9) | 13.0£1.8 (15.14+2.5) 14.6+1.8 (7.7+£2.6)
2 | 24.3%1.4 (51.2+6.2) | 24.6+1.1 (4.9+05) | 24.8+1.5 (3.9+1.2)
3 5.7+1.2 (10.1£2.5) 5.9+1.4 (4.841.1) 5.940.8 (3.7+1.4)
4 32.6+2.1 (71.94+3.8) 32.5+1.7 (4.0£0.0) 33.44+2.8 (3.14+0.6)
5 25.943.7 (53.7£7.9) | 25.5+4.7 (14.74£2.4) | 25.5+4.7 (10.3+1.9)

Table 3. The error and SV percentage for the real-world datasets with a polynomial kernel of degree 5.

No. SVM One-norm SVM CE
1 15.34£2.7 (36.1£3.7) | 13.742.6 (20.5+£8.4) | 12.5+1.3 (7.1+1.1)
2 33.2£1.5 (48.8i5.2) 30.6£1.8 (29.5i4.6) 30.2+2.4 (11.2i6.6)
3 6.0£2.1 (21.942.7) 8.54+2.8 (15.14+3.2) 5.6+1.3 (2.5+0.7)
4 33.7+5.2 (58.0i6.0) 36.3£2.2 (33.9i3.5) 37.94+4.4 (14.4i9.9)
5 15.944.7 (70.3+£1.7) | 20.3£7.0 (51.1£6.8) 23.3+5.3 (6.9+1.6)

Table 4. The error and SV percentage (in parentheses) for the real-world datasets with a Gaussian kernel and C' = 1.

No. SVM One-norm SVM CE
1 9.84£2.3 (76.3i2.2) 6.2+1.5 (19.3i3.1) 6.6+2.3 (14.1i2.6)
2 27.5+1.7 (67.945.1) | 25.2+3.0 (12.94+4.9) | 25.44+3.3 (8.5+1.7)
3 | 7.5%08 (42.4+£3.4) | 4.6+1.5 (14.4+£1.5) | 4.7+1.4 (9.7£1.2)
4 | 34.4+3.0 (93.4£1.6) | 36.94+3.9 (28.3+25.5) | 36.9+4.6 (10.4+4.3)
5 | 46.7+6.3 (100.0+£0.0) | 24.3+3.5 (41.74+6.2) | 24.5+3.7 (22.5+2.5)

lel” since the sampling method and calculation of the
score (solving the LP) can be efficiently divided across
processors. As a result, a speedup which is linear in
the number of available CPUs can be obtained.

We observed in experiments that using the CE method
as a second phase after running one norm SVM re-
sults in a sparser solution with a similar error. The
CE method can therefore be considered as a post-
processing phase, where classifiers that are obtained
using a “standard” method are being made sparser.
We expect that even greater gain would be obtained
for regression problems. For such problems, the frac-
tion of SVs that is typically obtained by kernel meth-
ods is large. The issue of using the CE method to
further sparsify regressors is left for future research.

The classification algorithm we suggested operates on
a single data set. In order to speed-up the compu-
tation for large data sets, it may be of interest to
use active set methods (see Mangasarian & Musicant,
2001 for consideration of active set methods in SVMs).
The idea is to partition the classification problem to
multiple smaller optimization problems. After each of
these problems is solved separately a global solution
is obtained by merging the solutions of the smaller

problems. This may be done, perhaps, by interleaving
activation of one norm SVMs with CE method type
iterations on different parts of the data set. This issue
is left for future research.

Acknowledgements

This research was partially supported by NSERC.

References

Aarts, E., & Korst, J. (1989). Simulated Annealing
and Boltzmann Machines. John Wiley & Sons.

Bradley, P. S., & Mangasarian, O. L. (1998). Feature
selection via concave minimization and support vec-
tor machines. Proceedings of the 15th International
Conference on Machine Learning (pp. 82-90).

Burges, C. J. C. (1996). Simplified support vector de-
cision rules. Proceedings of the 13th International
Conference on Machine Learning (pp. 71-77).

Burges, C. J. C., & Schélkopf, B. B. (1997). Improving
speed and accuracy of support vector learning ma-

The cross entropy method for classification

chines. Advances in Neural Information Processing

Systems, 9 (pp. 375 — 381).

Chang, C.-C., & Lin, C.-J. (2002). Training nu-
support vector regression: theory and algorithms.
Neural Computation, 14, 1959-1977.

Cristianini, N., & Shawe-Taylor, J. (2000). An In-
troduction to Support Vector Machines and Other
Kernel-Based Learning Methods. Cambridge, Eng-
land: Cambridge University Press.

de-Boer, P.; Kroese, D., Mannor, S., & Rubinstein,
R. (2005). A tutorial on the cross-entropy method.
Annals of Operations Research, 134, 19-67.

Downs, T., Gates, K., & Masters, A. (2001). Exact
simplification of support vector solutions. Journal
of Machine Learning Research, 2, 293-297.

Floyd, S., & Warmuth, M. (1995). Sample compres-
sion, learnability, and the Vapnik-Chervonenkis di-
mension. Machine Learning, 21, 269-304.

Herbrich, R. (2002). Learning kernel classifiers: The-
ory and algorithms. Boston: MIT Press.

Herbrich, R., & Williamson, R. C. (2002). Algorithmic
luckiness. Journal of Machine Learning Research, 3,
175-212.

Keerthi, S. S., Shevade, S. K., Bhattacharyya, C., &
Murthy, K. R. K. (2001). Improvements to platts
SMO algorithm for SVM classifier design. Neural
Computation, 13, 637 —649.

Mangasarian, O., & Musicant, D. (2001). Active
set support vector machine classification. Advances
in Neural Information Processing Systems, 13 (pp.
577-583).

Platt, J. (1998). Fast training of support vector ma-
chines using sequential minimal optimization. In
B. Scholkopf, C. Burges and A. Smola (Eds.), Ad-
vances in kernel methods - support vector learning.
MIT press.

Rubinstein, R., & Kroese., D. (2004). The cross-
entropy method: A unified approach to combinator-
ial optimization, Monte-Carlo simulation, and ma-
chine learning. Springer-Verlag.

Scholkopf, B., & Smola, A. J. (2002). Learning with
kernels. MIT Press.

Smola, A. J., Bartlett, P., Schokopf, B., & Schuur-
mans, D. (2000). Advances in large margin classi-
fiers. MIT Press.

Vapnik, V. N. (1998). Statistical Learning Theory.
New York: Wiley Interscience.

Voudouris, C., & Tsang, E. (1999). Guided local
search. FEuropean Journal of Operational Research,
113, 469-499.

Zhu, J., Rosset, S., Hastie, T., & Tibshirani, R.
(2003). 1-norm support vector machines. Advances
in Neural Information Processing Systems, 16.

