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Abstract In machine learning research (and practice), confidence
This paper is about constructing confidence bands around RO&ands rarely are drawn on ROC curves, and the field gener-
curves. We first introduce to the machine learning communityally is unaware of methods (introduced elsewhere) to pro-
three band-generating methods from the medical field, aaldiev duce such bands. There has been almost no research on

ate how well they perform. Such confidence bands represent thy, o eyaluation of confidence bands for ROC curves, and
region where the “true” ROC curve is expected to reside, with !

the designated confidence level. To assess the containrhent O résearch in a machine learning context (with the excep-
the bands we begin with a synthetic world where we know thetion of the workshop paper that we extend here (Macskassy
true ROC curve—specifically, where the class-conditionatlel & Provost 2004)f. We first introduce the machine learn-

scores are normally distributed. The only method that mdtai jng community to three existing methods from the medical

reasonable containment out-of-the-box produces nOmpErE, |iterature for estimating confidence bands on ROC curves.
fixed-width” bands (FWBs). Next we move to a context more We th h . fth band
appropriate for machine learning evaluations: bands tlitt av e then assess the containment of these bands.

certain confidence level will bound the performance of theleho . ; ; ;
on future data. We introduce a correction to account for them a machine-learning setting with real data, we do not

larger uncertainty, and the widened FWBs continue to hage re KNOW the true ROC curve for a particular learned model,
sonable containment. Finally, we assess the bandsiarla- ~ Which stymies evaluations of true-curve containment on
tively large benchmark data sets. We conclude by recommgndi real data. However, being accustomed to estimating ex-
;QterZ?:t'ii/\évaosr’ r%gég?n??égfr:i?]% Z?Sé?fsfavrvﬁgr'g mgysif;eﬁ%ec pectedfuture performance, it is natural to evaluate whether
tions (1) clearly are not normal, and (2)’even for the same sieit confidence bands properly contain the ROC curves pro-
vary substantially from learning method to learning method duced by a particular model on future data from the same
domain. For this we will need to adjust the true-curve

1. Introduction confidence bands to account for the added uncertainty in
Many machine leaming studies plot ROC curves to il-the composition of the future data. Furthermore, to gen-
lustrate the possible tradeoffs of true-positive and false €rate these “future-curve” confidence bands, we also must
positive rates that would be expected from a learned modefake into account the size of the data set used to generate
This paper addresses the problem of creating confidenc@e ROC curve, because this influences the variance of the
bands around such ROC curve€onfidence intervals gen- ROC curve (Macskassy & Provost, 2004). In sum, we want
erally are designed to contain (with probability- 5) the to generate a _future—curve band that with a probability of
expectation of a function being estimated. For ROC curved —9 Will contain the ROC curve traced by the model on a
this amounts to specifying a region of ROC space wherdUture data set containingexamples.

some ROC curve of interest is expected to lie. For examanother issue is whether the bands are created for a spe-
ple, given a scoring model and a domain of interest, rathegific, fixed model (perhaps a learned model), where varia-
than simply plotting an ROC curve for a particular sample,tion comes only from the test data, or whether we are in-
it may be more informative to show the region expected toterested in bounding the performance of a learning algo-
contain the “true” ROC curve—the ROC curve defined byrithm, given different training data sets and different tes
the model and the distribution generating the data. We willjata sets. While the latter problem is certainly important,
call these “true-curve” confidence bands. we concentrate here on the simpler, more tractable problem

We are not consideringointwiseconfidence bounds in this Of evaluating a fixed model.

paper. We discuss these elsewhere (Macskassy et al., 2005). mthe prior workshop paper, here we clarffy many

details of the various methods, evaluate true-curve comtait,
introduce adjusted curves for future-curve evaluatiorgluate

Appearing inProceedings of the2" International Conference  fyture-curve containment with a suite of real data sets cieratly
on Machine LearningBonn, Germany, 2005. Copyright 2005 by recommend one method.

the author(s)/owner(s).
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For ROC analysis, it is sufficient to represent a (learned) 0
model simply by the class-conditional score distributions Set Size| 0.20 0.15 0.10 0.05 0.01
it produces G and G~). We begin by adopting the > 35 1-_217 1-_\/154 1_\/271_2 1_?;?' 1_63

conventional assumption th&™ and G~ are normally
distributed, and assess the containment of the true-curvéable 1.Kolmogorov-Smirnov (KS) critical values for rejecting
bands. We show that one of the three methods, non#, for set sizes> 35.

parametric fixed-width bands (FWBSs), outperforms the

others. We next introduce an adjustment to Widen the 1 Simultanous Joint Region? Si:[nultanous Joint Regions with Bands

FWBs so that they are appropriate as future-curve bands, e

and demonstrate that the widened FWBs continue to have , °® os

reasonable containment. Finally, we assess the bantls on 2 o6 -~ £ o6

relatively large benchmark data sets. g 045 g 0l

We conclude by recommending FWBSs, noting that being =,/ " o

non-parametric they are especially attractive for machine v

learning studies, where the score distributions (1) gjearl % 62 04 06 08 1 % 6z 04 06 08 1
are not normal, and (2) even for the same data set vary sub- False Posiive False Posiive
stantially from learning method to learning method. Figure 1.Transforming SJR into confidence bands.

2. Confidence bands on ROC curves

Prior work in machine learning on creating confidence in-identify confidence intervals for TP and FP independently
tervals for ROC curves for the most part has created onekCa@mpbell, 1994). The KS statistic tests whether two sam-
dimensional, pointwise confidence intervals (cf. (Bragley P€s come from the same underlying distribution by con-
1997; Provost et al., 1998; Fawcett, 2003)), which are nopidering the maximal vertical distance in their respective
the focus of this paper. Many methods in the medical liter-€Stimated cumulapve_ de_nS|ty functions. Inour case, there
ature also generate pointwise intervals (cf. (Hilgers,1199 aré two relevant distributions we would like to test: for FP
Metz et al., 1998: Claeskens et al., 2003: Hall et al., 20042and TP. Thus, we can build a separate KS-based confidence

Zou et al., 1997)) and are not considered here either. Corpand for FP, which would translate to a maximum horizon-
necting pointwise intervals to form confidence bands is d@l distance allowed from the ROC curve, and a separate

mistake: due in part to problems of multiple comparisons @n€ for TP, which would translate to a maximum vertical
these bands generally will be too narrow. distance allowed. The KS test identifies these two distances

] ] based on the number of instances in each sampte-the
Medical researchers have examined the use of ROC curvefumber of positivesy:, and the number of negatives, To
extensively and have introduced techniques for creatingenerate these distances, we lookdupnde, the critical
confidence boundaries (pointwise intervals or bands). Wejistances for a fixed TP and FP respectively, at confidence

consider three methods for generating (“simultaneous” ofevel (1 —§)—Table 1 shows how these are calculated for
‘joint” (Ma & Hall, 1993)) confidence bands on ROC sufficiently large set sizes(35).

curves. Working-Hotelling bands (WHB) are based on the i .
Working-Hotelling hyperbolic confidence bands for simple The way confidence bands are generated using these re-
regression lines (Working & Hotelling, 1929)Simulta-  9ions is by generating a confidence region for each distinct
neous joint confidence regiofSJR) use the distribution POINt on the ROC curve constructed from the scored sam-
theory of Kolmogorov (Conover, 1980) to generate sepaP!€s inD. We trace the upper (lower) points of the confi-
rate confidence intervals for TP and FP rates (Campbelldeénce region to define the upper (lower) confidence band,
1994), and use these to form bands. Findiyed-width cropped to stay within ROC space. Figure 1 illustrates this
simultaneous confidence bands (FWB) are non-parametrigansformation.

confidence bands created by displacing the entire RO@ampbell (1994) argues that this procedure should give a
curve “northwest” and “southeast” a fixed amount (Camp-(1 — §)2 confidence band for the true ROC curve. As we
bell, 1994). FWBs require a set of ROC curves, whichyjj| see below, this is not the case, and in fact the proce-
can be generated by evaluating the model on multiple tesijyre typically gives an implied confidence that is even big-
ing sets or by resampling one test set. We resample witlyer than1 — . To understand this, we should clarify that
the bootstrap (Efron & Tibshirani, 1993), which also hasthe horizontal and vertical bands we are building are using
been used in machine learning as a robust way to evaluhe model scores as the independent variable characteriz-
ate expected performance, for example for evaluating cosing the distribution. Assume we build a separate box (fp

sensitive classifiers (Margineantu & Dietterich, 2000). + d, tp + €) around each point in our ROC curve, char-
acterized by a threshold on the continuous scores. Then
2.1. Simultaneous Joint Confidence Regions (SJR) the two independent KS bands imply that with probability

The simultaneous joint confidence region (SJR) uses thél —d)* every threshold on the population score distribu-

Kolmogorov-Smirnov (KS) (Conover, 1980) test statistic to tion would give a point in ROC space which falls within
the box characterized by this score value. This rather com-
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fixed Width Bands - displacerlwent N Fixed Width Bands - realized ||C|y available imp|ementati0n of the LABROC4 a|g0rithm
ST SO (Metz et al., 1998), which generates a “smooth” maximum
08 \\ 08 % likelihood (ML) estimation of an empirical ROC curve as
06 \\ osl /57 well as pointwise confidence bountlsThe method is too

oald complex to describe in detail here; we will give an intuitive

True Positive
True Positive

0.41\/ . . . .
™~ overview and the interested reader is referred to the aigin
02}, 0.2y / sources.
062 64 o6 o5 1 00 62 04 06 08 1 Previously, much work on generating ROC curves in the

False Positive False Positive medical literature dealt with ordinal decision categaries
Figure 2Displacing curve to generate FWB confidence bands. Notably estimating ROC curves using maximum likelihood
(ML) estimation based on an assumed parametric form for
the ROC curve. However, we are interested in continuous
decision scores (e.g., estimates of the probability ofsclas
membership). Metz et al. observed that ML estimation of
n ROC curve from continuous scores is equivalent to ML
stimation from ordinal scores if runs of positives/negsi
as well as equal-scored cases) in the rank-ordered data are
terpreted as ordinal categories. LABROC4 first groups
e data into such runs. Then assuming a binormal score
distribution it uses an ordinal (“rating method”) algorith
. ' (Dorfman & Alf, 1969) to fit a smooth ROC curve. Two
2.2. Fixed-Width Bands (FWB) different notions of binormality are taken by this appraach
To generatdixed-width band§FWB) we start by identi-  One, which we use later, is that the class-conditional score
fying a slopeb < 0, along which to displace the original distributionsG* and G~ are normally distributed. The
ROC curve (Campbell, 1994). The upper (lower) limit of second is that the ROC curve is a straight line using
the confidence band comprises each of the points of thenormal-deviate” axes—the so-called “probit” space; that
observed ROC curve displaced “northwest” (*southeast’)is, ®~1(T'P) = a + b®~1(F P), whered(-) represents the
of its original location along an intersecting line of this cumulative normal distribution function aril® and F P
slope. The resultant confidence band has a fixed widtfare the true- and false-positive rates. This straight line i
(along slopé) across the entire curve. Figure 2 illustrates probit space corresponds to a smooth curve in ROC space.

this transformation. . .

Ma and Hall (Ma & Hall, 1993) describe the construction
Following Campbell (1994), we sei = —./(m/n)  ofdifferent sorts of confidence bands for such ROC curves.
(Campbell discusses how this is an approximation to the=ollowing their line of reasoning, the LABROC4 program
ideal, which would be to use the ratio of the standard devigenerates pointwise confidence bounds via the ROC re-
ations of TP and FP), and we use the bootstrap to identifgression line in probit space, which is fit using maximum-
the distance to displace the curve to generate the confidengiRelihood estimation (MLE). Specifically, the bands are
bands. Given samplP, we generate bootstrap samgle  composed of points defined by the function
(sample fromD with replacement a set of the same size as
D) and calculate thenaximundistance along slopiefrom iz, k)=a—b-z+k-o(z), (1)
the ROC curve generated yto the ROC curve generated
by D. We need the maximum distance because this is thghere ; is a constant defined below, positive for the up-
width needed in order fo{t)* to be completely within the per band and negative for the lower bandis a probit-
band. We sampl¢000 D-+'s, and find the distance needed yansformed false-positive rate, andz) is the estimated

in order to kee —¢ of all the curves completely within the \arjance of the prediction at, using the standard linear
generated bands. In our experiments below we observe th?égression inference methodology.

the FWBs attain containments of curves that for small sam-

ple sizes are smaller than the desired confidence level. Thikhe constantstk are determined by the confidence level
probably exposes one of the weaknesses of the bootstrdp —¢) and the type of band being generated. To gen-
resampling methodology, when the sample from which weerate confidence bands, we use Ma and Hall's simultane-

are resampling is not large enough to contain the full rang@us unrestricted Working-Hotelling bands, whétgis de-
of diversity of the population. termined using a chi-square distribution with 2 degrees of
freedom:

2.3. Simultaneous Working-Hotelling Bands (WHB) ks = v/—21n(9) (2

FoIIo(\;vm? Ma ;ihndd If-IaII (.1993\3 algd MHEtf Iel_t alh (19§8|).’ *We acquired the LABROC4 FORTRAN source code from a
we adapt a method for using vworking-Hotelling hyperbolic public web-site and modified its 1/0 to work with our ROC analy
bands (Working & Hotelling, 1929) to generate simultane-sis toolkit. Our Java 1.5 toolkit will be released to the peibiter
ous confidence bands on an ROC curve. We use a pubhis year.

plicated “score containment” characterization is notipart

ularly useful for our case, since we are operating in (FP,
TP) space, and ignoring the scores. The interesting thin§
about it is that “score containment” guarantees the “curv

containment” we are interested in, but not the other Waj
around. Hence we would expect the real confidence Ieve'tE
to be higher thari1 —§)2.
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1. Build a synthetic world)V, consisting of two distribu-
Gaussian distribution [theta +/- 3.00] [auc 0.895] tions,G* andG ™~ with meang) and—6 respectively.
2. Fix a sampling size;, and sample fror) a confidence-

0.14 + generation setR, of sizer.
0.12 + e 1 3. Generatd1 — §) confidence bandg},, based onk as
01t outlined in Section 2.
g 0.08 Table 2.Generating ROC Bands from Synthetic World.
2 006
0.04 ¢ other words, were we to generate bands repeatedly from
0.02 ¢ randomly drawn samples frobV, 1—§ of the bands would
0 ——" A S— contain the “true” ROC curve, where the “true” ROC curve
-20-15-10 5 0 5 10 15 20 is the curve generated directly from the cdf’s (as above).

score(x) We generate the bands using the simple methodology out-
lined in Table 2, with three parameters: (1) the synthetic
world, which is defined byG+, G~, and P(+), (2) the
ROC-generation size, and (3) the confidence levél

Figure 3.Example distribution used in study below.

Gaussian Distribution ROCs for various thetas

4.1. Evaluation

To evaluate the bands, for each experiment we generate
1000 bands based on the method shown in Table 2, and
count how many of them contain the true ROC curve.
We fix 6 = 0.1 and examine the sensitivity of the con-
fidence calculations to the ROC-generation size,e
{25,100, 250, 1000, 2500, 10000} and the parameters of
the synthetic world. Ideally] —¢ of the calculated bands
would contain the “truth”.

True Positives

0.4 ) 1 4.2. Results

False Positives Figure 5 shows the containment for theband methods

Figure 4ROC curves generated for distribution as we vary for a subset of the values of(horizontal axis) and (dif-

ferent curves}. We see very clear trends and interactions
. between these two parameters for each method. SJR is uni-

3. Data Generation versally too wide, except for small valuesroandd. WHB

To evaluate the different confidence bands, we genétate Sseems to fail completely. This is due to the performance

andG~ as two normal distributions, only differing in their at small values of FP. By construction, the MLE curve fit-

parameters. Our synthetic worl¥ is defined by five pa- ting starts a(0, 0) regardless of the empirical curve. This

rameters: leads the WHBSs to fail for this region of the ROC curve.
If we modify the evaluation to start measuring containment
1. P(+), the probability that an instance is fra@; at FP > 0, then the containment of WHB increasebut
2. the two model parameters f6t": 6+ ando™; it never performs as well as FWB and it always performs

3. the two model parameters f6t—: §~ ando . considerably worse at higher valuesiof

i The FWBs clearly exhibit the best containment, close to
For the study below, we fid’(+) = 0.5, o™ = 3.75, 5 _ 1 inall cases, with two exceptions: very smaland
and o~ = 3.0, making G* *fatter” than G~ (fol- e combination of lowd (low AUC) and larger (where
lowing an observation of Bennett (2003), discussed bejyg sijll the best method of the three). Therefore, FWBs
low). We used a range of values 6f setting 6™ = seem to be the method of choice, with caution taken for

{(.)'75’ 1.00, 1.50, 2'007?"0.0’4:00’5'00}' ando™— = —0". very small samples or extreme AUCs. For the rest of the
Figure 3 shows the distributions with= £3.0. Figure 4 paper, we will examine only FWBs.

shows the resglting ROC_ curves for all valuesfpfgen-
erated by plotting the point&df;- (z), cdfe+ (2)), for 2 5 “Fyture-curve” Evaluation

ranging fromeo down to—oo. The smallep, the closer the As d ibed ab f hine-| : luati

true ROC curve will be to the random line & v); these ds ’telfcrl eth atove,R(c))rCmac meb— ?ar]?tmg heva ua |ﬁo_n_s V\f[e

choices of) yield a range of AUCs from.62 to 0.98. ont know the true curve, but often have sulncien
data to answer a slightly different question. If the model

4. “True-curve” Evaluation o “We chose this subset for readability and to highlight the
We expect the “true” ROC curve to fall completely within trends.

these bands with the specified probability (frequency)—in  SWe evaluate at starting values BfP = {0.01,0.05,0.10}
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SJR FWB WHB
' 1F T T T 1r
0.8+ 0.8+ 0.8+ expected
S S S theta +/- 0.75 -~
S 067 g 06 s 067 theta +/- 1.5
g , expected | e , expected g , theta +/- 3.0
g o4 theta +/- 0.75 ——— g 04 theta +/- 0.75 -~ § o4 theta +/- 5.0 —-——-
02l theta +/- 1.5 02! theta +/- 1.5 02l
) theta +/- 3.0 ) theta +/- 3.0 )
0t _ theta +/- 5.0 - 1 ot _ theta +/- 5.0 -———- ot ‘ e —
10 100 1000 10000 10 100 1000 10000 10 100 1000 10000

sample size (r)

sample size (r)

sample size (r)

Figure 5.Containment of “true-curve” bands &t= 0.1. We show the containments for various values.oAs we can see, only FWB
generates bands that are close to the expected containment.

Number of Absolute values of
Samplef).75 1.0 1.5 2.0 3.0 4.0 5.0
e ——— 25(0.86 0.91 0.96 0.83 0.76 0.69 0.86

e 100{0.94 0.88 0.96 0.95 0.95 0.88 0.86
250(0.93 0.93 0.96 0.89 0.93 0.92 0.93

1000{0.98 0.97 0.97 0.95 0.91 0.94 0.92
2500(0.97 0.95 0.95 0.92 0.96 0.94 0.92
10000|0.99 0.92 0.95 0.96 0.95 0.93 0.89

1000 samples

True Positive

] truth —— Table 3.Containments of FWB using calculated widthg at-§)
0.2 trutg;)%n?e _______________ and widen them by/2. As expected, these bands generally are
0 ‘ sample bapnd — slightly too wide (except at large values@br atr < 100).
0 0.2 0.4 0.6 0.8 1

(Raz), which with probability(1—¢) should lie within By,.

Assume that we have a correct true-curve fixed-width band
around Ry, calculated using the bootstrap approach or in
any other way, and denote the chosen width parameter by
w. This implies that the maximum distance between R
and Ry, in the chosen direction (slope/m/n, see Sec-
were to be used subsequently on the domain in question, #on 2.2) has probabilityl(— 4) of being smaller thano.
the resultant ROC curve likely to fall within the band? Denote this distance by d¢RRy,). The distance measure
for Ry and R/, d(Rr, Rys/), follows the same distribu-

To evaluate “future-curve” confidence bands, for each bangjon and is independent. Now;, if we assume tha} bés a
we generate 000 additional ROC curves, each basedion  Gaussian distribution, then it is easy to verify that:

samples fromV, and count how many were completely

contained by the band (whereis the same size as that P(d(Rr, Rar) + d(Rr, Ryv) < \/iw) =1-0.

used to generate the bands). Ideally,0 of the generated With non-Gaussian, but “reasonable” distributions, this
curves would fall within the bands. should still hold approximately. Sincé&(Rys, Ryr) <

L . (Rr, Ry) + d(Rr, Ryyv) we expect the resulting band
Not surprisingly, all the methods fail. Each places a ban(fo be a little too wide, but this could be offset somewhat by
about the observed curve. However, even if the method

are estimating the true variance correctly, future curvills w additional uncertainties not accounted for by our method-
be distributed about the true curve, not about the observe, logy, such as non-Gaussianity, change in the class propor-

curve. Figure 6 illustrates the problem. The variances ons (n, n) dictating the direction in whichv is chosen,

about the true and observed (sample) curves are very sim-

ilar. However, because the sample is so far off from theTable 3 shows the containments we get from applying this

true curve, the bands about it clearly are inappropriate fotechnique, using = 0.1. As suggested above, we see that

bounding the position of future curves. in general these bands are slightly too wide. Nevertheless,
. we have not yet found an approach that performs better,

5.1. Widening the band

either in terms of accuracy of containment or consistency.
One approach to addressing this problem is to widen the

bands. Let us consider the true ROC curvg)Rhe sample  9-2. Evaluation on Real Data
ROC curve (R;) from which we will calculate the bands Now we are equipped to assess the containment of ROC
(Bas) of width w, and an ROC curve sampled subsequentlyconfidence bands on real data, for which we do not know

False Positive

Figure 6.Variance problem with initial sampl&. Variance about
curves is correct, but the observed curve is off the trueecand
the estimated bands are therefore off the proper region.
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Data set Size Prior Number of Learning Method

Adult 48842  0.761 SamplesLMT NBTREE LR J48 NB|average
Bacteria 40262  0.693 25/0.81  0.79 0.84 0.88 0.87| 0.84
CalHous 20640 0.516 100/0.87  0.85 0.89 0.84 0.91| 0.87
Coding 20000  0.500 25010.88 0.87 0.89 0.82 0.92| 0.88
Covertype 495141 0.572 1000(0.89  0.87 0.92 0.77 0.95 0.88
Intcensor 18821  0.589 2500{0.89  0.88 0.94 0.69 0.94| 0.87
Intrusion 311025 0.805 10000{0.79  0.80 0.77 0.45 0.92| 0.75
Letter-A 20000  0.961 average0.86 0.84 0.87 0.74 0.92| 0.85
Letter-vV 20000  0.806

Mailing 191779  0.949 Table 5.Containments of FWB with a “widened” band to gener-

ate “future” bands based on prediction scores fronbtheachine
learning methods. The models were learned fidid randomly
drawn samples. The scores reported are averagesdovethe
data sets.

Table 4.Data sets used in the real world setting.

FWB Band on Covertype data set

Figure 7 shows one example band fitted to a logistic re-
gression model, witlhh = 1000. The figure shows the con-
fidence band and50 of the 1000 verification ROCs. The
figure clearly shows the variance problem—the observed
ROC curve from which we generate the bands was obvi-
ously higher than the “true” curve, as the upper band is
much higher than all the later drawn curves. We also see
band —— that FWB is much too wide at the extremes (due to its fixed
‘ width) and that when future curves fall outside the bands,
they generally will do so in the middle.

True Positive

1 1

o

0.2 0.4 0.6 0.8 1
False Positive

Although there is considerable variance in the individual
Figure 7 Example bands on the Covertype dataset. The model igontainment results on the real data, they generally are fa-
a logistic regression model learned fra00 random samples, the ygrable with the exception of the Letter-A data é@able 5
bands were generated using-= 1000. shows the average containments (after removing Letter-A,
which has a small but noticeable effect) for each of the five
#nethods across various valuesrof The overall average
X . . "Ebntainment of the bands &85, somewhat lower value
for creating the curveand for the evaluation. We consider than than desired. We increased the learning-set size to

10 relatively large data sets, used in prior machine Iearningz - s

. ' . . 500 randomly drawn instances and repeated the evaluation
Wc_)rl_< (Perlich et al., 2.003) and listed in Table 4. See theoutlined above. Table 6 shows the average containments
original study for details on the data sets and the setup f

. S 0(again after removing Letter-A) for each of the five learn-
binary classification. ing methods across various valuesrofThe overall aver-
We first draw a stratified random samplel6 instances—  age containment of the bands increased.8&g. The aver-
the learning set—and build various learned models usage containments clearly are dragged down by J48, which
ing Wek& (Witten & Frank, 2000)—logistic model trees in many of the experiments—especially with 100 training
(LMT) (Landwehr et al., 2003), J48, naive Bayes treesexamples—yielded poor containment. For these experi-
(NBT) (Kohavi, 1996), logistic regression (LR), and Naive ments we used the raw, class frequencies at the leaves of
Bayes (NB). We then generate prediction scores for the rethe trees (doing no smoothing), which are known to pro-
maining instances. The log-odds scorkg 2H2) - are duce relatively poor ROC curves. Clearly by Table 6, with

used as the base populati@rom which to draw predic- ggggrtrammg examples the containments are substantially

tions. Using the same values ofas above, we sample
prediction scores fronk to generate the confidence bands  “For Letter-A for many cases (different learning techniques
and sample 000 scoring-sets of size from the remaining  differentr values) the containment for Letter-A simplys This
prediction scores to evaluate the bands as “future” bandgleserves more investigation; we tentatively attributepiher per-

: ; . ormance to the relatively small number of examples of theamni
We do this10 times perR per data set to get containments ;i cjacs | etter-A has the most unbalanced class disteibind

for one learned model. We generatétimodels per learn-  ajso is one of the smaller data sets. As Stein (2002) has shown

ing algorithm by sampling0 different learning sets. with a large class imbalance, the variance in ROC curves-is ex
- tremely sensitive to the size of the minority class. Thenefoau-
®We use version 3.4.2. Weka is available at tion should be taken in extrapolating our results to dats with

http://www.cs.waikato.ac.nz/"ml/weka/ relatively few examples of one class.
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Naive Bayes J48 Trees Logistic Model Trees
+ + +
) 0 )
5 5 5
o (o8 o
-30 -20 -10 0 10 20 30 -30 -20 -10 0 10 20 30 -20 -15 -10 -5 0 5 10
s = log odds score s = log odds score s = log odds score
Naive Bayes Trees Logistic Regression
+ +
0 0
5 5
(o8 (o8
15 -10 5 10 15 -30 -20 -10 0 10 20 30
s = log odds score s = log odds score
Figure 8.Score distributions 05 Machine Learning methods on the Covertype data set.
Number of Learning Method widened bands seem to give appropriate containment of
SamplesLMT NBTREE LR J48 NB|average future curves. This is an intuitively appealing heuristic,
25(0.71 0.78 0.74 0.78 0.83| 0.77 but one should keep in mind the assumptions on which the
100{0.83  0.87 0.86 0.85 0.88| 0.86 widening is based (see above), which may not hold for any
250[0.88 0.91 0.91 0.89 0.91] 0.90 particular data set and model.

1000{0.90 0.91 0.93 0.92 0.90| 0.92
2500({0.92 0.94 0.950.950.94| 0.94
10000|0.83  0.94 0.92 0.63 0.93| 0.85
average0.85  0.89  0.89 0.84 0.90| 0.87

A limitation of the fixed-width bands is their fixed width,
which at least based on the cases we have looked at is
too wide at toward the ends of the ROC curve. As we
saw, the WHBs were too narrow at the ends of the ROC

Table 6.Containments of FWB with a “widened” band to gener- CUrve. Given that for many applications, the ends of the
ate “future” bands based on prediction scores fromithechine ~ ROC curve are of particular interest, this leaves room for

learning methods. The models were learned fasio0 randomly  the design of better bands.
drawn samples. The scores reported are averagesdavkthe Non-parametric bands such as the FWBs have a special
data sets. appeal for machine learning studies. Of course it may be
that other bands, in particular bands based on binormal or
Score distribution for Logistic Regression - 25000 samplesother parametric models, also could be adjusted to perform
well in the machine learning setting. However, machine-
learned models generally do not produce binormal score
distributions. A study by Bennett (2003) shows that stan-
dard ML methods do not induce models that generate Gaus-
sian class-conditional score distributions; he showsgidist
butions that have a closer fit to asymmetric Laplace dis-
Ot /R 7 s tributions or asymmetric Gaussian distributions. Even for
-20-15-10-5 0 5 10 15 20 25 the same data set, different machine learning methods pro-
duce models with widely differing score distributions. Fig
ure 8 shows the positive and negative score distributions
Figure 9.Sample logistic regression score distribution wita=  generated by various types of learned model for the Cover-

pdf(s)

scores

250000. These distributions are clearly not unimodal. type dataset. LMT has beautiful bell-shaped distributions
6. Di . d Limitati which itself may be be worth further investigation. Al-
- DIscussion and Limitations though LR and NB have fairly smooth distributions, they

These results recommend the fixed-width bands, both foare clearly not binormal. The distributions of J48 and
the true- and future-curve settings. The results may seemBT are not even close to being bell-shaped. The naive
to justify applying the unwidened FWBs as true-curve Bayes distributions are more-or-less in line with observa-
confidence bands for the real-data setting—after all, the
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tions made by Bennett (2003) (who studied naive Baye<laeskens, G., Jing, B.-Y., Peng, L., & Zhou, W. (2003). Hinpi
for text classification): they are asymmetric, bell-shaped cal likelihood confidence regions for comparison distridous
distributions where the positive distribution is fatteath and roc curvesThe Canadian Journal of Statistic81, 173~

. 190.
the negative. Conover, W. J. (1980)Practical nonparametric statisticsNew

Finally, we reemphasize that this paper treated the prob- York: Wiley. 2nd edition. . o .
lem of placing a confidence band around the ROC curve oPorfman, D. D., & Alf, E. (1969). Maximum-likelihood estima
a particular model for a particular domain (and testing-set tion of parameters of signal-detection theory and deteatron

size, for the future-curve bands). We have not addressed cr;fact?cr;fllcllgesr;%%gr;g)\galig;aﬂggemethod dataurnal of Mathe-

here the effect of using different values ofor creating  £qon B & Tibshirani, R. (1993) An Introduction to the Boot-
the confidence bands and for testing them. We have shown strap. Chapman & Hall.

previously that the variance of an ROC curve is directly re-Fawcett, T. (2003).ROC Graphs: Notes and Practical Consid-

lated tor (Macskassy & Provost, 2004), which makes it erations for Data Mining ResearchefBechnical Report HPL-

crucial to ensure that these are equal. More importantly, 2003-4). HP Labs.

we have not addressed at all the problem of assessing tiall, P. G., Hyndman, R. J., & Fan, Y. (2004). Nonparamet-

confidence in the expected ROC performance of a learning "¢ conféqlenc? _Etegr\l/aI?s;Kf%or?g%cenver operating charasteri

algorithm for a particular domain, which also must accountH.lcurveS' 'ome gga' iy _b - ¢ fid bourid

for the variance due to the choice of training data. '%%ré‘ R. A. (1991). Distribution-free confidence of 5
curvesMethods of Information in Medicin&0, 96—-101.

In conclusion, to produce confidence bands about ROd©havi, R.(1996). Scaling Up the Accuracy of Naive-Bayea<cl
curves, our results recommend the non-parametric, fixed- sifiers: a Decision-Tree Hybrid Proceedings of the Second

width bands described by Campbell (1994), adjusted if nec- IMnltﬁm; t',(\),lréarlhé: ggiireg X:e :Xﬁg%vslgﬂ\%ﬁ%rsgg ery and Data

essary to produce future-curve bands. A promising avq gngwehr, N., Hall, M., & Frank, E. (2003). Logistic Model
enue is to extend the bootstrap procedure to generate fixed- Trees. Proceedings of the 16th European Conference on Ma-
width confidence band for future curves, rather than use the chine Learning

heuristicsqrt(2) correction. We hope eventually to offer a Ma, G., & Hall, W. J. (1993). Confidence bands for receiver op-
full bootstrap-based FWB solution both for true-curve and  €rating characteristic curvesMedical Decision Making13,

future-curve confidence bands. 191-197. )
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