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Abstract
Protein fold recognition is a key step to-
wards inferring the tertiary structures from
amino-acid sequences. Complex folds such as
those consisting of interacting structural re-
peats are prevalent in proteins involved in a
wide spectrum of biological functions. How-
ever, extant approaches often perform inade-
quately due to their inability to capture long-
range interactions between structural units
and to handle low sequence similarities across
proteins (under 25% identity). In this pa-
per, we propose a chain graph model built on
a causally connected series of segmentation
conditional random fields (SCRFs) to address
these issues. Specifically, the SCRF model
captures long-range interactions within re-
curring structural units and the Bayesian net-
work backbone decomposes cross-repeat in-
teractions into locally computable modules
consisting of repeat-specific SCRFs and a
model for sequence motifs. We applied this
model to predict β-helices and leucine-rich
repeats, and found it significantly outper-
forms extant methods in predictive accuracy
and/or computational efficiency.

1. Introduction

The tertiary structures of proteins play key roles in
determining the function, activity, stability and sub-
cellular localization of proteins, and the mechanisms of
protein-protein interactions in cells. An important is-
sue in inferring tertiary structures from amino-acid se-
quences is how to accurately identify protein folds aris-
ing from typical spatial arrangements of well-defined
secondary structures that can be recognized from the
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sequence. Given the putative protein folds present in
a protein, the backbone of the tertiary structure can
be more easily inferred. More importantly, these folds
may also serve as key indicators for certain functional
sites. In silico protein fold recognition seeks to predict
whether a given protein sequence contains a putative
structural fold (usually represented by a training set
of instances of this fold) and if so, locate its exact po-
sition within the sequence.

To date, there has been significant progress in predict-
ing certain types of simple well-defined supersecondary
structures, such as αα- and ββ-hairpins, based on their
primary sequences using rule-based algorithms or hid-
den Markov models (Durbin et al., 1998). However,
predicting more complex and irregular protein folds
such as those containing highly stochastic (in terms
of sequence composition, spacing and ordering) inter-
nal structures remains an open problem.

In this paper, we address a special class of the afore-
mentioned complex protein folds—those with repeti-
tive structural motif components, such as the β-helices
(Yoder et al., 1993) or the leucine rich repeats (LLR)
(Kobe & Deisenhofer, 1994) (Fig.1). These folds are
believed to be prevalent in proteins and can involve
in a wide spectrum of cellular and biochemical activ-
ities, such as the initiation of bacterial infection (Yo-
der et al., 1993) and various protein-protein interac-
tion processes (Kobe & Deisenhofer, 1994). Identi-
fying these folds remains a challenge because of the
presence of many complex and irregular features in
their structure—for example, long-range interactions
between their build-blocks (i.e., structural motifs) sep-
arated by an unknown number of spacers (i.e., amino
acid insertions), low sequence similarities (less than
25%) between recurring motifs within the same pro-
tein and across multiple proteins, and non-conserved
insertions of variable lengths across different proteins.

The traditional approaches for protein fold prediction
search the database using PSI-BLAST (Altschul et al.,
1997) or match against an HMM profile built from



Predicting Protein Folds with Structural Repeats Using a Chain Graph Model

Repeat I


Repeat 2


Repeat 3


...


Figure 1. Typical 3-D structure of proteins with β-helices
(left) and leucine-rich repeats (right). In β-helices, there
are three strands: B1 (green), B2 (blue) and B3 (yellow)
and the conserved T2 turn (red). In LLR, there is one
strand (yellow) and insertions with helices (red).

sequences with the same fold (Durbin et al., 1998).
These methods work well for simple folds with strong
sequence similarities, but fail when the sequence sim-
ilarity across proteins is poor and/or there exist long-
range interactions between elements in the folds. Sev-
eral more expressive probabilistic models that explic-
itly capture these structural features have been pro-
posed. Delcher et al. introduced probabilistic causal
networks for protein secondary structure modeling
(Delcher et al., 1993). Recently, Lafferty et al. applied
kernel conditional random fields (kCRFs) for protein
secondary structure prediction (Lafferty et al., 2004);
Chu et al. extended segmental semi-Markov model un-
der the Baysian framework to predict secondary struc-
tures (Chu et al., 2004).

While the aforementioned models have led to some im-
provements in protein structure prediction, they re-
main inadequate for complex protein folds containing
stochastic arrangement of repeating patterns of mo-
tifs and insertions. In these proteins, some motifs are
quite conserved in sequences or prefer specific lengths;
others might be spatially close enough in 3-D to form
hydrogen-bonds, such as two β-strands in a parallel β-
sheet and helix pairs in coupled helical motifs. There-
fore it is necessary to construct a model that explicitly
captures these properties. In this paper, we propose
a chain graph model based on a “protein structural
graph”. In this graph, nodes are introduced to rep-
resent motifs, insertions or relevant structural states.
The edges indicate the interactions between these el-
ements in 3-D. Our chain graph model uses segmen-
tation CRFs (SCRFs) as building blocks to capture
the long-range interactions between structural repeats,
and also employs a mixture profile model to explore
the similarities of recurring motifs within the same
protein and across multiple proteins. A Bayesian net-
work backbone decomposes cross-repeat interactions
into locally computable modules consisting of repeat-
specific SCRFs and the model for sequence motifs. As
a result, our model not only can capture rich struc-
ture features of complex folds, but is also much more
efficient than the previously proposed graphical model

for protein fold recognition (Liu et al., 2005). Notice
that our model can be understood as an approach for
simultaneously classifying and segmenting the protein
sequences, whereas most previous work perform clas-
sification without examining the fine details of struc-
tural arrangement (Ding & Dubchak, 2001).

The rest of the paper is organized as follows, we first
define the notation and initial settings for the fold-
prediction model. Then we overview the SCRF model
which serves as the key building block for our new
model. In section 3 we describe a novel chain graph
model built upon SCRFs and a sequence motif sub-
model. In section 4 we report experimental results on
two types of protein folds. We conclude with a brief
summary and an outline of future work.

2. Segmentation CRFs for protein fold

recognition

2.1. Terminology and notation

Protein folds with structural repeats are defined
as repetitive secondary or supersecondary structural
units, such as α-helices, β-strands, β-sheets (colored
regions is Fig.1), connected by insertions of variable
lengths, which are mostly short loops and sometimes
α-helices or/and β-sheets (gray regions in Fig.1).

A graphical model (GM) can be used to define the
probability distribution over all possible structural
configurations underlying a given protein sequence.
We refer to such a GM as a “protein structural graph”
(PSG). Specifically, a PSG is an annotated graph
G = {V,E}, where V is the set of nodes correspond-
ing to the specificities of structural units, such as mo-
tifs, insertions or the regions outside the fold (which
are unobserved and must be inferred), and the amino
acid residues at each position (which are observed and
should be conditioned on). E represents the set of
edges denoting dependencies between the objects rep-
resented by the nodes, such as locational constraints
and/or state transitions between adjacent nodes in
the primary sequence, or long-range interactions be-
tween non-neighboring motifs and/or insertions (see
Fig.2 (A)). Note that the latter type of dependencies
is unique to our PSG, and is the main cause of its com-
putational complexity. A probabilistic distribution on
a graph can be postulated by using the potential func-
tions defined on the cliques of nodes induced by the
edges in the graph (Hammersley & Clifford, 1971).

Given a protein sequence x = x1x2 . . . xn, where
xi ∈ {amino acids} and n is the length of the se-
quence, a “conditional” PSG is defined as follows. Let
S = (S1, S2, . . . , SM ), where Si ∈ {1, . . . , n} denotes
the ending position of the ith structural segment. Let
T = (T1, T2, . . . , TM ), where Ti ∈ T denotes the label

of the segment and T is a finite set of structural labels.
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Finally, let M ∈ {1, . . . ,mmax} denote the number of
possible segments in the protein, where mmax can be
specified by domain experts or postulated from the
training instances. Under this setup, a value assign-
ment to the nodes W = {M,S,T} in a PSG defines
a unique segmentation and annotation of protein x.
With a slight abuse of the notation, we use Wi to repre-
sent a segment-specific clique (i.e., Wi = {Si−1, Si, Ti},
see Fig.2 (A)) that completely determines the configu-
ration of the ith segment. Likewise, an arbitrary clique
c ∈ CG can be represented by Wc. Now, for a given
PSG G, the conditional probability of W given the
observation x can be defined as

P (W |x) =
1

Z

∏

c∈CG

Φ(x,Wc), (1)

where CG represents the set of all cliques in G, Φ(·) is
the potential function defined on a clique, and Z de-
notes the normalization constant. Given a query pro-
tein, our goal is to seek the segmentation (i.e. W opt)
that optimizes this conditional probability.

2.2. Segmentation conditional random fields

Recently a segmentation CRFs model was proposed
for general protein fold recognition (Liu et al.,
2005). Following (Lafferty et al., 2001), SCRFs
assume that the potential function of interest ad-
mits an exponential representation, i.e. Φ(x,Wc) =

exp(
∑K

k=1 λkfk(x,Wc)), where fk(·) denotes a feature
defined on cliques c, such as the secondary structure
assignments or the length of the segment. Since the
spatial topology of regular protein folds is often known
a priori, a deterministic dependency between states Ti

and Ti+1 results. This leads to a simplification that
only the cliques involve in the known long-range inter-
actions need to be considered (e.g., “red” arc in Fig.2
(A)). Therefore we have:

P (W |x) =
1

Z

M∏

i=1

exp(
K∑

k=1

λkfk(x,Wi,Wπi
)), (2)

where Wπi
denotes the spatial predecessor (i.e., with

small position index) of Wi connected by a “long-
range interaction arc”. The model parameters λ can
be estimated by maximizing the regularized log-loss of
the training data using iterative searching algorithms,
such as gradient descent or L-BFGS (Minka, 2001).
The convexity property guarantees that the root cor-
responds to the optimal solution.

After the simplification, if the graph G can be viewed
as a set of chains, a forward-backward algorithm anal-
ogous to the one for the original CRFs (Lafferty et al.,
2001) can be applied to compute optimal segmentation
and labeling under SCRFs (Liu et al., 2005). In gen-
eral, the computational cost of SCRFs for the forward-
backward probabilities and the Viterbi algorithm is
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Figure 2. The graphical model representation of protein
fold models. A) The SCRF model. Circles represent the
state variables, edges represent couplings between the cor-
responding variables (in particular, long-range interaction
between units are depicted by red arcs). The dashed tri-
angles are examples of “segment-specific cliques”. The
dashed box over x’s denote the sets of observed sequence
variables. An edge from a box to a node is a simplifica-
tion of dependencies between the non-boxed node to all
the nodes in the box (and therefore result in a clique con-
taining all x’s). B) The chain graph model. The directed
edges denote conditional dependencies of the child node on
the parental nodes. Note that each of the round-cornered
boxes represents a repeat-specific component as SCRFs.
An edge from the box denote dependencies on the joint
configuration of all nodes within the box.

O(n3). If the possible length of each segment is much
smaller than n or fixed, which are true for most protein
folds, the complexity can be reduced to approximately
O(n2). However, SCRFs are still prohibitively expen-
sive since the final complexity are multiplied by the
number of iterations in an iterative search algorithm,
which could be tens of thousands (see discussion in
§4). In addition, the complexity will increase (expo-
nentially) with the size of the cliques and indeterminis-
tic state transitions, which prevents it from large scale
applications.

3. Chain graph model for protein fold

recognition

In order to accurately predict the protein folds with
structural repeats, it is crucial to consider the follow-
ing two properties: 1) the structural motifs in each re-
peat have certain pleating and hydrogen bonding pat-
terns that are well conserved across the superfamilies
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and families; 2) the side-chain interactions between the
neighboring motifs or insertions in 3-D are critical de-
terminants of the stability of the structures (Kobe &
Deisenhofer, 1994; Yoder & Jurnak, 1995; Kreisberg
et al., 2000). Therefore, it is important for a model
to be able to identify the sequence motifs reflecting
the structural conservation, and at the same time con-
sider the long-range interactions between structural el-
ements. The SCRF model described above is not only
prohibitively expensive computationally, but also lacks
the device to incorporate sequence motif information.
In this paper, we propose a chain graph model that
makes use of both the undirected SCRFs and the di-
rected sequence motif models as building blocks, and
integrate them via a directed network. In this way,
our model is able to capture the long-range interac-
tions between structural repeats without computing a
global normalizer required in SCRF.

3.1. Chain graph model

A chain graph is a graph consisting of both di-
rected and undirected arcs associated with probabilis-
tic semantics. It possesses the properties of both
the Markov random fields (i.e., allowing potential-
based local marginals that encode constraints rather
than causal dependencies) and the Bayesian networks
(i.e., not having a hard-to-compute global partition
function for normalization and allowing causal in-
tegration of subgraphs that can be either directed
or undirected) (Lauritzen & Wermuth, 1989). A
chain graph can be represented as a combination of
conditional networks. Formally, a chain graph over
the variable set V that forms multiple subgraphs U
can be represented by the following factored form:
P (V) =

∏
u∈U P (u|parents(u)), where parents(u) de-

notes the union of the parents for every variable in
u. P (u|parents(u)) can be defined as a conditional
directed or undirected graph (Buntine, 1995), which
only needs to be locally normalized.

Back to the protein structure graph, we propose a hi-

erarchical segmentation for a protein sequence. On
the top level, we define an envelope Ξi, as a sub-
graph that corresponds to one repeat region in the
fold containing both motifs and insertions or the null
regions outside the protein fold. It can be viewed as a
mega node in a chain graph defined on the entire pro-
tein sequence and its segmentation (Fig.2 (B)). Anal-
ogous to the SCRF model, let M denote the number
of envelopes in the sequence, T = {T1, . . . , TM} where
Ti ∈ {repeat, non-repeat} denotes the structural label
of the ith envelope. On the lower level, we decom-
pose each envelope as a regular arrangement of several
motifs and insertions, which can be modeled using one
SCRF model. Let Ξi denote the internal segmentation
of the ith envelope (determined by the local SCRF),

i.e. Ξi = {M(i),S(i),T(i)}. Following the notational
convention in the previous section, we use Wi,j to rep-
resent a segment-specific clique within envelope i that
completely determines the configuration of the jth seg-
ment in the ith envelope. To capture the influence of
neighboring repeats, we also introduce a motif indica-
tor Qi for each top-level repeat i, which signals the
presence or absence of sequence motifs therein, based
on the sequence distribution profiles estimated from
previous repeat. Putting everything together, we ar-
rive at a chain graph depicted in Fig.2 (B).

Given a sequence x, the value assignments of W =
{M, {Ξi},T} in the chain graph G defines a hierarchi-
cal segmentation of the sequence as follows:

P (W|x) = P (M, {Ξi},T|x) = (3)

P (M)

M∏

i=1

P (Ti|x, Ti−1,Ξi−1)P (Ξi|x, Ti, Ti−1,Ξi−1).

P (M) is the prior distribution of the number of
repeats in one protein and for simplicity a uniform
prior is assumed. P (Ti|x, Ti−1,Ξi−1) is the state
transition probability and we use the structural motif
as an indicator for the existence of a new repeat, i.e.:

P (Ti|x, Ti−1, Ξi−1) =
∑

Qi∈{0,1}

P (Ti|Qi)P (Qi|x, Ti−1, Ξi−1), (4)

where Qi is binary indicator denoting whether or
not there exists a motif in the ith envelope and
P (Qi|x, Ti−1,Ξi−1) is computed using a profile mix-
ture model described in §3.2. For the third term, we
define the conditional probability using SCRF, i.e.

P (Ξi|x, Ti, Ti−1,Ξi−1)

=
1

Zi

exp(

M(i)∑

j=1

K∑

k=1

λkfk(x,Wi,j ,Wπi,j
)), (5)

where Zi is the local normalizer over the possible con-
figurations of Ξi (instead of all envelopes), and Wπi,j

is the spatial predecessor of Wi,j defined by long-range
interaction arcs. Similarly, parameters λ can be esti-
mated by optimizing the regularized negative log-loss,

Lλ =
M∑

i=1

M(i)∑

j=1

K∑

k=1

λkfk(x, wi,j , wπi,j
) − log Zi +

‖λ‖2

2σ2
,

where the last term is a Gaussian prior over the para-
meters as a smoothing term.

Given a testing sequence, the optimal segmenta-
tion/labeling of the protein corresponds to state con-
figuration with maximal conditional probability under
our chain graph. Exploiting the chain structure in-
duced by structural repeats and long range interac-
tions, we propose a greedy search algorithm follow-
ing similar idea as Viterbi algorithm. Define δ(s, t)
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as the highest score that the ending envelope are in
state t given the observation x1x2 . . . xs, and ϕ(s, t) =
{m,S,T} is the corresponding “argmax” segmentation
of the envelope. Then the recursive step is

δ(r, t) =

max
r′,t′,ξ

δ(r′, t′)P (T = t|x, t′, ϕ(r′, t′))P (Ξ = ξ|x, t, t′, ϕ(r′, t′)),

(6)

and ϕ(s, t) equals to ξ that maximizes the eq(6).

To summarize, using a chain graph model, we can ef-
fectively identify motifs based on their structural con-
servation and at the same time take into account the
long-range interactions between repeat units. In ad-
dition, a chain graph also reduces the computational
costs by using local normalization. Since most side-
chain interactions take effect within a small range in
3-D space, our model can be seen as a reasonable ap-
proximation for a global models as SCRF. For most
protein folds, in which the length of one segment is
much smaller than n or fixed, the complexity of our
algorithm can be bounded by O(nI), where I is the
number of iterations in iterative searching algorithms.

3.2. Mixture profile model for structural motif

detection

A commonly used representation for motif-finding is
the position weight matrix (PWM), which records the
relative frequency (or a related score) of each amino
acid type at every position of a motif (Bailey & Elkan,
1994). Statistically, a PWM defines a product of multi-
ple independent multinomial models over the observed
instances of a motif.

An important observation in our task is that the mo-
tif instances close in three-dimension are more simi-
lar than those from distant locations or from different
sequences. In addition, the residues with the side-
chain pointing to the core are more conserved than
those pointing outward. To capture these proper-
ties of structural motifs, a mixture PWM is proposed,
which consists of a position-specific multinomial θj for
the motif shared by all the proteins, and a sequence-

specific multinomial θ
(0)
i for the background. Further-

more we define binary random variables R = {Rij},
where Rij = 1 means that the jth position in the ith

protein is generated by model θj and otherwise by

model θ
(0)
i . We assume that Rij follows a Bernoulli

distribution with parameter ρd, where d is the side-
chain pointing directions (inward or outward) at posi-
tion j. The parameters in the model can be learned
using the EM algorithm straightforwardly. To calcu-
late P (Qi|x, Ti−1,Ξi−1) in Eq (4), we do an online up-
dating of θ(0) and ρ using the motif instances defined
by envelope (Ξi−1), then calculate the posterior as the
probability that the sequence in Ξi in generated from

the motif model θ divided by the likelihood define by
the mixture.

Notice that the motif model described above is built
specifically to capture the effects of neighboring mo-
tif instances, which is based on biological insights of
the structures. So the motifs we learned are site- and

sequence-sensitive and are different from the context-
free motif profiles in databases, such as PROSITE and
I-site (Bourne & Weissig, 2003).

4. Experimental Results

In our experiments, we test our algorithm on two im-
portant protein folds in β-class, i.e. the right-handed
β-helices and leucine-rich repeats. We choose these
two folds specifically because they are complex enough
to represent the difficulties of the task, and well docu-
mented due to their important functions.

4.1. Experiment setup

We followed the setup described in (Bradley et al.,
2001). A PDB-minus dataset was constructed from the
PDB protein sequences (July 2004 version) (Berman
et al., 2000) with less than 25% similarity to each
other and no shorter than 40 residues. By removing
the β-helix proteins (or LLR proteins) from it, the
PDB-minus dataset can be used as the negative set
for our validation. A leave-family-out cross-validation
was performed, that is, for each cross, positive proteins
in one SCOP family (see Table 1&2) are placed in the
test set while the remainder are placed in the train-
ing set. Similarly, the PDB-minus set was also parti-
tioned into the same proportion and for each cross we
use one subset as testing data and the rest as training
data. Since the ratio of negative examples to positive
examples is very large, we subsample only 15 nega-
tive sequences that are most similar to the positive
examples in sequence identity in order to find a better
decision boundary.

We define two types of features for fold recognition.
The first type is Node features covering the properties
of an individual segment:

a Regular expression template: Based on the side-chain
alternating patterns in the structurally conserved
regions, a regular expression template is generated
for β-helices as ΦXΦXXΨXΦX, where Φ matches
any of the hydrophobic residues as {A, F, I, L, M, V,
W, Y}, Ψ matches any residue except the ionisable
ones {D, E, R, K}, and X is a wild card (Bradley
et al., 2001). Similarly, the template for LLR is
XXXLXXLX[LV]XXXXX. We define feature function
fRST (x, wi), which equals to 1 if the sequence in
segment wi matches the template, and 0 otherwise.

b Probabilistic HMM profiles: A probabilistic motif
profile is built using HMMER (Durbin et al., 1998)
to detect the structurally conserved regions as in
(a). We define feature fHMM (x, wi) as the alignment
score of segment wi against the profile.
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Table 1. 0.980.3 Scores and rank for the known right-handed β-helices by HMMER, Threader, BetaWrap, SCRFs and
chain graph model(CGM). 1: the scores and rank from BetaWrap are taken from [3] except 1ktw and 1ea0; The result of
sequence-based HMMs (unlisted due to space limit) is much worse than struct-base HMMs.

SCOP Family PDB-ID Struct-based HMMs Threader BetaWrap1 SCRFs CGM
Bit score Rank Rank Wrap-score Rank ρ-score Rank ρ-score Rank

P.69 pertactin 1DAB -73.6 3 24 -17.84 1 10.17 1 31.69 1
Chondroitinase B 1DBG -64.6 5 47 -19.55 1 13.15 1 34.89 1
Glutamate synthase 1EA0 -85.7 65 N/A -24.87 N/A 6.21 1 29.04 1
Pectin methylesterase 1QJV -72.8 11 266 -20.74 1 6.12 1 22.69 1
P22 tailspike 1TYU -78.8 30 2 -20.46 1 6.71 1 20.59 1
Iota-carrageenase 1KTW -81.9 17 10 -23.4 N/A 8.07 1 16.06 1
Pectate lyase 1AIR -37.1 2 45 -16.02 1 16.64 1 22.87 2

1BN8 180.3 1 76 -18.42 3 13.28 2 28.98 1
1EE6 -170.8 852 228 -16.44 2 10.84 3 15.16 3

Pectin lyase 1IDj -78.1 14 6 -17.99 2 15.01 2 17.50 2
1QCX -83.5 28 6 -17.09 1 16.43 1 20.67 1

Galacturonase 1BHE -91.5 18 18 -18.80 1 20.11 3 28.98 1
1CZF -98.4 43 5 -19.32 2 40.37 1 24.68 3
1RMG -78.3 3 27 -20.12 3 23.93 2 27.37 2

c Secondary structure prediction scores: The state-of-
art method of secondary structure prediction can
achieve an average accuracy of 76 - 78%. It can
provide fairly good results on α-helix and coils, which
help to locate the insertions. We define feature
function fssH(x, wi), fssE(x, wi) and fssC(x, wi) as
the average of the predicted scores over all positions
in segment wi, for helix, sheet and coil respectively
by PSIPRED (Jones, 1999).

d Segment length: fL(x, wi) = (l − µ)2/σ2, where l
is the segment length, µ and σ2 are the mean and
variance of the segment length in state Ti.

The second type of features are the Inter-node fea-

tures capturing the potential long-range interactions
between adjacent motifs in 3-D:

a Side chain alignment scores: It is suggested that
the alignment scores of residue pairs in β-sheets are
very discriminative features to identify long-range
interactions between β-strands. A possible alignment
scores is the conditional probability that a residue
Ai aligns with residue Aj given their side-chain
orientation relative to the structural core (Bradley
et al., 2001). Following this idea, we define a feature
fSAS(x, wi, wπi) as the weighted sum of the side
chain alignment scores for wi given wπi (see (Bradley
et al., 2001) for full discussion).

b Parallel β-sheet alignment scores: Another aspect
of the alignment scores is the different preferences
between parallel and anti-parallel β-sheets. A
“pairwise information values” is defined for a residue
Ai given the residue Aj on the pairing parallel (or
anti-parallel) strand within an offsets δ (Steward
& Thornton, 2002). The alignment score for two
segments fPAS(x, wi, wπi) is the sum of the pairwise
information values over all the residues with an offset
of no more than 2.

c Distance between adjacent s-B23 segments: We
define the feature as the normalized length, i.e.

fDIS(x, wi, wπi) = (d − µ′)
2
/σ′2, where d is the dis-

tance between wi and wπi , µ′ is the mean and σ′2 is
the variance.

To determine whether a protein sequence has a par-
ticular fold, we define the score ρ as the normal-

ized log ratio of the probability for the best seg-
mentation to the probability of the whole sequence
in a null state (non-β-helix or non-LLR). We com-
pare our results with BetaWrap, the state-of-art algo-
rithm for predicting β-helices, THREADER, a thread-
ing algorithm and HMMER, a general motif detec-
tion algorithm using HMMs. The input to HMMER
can be the structural alignments using CE-MC (Guda
et al., 2004) or purely sequence-based alignments by
CLUSTALW(Thompson et al., 1994).

4.2. β-helices

The β-helix fold is an elongated helix-like structure
whose repeat units are composed of three parallel β-
strands, namely B1, B2 and B3 strand (see Fig.1).
The regions connecting these strands are called T1,
T2 and T3 turn respectively. In particular, T2 turn
is structurally conserved as a unique two-residue turn
which forms an angle of approximate 120⋄ between the
B2 and B3 strands. Therefore we define 2 structural
motifs for the β-helix fold, one is the union of B2,
T2 and B3 with 9 residues in total, the other is B1

strand with 4 residues. The length of the insertions

connecting the motifs varies from 1 to 80 residues.

There currently exist 14 protein sequences with β-
helix whose crystal structures have been known. Those
proteins belong to 9 different SCOP families (Murzin
et al., 1995) (Table 1). Computationally, it is very dif-
ficult to detect the β-helix fold because the proteins
with this fold are less than 25% similar in sequence
identity, which is the “twilight zone” for sequence-
based methods, such as PSIBLAST or HMMs, and
there involve the long-range interactions. The state-
of-art method is BetaWrap, which is a heuristic meth-
ods specifically designed for the β-helix (Bradley et al.,
2001). The algorithm works by identifying all poten-
tial motifs in the sequence and “wrapping” them to
see if they can form a stable structures.

Table 1 shows the output scores by different meth-
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Table 2. Scores and rank for the known right-handed Leucine-rich repeats (LLR) by HMMER, Threader and chain graph
model (CGM). For CGM, ρ-score = 0 for all non-LLR proteins.

SCOP Family PDB-ID ClustalW+HMMs Struct-based HMMs Threader CGM
Bit score Rank Bit Score Rank Rank ρ-score Rank

28-residue LRR 1A4Y -125.5 4 -76.7 1 457 127.8 1
Rna1p (RanGAP1) 1YRG -95.4 1 -81.1 1 181 64.3 1

Cyclin A/CDK2-associated p19 1FQV -163.3 89 -111.4 10 398 77.1 1
Internalin LRR domain 1O6V -62.8 1 -0.7 1 306 116.5 1

Leucine rich effector 1JL5 -86.7 1 -26.5 1 46 187.5 1
Ngr ectodomain-like 1P9A -120.0 9 -68.6 1 16 105.0 1

Polygalacturonase inhibiting protein 1OGQ -155.0 32 -18.2 1 284 66.4 1
Rab geranylgeranyltransferase alpha-subunit 1DCE -145.4 16 -59.7 1 35 17.4 1

mRNA export factor 1KOH -153.9 42 -91.7 1 177 37.1 1
U2A’-like 1A9N - 280.9 861 -151.4 478 62 55.1 1
L domain 1IGR -150.0 46 -107.1 249 67 8.2 1

1EE6 (A)


1EE6 (B)
 1DAB (A)
 1DAB (B)


Figure 3. Segmentation for protein 1EE6 and 1DAB by
SCRFs(A) and chain graph model (B). Red: B2-T2-B3
motif; blue: B1 motif; green and yellow: insertions.

ods and the relative rank for the β-helix proteins in
the cross-family validation. From the results, we can
see that the both SCRFs and chain graph model can
successfully score all known β-helices higher than non
β-helices in PDB. On the other hand, there are two
proteins (i.e. 1KTW and 1EA0) in our validation sets
that are crystallized recently and thus are not included
in the BetaWrap system. We test these two sequences
on BetaWrap and get a score of -23.4 for 1KTW and
-24.87 for 1EA0. These values are significantly lower
than the scores of other β-helices and some non β-
helix proteins, which indicates that BetaWrap is over-
trained. As expected, HMMER performs worse than
other methods even using the structural alignments.

Our algorithm also demonstrates success in locating
each repeat in the known β-helix proteins. Fig.3 shows
the segmentation results for 1EE6 and 1DAB respec-
tively. From the results, we can see: for 1EE6 SCRFs
can locate two more repeats accurately than the chain
graph model; however, our model is able to span the
repeats over the whole area of the true fold for 1DAB
while SCRFs can only locate part of them. We can see
that there are strength and weakness for both meth-
ods in terms of segmentation results. On the other
hand, since the computational complexity for chain
graph model is only O(N), the real running time of

our model (approx. 2.5h) is more than 50 times faster
than that of SCRFs (approximately 140h).

4.3. Leucine-rich repeats

The leucine-rich repeats are solenoid-like regular
arrangement of β-strand and an α-helix of variable
lengths, connected by coils (Fig.1). Based on its struc-
tural characteristics, we define the motif for LLR as
the β-strand and short loops on two sides, resulting
14 residues in total. The insertions, which consist
of the α-helix and some loops, have a length from 6
to 29 (since longer insertions will destroy the stabil-
ity of the structures). There are 41 LLR proteins with
known structure in PDB, covering 2 super-families and
11 families in SCOP. The LLR fold is relatively easy to
detect due to its conserved motif with many leucines
in the sequence and relatively short insertions. There-
fore it would be more interesting to discover new LLR
proteins with much less sequence identity to previous
known proteins. We select one protein in each fam-
ily as representative and see if our model can identify
LLR proteins across families.

Table 2 lists the output scores by different methods
and the rank for the LLR proteins. We can see that
LLR is generally easier to identify than the β-helices.
The chain graph model also performs much better than
other methods by ranking all LLR proteins higher than
non-LLR proteins. In addition, the predicted segmen-
tation by our model is close to prefect match for most
LLR proteins. Some examples are shown in Fig.4.

1A4Y(B)
 1OGQ(B)

Figure 4. Segmentation for protein 1OGQ and 1A4Y by
chain graph model. Green: motif; red: insertions.
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5. Conclusion

In this paper, we introduce a chain graph model to
identify an important type of complex protein folds,
i.e. those with structural repeats. Our model makes
use of both the undirected SCRFs to deal with long-
range interactions and the directed sequence motif
models as building blocks. It integrates the two parts
gracefully via a directed network under the framework
of chain graph models. The experimental results on β-
helices and LLRs show that our model performs signif-
icantly better than the previously proposed methods
in predicting the membership of protein folds. In ad-
dition, it is much more efficient than the SCRFs model
for general fold recognition.

It is worth noting that although our discussion
has focused on applying the chain graph technique
to protein fold recognition, the long-range interac-
tions/dependencies are common phenomena in many
applications, such as machine translation or infor-
mation extraction. We anticipate that the approach
presented here can be straightforwardly extended for
recognizing more challenging protein folds and for
other prediction tasks in IR and NLP.
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