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Abstract

To achieve good generalization in supervised
learning, the training and testing examples
are usually required to be drawn from the
same source distribution. In this paper we
propose a method to relax this requirement
in the context of logistic regression. Assum-
ing Dp and Da are two sets of examples
drawn from two mismatched distributions,
where Da are fully labeled and Dp partially
labeled, our objective is to complete the la-
bels of Dp. We introduce an auxiliary vari-
able μ for each example in Da to reflect its
mismatch with Dp. Under an appropriate
constraint the μ’s are estimated as a byprod-
uct, along with the classifier. We also present
an active learning approach for selecting the
labeled examples in Dp. The proposed algo-
rithm, called “Migratory-Logit” or M-Logit,
is demonstrated successfully on simulated as
well as real data sets.

1. Introduction

In supervised learning problems, the goal is to design
a classifier using the training examples (labeled data)
Dtr = {(xtr

i , ytr
i )}Ntr

i=1 such that the classifier predicts
the label yp

i correctly for unlabeled primary test data
Dp = {(xp

i , y
p
i ) : yp

i missing}Np

i=1. The accuracy of the
predictions is significantly affected by the quality of
Dtr, which is assumed to contain essential informa-
tion about Dp. A common assumption utilized by
learning algorithms is that Dtr are a sufficient sam-
ple of the same source distribution from which Dp are
drawn. Under this assumption, a classifier designed
based on Dtr will generalize well when it is tested on
Dp. This assumption, however, is often violated in
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practice. First, in many applications labeling an obser-
vation is an expensive process, resulting in insufficient
labeled data in Dtr that are not able to characterize
the statistics of the primary data. Second, Dtr and
Dp are typically collected under different experimen-
tal conditions and therefore often exhibit differences
in their statistics.

Methods to overcome the insufficiency of labeled data
have been investigated in the past few years under
the names “active learning” [Cohn et al., 1995,Krogh
& Vedelsby, 1995] and “semi-supervised learning”
[Nigam & et al., 2000], which we do not discuss here,
though we will revisit active learning in Section 5.

The problem of data mismatch has been studied in
econometrics, where the available Dtr are often a non-
randomly selected sample of the true distribution of in-
terest. Heckman (1979) developed a method to correct
the sample-selection bias for linear regression models.
The basic idea of Heckman’s method is that if one
can estimate the probability of an observation being
selected into the sample, one can use this probability
estimate to correct the selection bias.

Heckman’s model has recently been extended to clas-
sification problems [Zadrozny, 2004], where it is as-
sumed that the primary test data Dp ∼ Pr(x, y) while
the training examples Dtr = Da ∼ Pr(x, y|s = 1),
where the variable s controls the selection of Da: if
s = 1, (x, y) is selected into Da; if s = 0, (x, y) is not
selected into Da. Evidently, unless s is independent
of (x, y), Pr(x, y|s = 1) �= Pr(x, y) and hence Da are
mismatched with Dp. By Bayes rule,

Pr(x, y) =
Pr(s = 1)

Pr(s = 1|x, y)
Pr(x, y|s = 1) (1)

which implies that if one has access to Pr(s=1)
Pr(s=1|x,y) one

can correct the mismatch by weighting and resam-
pling [Zadrozny et al., 2003, Zadrozny, 2004]. In the
special case when Pr(s = 1|x, y) = Pr(s = 1|x), one
may estimate Pr(s = 1|x) from a sufficient sample of
Pr(x, s) if such a sample is available [Zadrozny, 2004].
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In the general case, however, it is difficult to estimate
Pr(s=1)

Pr(s=1|x,y) , as we do not have a sufficient sample of
Pr(x, y, s) (if we do, we already have a sufficent sam-
ple of Pr(x, y), which contradicts the assumption of
the problem).

In this paper we consider the case in which we have
a fully labeled auxiliary data set Da and a partially
labeled primary data set Dp = Dp

l ∪ Dp
u, where Dp

l

are labeled and Dp
u unlabeled. We assume Dp and

Da are drawn from two distributions that are mis-
matched. Our objective is to use a mixed training set
Dtr = Dp

l ∪Da to train a classifier that predicts the la-
bels of Dp

u accurately. Assume Dp ∼ Pr(x, y). In light
of equation (1), we can write Da ∼ Pr(x, y|s = 1) as
long as the source distributions of Dp and Da have the
same domain of nonzero probability1. As explained
in the previous paragraph, it is difficult to correct the
mismatch by directly estimating Pr(s=1)

Pr(s=1|x,y) . Therefore
we take an alternative approach. We introduce an aux-
iliary variable μi for each (xa

i , ya
i ) ∈ Da to reflect its

mismatch with Dp and to control its participation in
the learning process. The μ’s play a similar role as
the weighting factors Pr(s=1)

Pr(s=1|x,y) in (1). However, un-
like the weighting factors, the auxiliary variables are
estimated along with the classifier in the learning. We
employ logistic regression as a specific classifier and
develop our method in this context.

A related problem has been studied in [Wu & Diet-
terich, 2004], where the classifier is trained on two fixed
and labeled data sets Dp and Da, where Da is of lower
quality and provides weaker evidence for the classifier
design. The problem is approached by minimizing a
weighted sum of two separate loss functions, with one
defined for the primary data and the other for the aux-
iliary data. Our method is distinct from that in [Wu &
Dietterich, 2004] in two respects. First, we introduce
an auxiliary variable μi for each (xa

i , ya
i ) ∈ Da and the

auxiliary variables are estimated along with the classi-
fier. A large μi implies large mismatch of (xa

i , ya
i ) with

Dp and accordingly less participation of xa
i in learning

the classifier. Second, we present an active learning
strategy to define Dp

l ⊂ Dp when Dp is initially fully
unlabeled.

The remainder of the paper is organized as follows.
A detailed description of the proposed method is pro-
vided in Section 2, followed by description of a fast
learning algorithm in Section 3 and a theoretical dis-

1For any Pr(x, y|s = 1) �= 0 and Pr(x, y) �= 0, there

exists Pr(s=1)
Pr(s=1|x,y)

= Pr(x,y)
Pr(x,y|s=1)

∈ (0,∞) such that equation

(1) is satisfied. For Pr(x, y|s = 1) = Pr(x, y) = 0, any
Pr(s=1)

Pr(s=1|x,y)
�= 0 makes equation (1) satisfied.

cussion in 4. In Section 5 we present a method to
actively define Dp

l when Dp
l is initially empty. We

demonstrate example results in Section 6. Finally, Sec-
tion 7 contains the conclusions.

2. Migratory-Logit: Learning Jointly
on the Primary and Auxiliary Data

We assume Dp
l are fixed and nonempty, and with-

out loss of generality, we assume Dp
l are always in-

dexed prior to Dp
u, i.e., Dp

l = {(xp
i , y

p
i )}N

p
l

i=1 and Dp
u =

{(xp
i , y

p
i ) : yp

i missing}Np

i=Np
l +1

. We use Na, Np, and
Np

l to denote the size (number of data points) of Da,
Dp, and Dp

l , respectively. In Section 5 we discuss how
to actively determine Dp

l when Dp
l is initially empty.

We consider the binary classification problem and the
labels ya, yp ∈ {−1, 1}. For notational simplicity, we
let x always include a 1 as its first element to accom-
modate a bias (intercept) term, thus xp,xa ∈ R

d+1

where d is the number of features. For a primary data
point (xp

i , y
p
i ) ∈ Dp

l , we follow standard logistic regres-
sion to write

Pr(yp
i |xp

i ;w) = σ(yp
i w

T xp
i ) (2)

where w ∈ R
d+1 is a column vector of classifier param-

eters and σ(μ) = 1
1+exp(−μ) is the sigmoid function.

For a auxiliary data point (xa
i , ya

i ) ∈ Da, we define

Pr(ya
i |xa

i ;w, μi) = σ(ya
i w

T xa
i + ya

i μi) (3)

where μi is an auxiliary variable. Assuming the ex-
amples in Dp

l and Da are drawn i.i.d., we have the
log-likelihood function

�(w,µ;Dp
l ∪ Da)

=
∑Np

l
i=1 ln σ(yp

i w
Txp

i )+
∑Na

i=1 ln σ(ya
iw

Txa
i +ya

i μi) (4)

where µ = [μ1, · · · , μNa ]T is a column vector of all
auxiliary variables.

The auxiliary variable μi is introduced to reflect the
mismatch of (xa

i , ya
i ) with Dp and to control its par-

ticipation in the learning of w. A larger ya
i μi makes

Pr(ya
i |xa

i ;w, μi) less sensitive to w. When ya
i μi =∞,

Pr(ya
i |xa

i ;w, μi) = 1 becomes completely indepen-
dent of w. Geometrically, the μi is an extra inter-
cept term that is uniquely associated with xa

i and
causes it to migrate towards class ya

i . If (xa
i , ya

i )
is mismatched with the primary data Dp, w cannot
make

∑Np
l

i=1 ln σ(yp
i w

T xp
i ) and lnσ(ya

i w
T xa

i ) large at
the same time. In this case xa

i will be given an ap-
propriate μi to allow it to migrate towards class ya

i ,
so that w is less sensitive to (xa

i , ya
i ) and can focus

more on fitting Dp
l . Evidently, if the μ’s are allowed
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to change freely, their influence will override that of w
in fitting the auxiliary data Da and then Da will not
participate in learning w. To prevent this from hap-
pening, we introduce constraints on μi and maximize
the log-likelihood subject to the constraints:

maxw,µ �(w,µ;Dp
l ∪ Da) (5)

subject to 1
Na

∑Na

i=1y
a
i μi ≤ C, C ≥ 0 (6)

ya
i μi ≥ 0, i = 1, 2, · · · , Na (7)

where the inequalities in (7) reflect the fact that in or-
der for xa

i to fit ya
i = 1 (or ya

i = −1) we need to have
μi > 0 (or μi < 0), if we want μi to exert a positive
influence in the fitting process. Under the constraints
in (7), a larger value of ya

i μi represents a larger mis-
match between (xa

i , ya
i ) and Dp and accordingly makes

(xa
i , ya

i ) play a less important role in determining w.
The classifier resulting from solving the problem in (5)-
(7) is referred to as “Migratory-Logit” or “M-Logit”.

The C in (6) reflects the average mismatch between
Da and Dp and controls the average participation of
Da in determining w. It can be learned from data if we
have a reasonable amount of Dp

l . However, in practice
we usually have no or very scarce Dp

l to begin with. In
this case, we must rely on other information to set C.
We will come back to a more detailed discussion on C
in Section 4.

3. Fast Learning Algorithm

The optimization problem in (5), (6), and (7) is con-
cave and any standard technique can be utilized to
find the global maxima. However, there is a unique
μi associated with every (xa

i , ya
i ) ∈ Da, and when Da

is large using a standard method to estimate μ’s can
consume most of the computational time.

In this section, we give a fast algorithm for training
the M-Logit, by taking a block-coordinate ascent ap-
proach [Bertsekas, 1999], in which we alternately solve
for w and µ, keeping one fixed when solving the other.
The algorithm draws its efficiency from the analytic
solution of µ, which we establish in the following the-
orem. Proof of the theorem is given in the appendix,
and Section 4 contains a discussion that helps to un-
derstand the theorem from an intuitive perspective.

Theorem 1: Let f(z) be a twice continuously differ-
entiable function and its second derivative f ′′(z) < 0
for any z ∈ R. Let b1 ≤ b2 ≤ · · · ≤ bN , R ≥ 0, and

n = max{m : mbm −
∑m

i=1 bi ≤ R, 1 ≤ m ≤ N} (8)

Then the problem

max{zi}
∑N

i=1 f(bi + zi) (9)

subject to
∑N

i=1 zi ≤ R, R ≥ 0 (10)
zi ≥ 0, i = 1, 2, · · · , N (11)

has a unique global solution

zi =
{

1
n

∑n
j=1 bj + 1

nR− bi, 1 ≤ i ≤ n

0, n < i ≤ N
(12)

For a fixed w, the problem in (5)-(7) is simplified to
maximizing

∑Na

i=1 ln σ(ya
i w

T xa
i + ya

i μi) with respect
to µ, subject to 1

Na

∑Na

i=1 ya
i μi ≤ C, C ≥ 0, and

ya
i μi ≥ 0 for i = 1, 2, · · · , Na. Clearly lnσ(z) is a

twice continuously differentiable function of z and its
second derivative ∂2

∂z2 ln σ(z) = −σ(z)σ(−z) < 0 for
−∞ < z < ∞. Thus Theorem 1 applies. We first
solve {ya

i μi} using Theorem 1, then {μi} are triv-
ially solved using the fact ya

i ∈ {−1, 1}. Assume
ya

k1
wT xa

k1
≤ ya

k2
wT xa

k2
≤ · · · ≤ ya

kNa
wT xa

kNa
, where

k1, k2, · · · , kNa is a permutation of 1, 2, · · · , Na. Then
we can write the solution of {μi} analytically,

μki
=

⎧⎨
⎩

1
nya

ki

∑n
j=1 ya

kj
wT xa

kj

+ Na

n ya
ki

C −wT xa
ki

, 1 ≤ i ≤ n

0, n < i ≤ Na

(13)

where

n = max
{

m : mya
km

wTxa
km
−∑m

i=1y
a
ki
wTxa

ki
≤NaC,

1 ≤ m ≤ Na
}

(14)

For a fixed µ, we use the standard gradient-based
method [Bertsekas, 1999] to find w. The main pro-
cedures of the fast training algorithm for M-Logit are
summarized in Table 1, where the gradient �w� and
the Hessian matrix �2

w� are computed from (4).

4. Auxiliary Variables and Choice of C

Theorem 1 and its constructive proof in the appendix
offers some insight into the mechanism of how the mis-
match between Da and Dp is compensated through
the auxiliary variables {μi}. To make the descrip-
tion easier, we think of each data point xa

i ∈ Da

as getting a major “wealth” ya
i w

T xa
i from w and

an additional wealth ya
i μi from a given budget to-

taling NaC (C represents the average budget for a
single xa). From the appendix, NaC is distributed
among the auxiliary data {xa

i } by a “poorest-first”
rule: the “poorest” xa

k1
(that which has the small-

est ya
k1

wT xa
k1

), gets a portion ya
k1

μk1 from NaC first,
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Table 1. Fast Learning Algorithm of M-Logit

Input: Da∪Dp
l and C; Output: w and {μi}Na

i=1

1. Initialize w and μi = 0 for i = 1, 2, · · · , Na.

2. Compute the gradient �w� and Hessian ma-
trix �2

w�.
3. Compute the ascent direction d =
−(�2

w�)−1�w�.
4. Do a linear search for the step-size α∗ =

arg maxα �(w + αd).
5. Update w: w← w + α∗d.
6. Sort {ya

i w
T xa

i }N
a

i=1 in ascending order. As-
sume the result is ya

k1
wT xa

k1
≤ ya

k2
wT xa

k2
≤

· · · ≤ ya
kNa

wT xa
kNa

, where k1, k2, · · · , kNa is a
permutation of 1, 2, · · · , Na.

7. Find the n using (14).
8. Update the auxiliary variables {μi}Na

i=1 using
(13).

9. Check the convergence of �: exit and output
w and {μi}Na

i=1 if converged; go back to 2 oth-
erwise.

and as soon as the total wealth ya
k1

wT xa
k1

+ ya
k1

μk1

reaches the wealth of the second poorest xa
k2

, NaC
becomes equally distributed to xa

k1
and xa

k2
such that

their total wealths are always equal. Then, as soon as
ya

k1
wT xa

k1
+ ya

k1
μk1 = ya

k2
wT xa

k2
+ ya

k2
μk2 reach the

wealth of the third poorest, NaC becomes equally
distributed to three of them to make them equally
rich. The distribution continues in this way until the
budget NaC is used up. The “poorest-first” rule is
essentially a result of the concavity of the logarith-
mic sigmoid function lnσ(·). The goal is to maximize∑Na

i=1 ln σ(ya
i w

T xa
i + ya

i μi). The concavity of lnσ(·)
dictates that for any given portion of NaC, distribut-
ing it to the poorest makes the maximum gain in lnσ.

The C is used as a means to compensate for the loss
that Da may suffer from w. The classifier w is respon-
sible for correctly classifying both Da and Dp. Because
Da and Dp are mismatched, w cannot satisfy both
of them: one must suffer if the other is to gain. As
Dp is the primary data set, we want w to classify Dp

as accurately as possible. The auxiliary variables are
therefore introduced to represent compensations that
Da get from C. When xa gets small wealth from w
and is poor, it is because xa is mismatched and in
conflict with Dp (assuming perfect separation of Da,
no conflict exists among themselves). By the “poorest
first” rule, the most mismatched xa gets compensation

first.

A high compensation ya
i μi whittles down the partici-

pation of xa
i in learning w. This is easily seen from

the contribution of (xa
i , ya

i ) to �w� and �2
w�, which

are obtained from (4) as σ(−ya
i w

T xa
i −ya

i μi)ya
i x

a
i and

−σ(−ya
i w

T xa
i−ya

i μi)σ(ya
i w

T xa
i +ya

i μi)xa
i x

a
i

T , respec-
tively. When ya

i μi is large, σ(−ya
i w

T xa
i −ya

i μi) is close
to zero and hence the contributions of (xa

i , ya
i ) to �w�

and �2
w� are ignorable. We in fact do not need an in-

finitely large ya
i μi to make the contributions of xa

i ig-
norable, because σ(μ) is almost saturated at μ = ±6.
If ya

i w
T xa

i = −6, σ(−ya
i w

T xa
i ) = 0.9975, implying a

large contribution of (xa
i , ya

i ) to �w�, which happens
when w assigns xa

i to the correct class ya
i with prob-

ability of σ(ya
i w

T xa
i ) = σ(−6) = 0.0025 only. In this

nearly worst case, a compensation of ya
i μi = 12 can

effectively remove the contribution of (xa
i , ya

i ) because
σ(−ya

i w
T xa

i − ya
i μi) = σ(6 − 12) = σ(−6) = 0.0025.

To effectively remove the contributions of Nm auxil-
iary data, one needs a total budge 12Nm, resulting in
an average budget C = 12Nm/Na.

To make a right choice of C, the Nm/Na should rep-
resent the rate that Da are mismatched with Dp. This
is so because we want NaC to be distributed only to
that part of Da that is mismatched with Dp, thus per-
mitting us to use the remaining part in learning w.
The quantity Nm/Na is usually unknown in practice.
However, C = 12Nm/Na gives one a sense of at least
what range C should be in. As 0 ≤ Nm ≤ Na, letting
0 ≤ C ≤ 12 is usually a reasonable choice. In our
experiences, the performance of M-Logit is relatively
robust to C, and this will be demonstrated in Section
6.2 using an example data set.

5. Active Selection of Dp
l

In Section 2 we assumed that Dp
l had already been de-

termined. In this section we describe how Dp
l can be

actively selected from Dp, based on the Fisher infor-
mation matrix [Fedorov, 1972, MacKay, 1992]. The
approach is known as active learning [Cohn et al.,
1995,Krogh & Vedelsby, 1995].

Let Q denote the Fisher information matrix of Dp
l ∪Da

about w. By definition of the Fisher information ma-
trix [Cover & Thomas, 1991], Q = E{yp

i },{ya
i }

∂�
∂w

∂�
∂w

T
,

and substituting (4) into this equation gives (a brief
derivation is given in the appendix)

Q =
∑Np

l
i=1σ

p
i (1− σp

i )xp
i x

p
i

T +
∑Na

i=1σ
a
i (1− σa

i )xa
i x

a
i

T

(15)
where σp

i = σ(wT xp
i ) for i = 1, 2, . . . , Np

l , and σa
i =

σ(wT xa
i + μi) for i = 1, 2, . . . , Na, and w and {μi}

represent the true classifier and auxiliary variables.
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It is well known the inverse Fisher information Q−1

lower bounds the covariance matrix of the estimated
w [Cover & Thomas, 1991]. In particular, [det(Q)]−1

lower bounds the product of variances of the elements
in w. The goal in selecting Dp

l is to reduce the vari-
ances, or uncertainty, of w. Thus we seek the Dp

l that
maximize det(Q).

The selection proceeds in a sequential manner. Ini-
tially Dp

u = Dp, Dp
l is empty, and Q =

∑Na

i=1 σa
i (1 −

σa
i )xa

i x
a
i

T . Then one at a time, a data point xp
i ∈ Dp

u

is selected and moved from Dp
u to Dp

l . This causes Q
to be updated as: Q ← Q + σp

i (1 − σp
i )xp

i (x
p
i )

T . At
each iteration, the selection is based on

maxxp
i ∈Dp

u
det

{
Q + σp

i (1− σp
i )xp

i (x
p
i )

T
}

= maxxp
i ∈Dp

u

{
1 + σp

i (1− σp
i )(xp

i )
T Q−1xp

i

}
(16)

where we assume the existence of Q−1, which can often
be assured by using sufficient auxiliary data Da.

Evaluation of (16) requires the true values of w and
{μi}, which are not known a priori. We follow Fedorov
(1972) and replace them with the w and {μi} that are
estimated from Da ∪ Dp

l , where Dp
l are the primary

labeled data selected up to the present.

6. Results

In this section the performance of M-Logit is demon-
strated and compared to the standard logistic regres-
sion, using test error rate as the performance index.
The M-Logit is trained using Da ∪ Dp

l , where Dp
l are

either randomly selected from Dp, or actively selected
from Dp using the method in Section 5. When Dp

l

are randomly selected, 50 independent trials are per-
formed and the results are obtained as an average
over the trials. Three logistic regression classifiers are
trained using different combinations of Da and Dp

l :
Da∪Dp

l , Dp
l alone, and Da alone, where Dp

l are identi-
cal to the Dp used for M-Logit. The four classifiers are
tested on Dp

u = Dp \ Dp
l , using the following decision

rule: declare yp = −1 if σ(wT xp) ≤ 0.5 and yp = 1
otherwise, for any xp ∈ Dp

u.

Throughout this section the C for M-Logit is set to
C = 6 when the comparison is made to logistic regres-
sion. In addition, we present a comparison of M-Logit
with different C’s, to examine the sensitivity of M-
Logit’s performance to C.

6.1. A toy Example

In the first example, the primary data are simulated
as two bivariate Gaussian distributions representing
class “−1” and class “+1”, respectively. In particu-

larly, we have Pr(xp|yp = −1) = N (xp;µ0,Σ) and
Pr(xp|yp = +1) = N (xp;µ1,Σ), where the Gaus-
sian parameters µ0 = [0, 0]T , µ1 = [2.3, 2.3]T , and

Σ =
[

1.75 −0.433
−0.433 1.25

]
. The auxiliary data Da

are then a selected draw from the two Gaussian dis-
tributions, as described in [Zadrozny, 2004]. We
take the selection probability Pr(s|xp, yp = −1) =
σ(w0 + w1K(xp,µs

0;Σ)) and Pr(s|xp, yp = +1) =
σ(w0 + w1K(xp,µs

1;Σ)), where σ is the sigmoid func-
tion, w0 = −1, w1 = exp(1), K(xp,µs

0;Σ) =
exp{−0.5(xp −µs

0)
T Σ−1(xp −µs

0)} with µs
0 = [2, 1]T ,

and K(xp,µs
1;Σ) = exp{−0.5(xp − µs

1)
T Σ−1(xp −

µs
1)} with µs

1 = [0, 3]T . We obtain 150 samples of
Dp and 150 samples of Da, which are shown in Figure
3.

The M-Logit and logistic regression classifiers are
trained and tested as explained at the beginning of
this section. The test error rates are shown in Figure
1 and Figure 2, as a function of number of primary
labeled data used in training. The Dp

l in Figure 1 are
randomly selected and the Dp

l in Figure 2 are actively
selected as described in Section 5.

5 10 15 20 25 30

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Number of primary labeled data (size of Dp
L
)

T
es

t e
rr

or
 r

at
e

M−Logit (C=6) trained on Da + random Dp
L

Logistic regression trained on Da + random Dp
L

Logistic regression trained on random Dp
L

Logistic regression trained on Da

Figure 1. Test error rates of M-Logit and logistic regression
on the toy data, as a function of size of Dp

l . The primary
labeled data Dp

l are randomly selected from Dp. The error
rates are an average over 50 independent trials of random
selection of Dp

l .

Several observations are made from inspection of Fig-
ures 1 and 2.

• The M-Logit consistently outperforms the three
standard logistic regression classifiers, by a con-
siderable margin. This improvement is a result of
properly fusing Da and Dp

l , with Da determining
the classifier under the guidance of few Dp

l .
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Figure 2. Error rates of M-Logit and logistic regression on
the toy data, as a function of size of Dp

l . The primary
labeled data Dp

l are actively selected from Dp, using the
method in Section 5.

• The performance of the logistic regression trained
on Dp

l alone changes significantly with the size of
Dp

l . This is understandable, considering that Dp
l

are the only examples determining the classifier.
The abrupt drop of errors from iteration 11 to
iteration 12 in Figure 2 may be because the label
found at iteration 12 is critical to determining w.

• The logistic regression trained on Da alone per-
forms significantly worse than M-Logit, reflecting
a marked mismatch between Da and Dp.

• The logistic regression trained on Da ∪ Dp
l im-

proves, but mildly, as Dp
l grows, and it is ulti-

mately outperformed by the the logistic regression
trained on Dp

l alone, demonstrating that some
data in Da are mismatched with Dp and hence
cannot be correctly classified along with Dp, if
the mismatch is not compensated.

• As Dp
l grows, the logistic regression trained on Dp

l

alone finally approaches to M-Logit, showing that
without the interference of Da, a sufficient Dp

l can
define a correct classifier.

• All four classifiers benefit from the actively se-
lected Dp

l , this is consistent with the general
observation with active learning [Cohn et al.,
1995,Krogh & Vedelsby, 1995].

To better understand the active selection process, we
show in Figure 3 the first few iterations of active learn-
ing. Iteration 0 corresponds to the initially empty Dp

l ,
and iterations 1, 5, 10, 13 respectively correspond to

1, 5, 10, 13 data points selected accumulatively from
Dp

u into Dp
l .

Each time a new data point is selected, the w is re-
trained, yielding the different decision boundaries. As
can be seen in Figure 3, the decision boundary does not
change much after 10 data are selected, demonstrating
convergence.

In Figure 3, each auxiliary data point xa
i ∈ Da is

symbolically displayed with a size in proportion to
exp(−ya

i μi/12), hence a small symbol of auxiliary data
corresponds to large ya

i μi and hence small participa-
tion in determining w. The auxiliary data that cannot
be correctly classified along with the primary data are
de-emphasized by the M-Logit. Usually the auxiliary
data near the decision boundary are de-emphasized.

6.2. Results on the Wisconsin Breast Cancer
Databases

In the second example we consider the Wisconsin
Breast Cancer Databases from the UCI Machine
Learning Repository. The data set consist of 569 in-
stances with feature dimensionality 30. We randomly
partition the data set into two subsets, one with 228
data points and the other with 341 data points. The
first is used as Dp, and the second as Da. We arti-
ficially make Da mismatched with Dp by introducing
errors into the labels and adding noise to the features.
Specifically, we make changes to 50% randomly chosen
(xa

i , ya
i ) ∈ Da: change the signs of ya

i and add 0 dB
white Gaussian noise to xa

i . We then proceed, as in
Section 6.1, to training and testing the four classifiers.
We again consider both random Dp

l and actively se-
lected Dp

l . The test errors are summarized in Figures
4 and 5. The results are essentially consistent with
those in Figures 1 and 2, extending the observations
we made there to the real data here. It is particularly
noted that the mismatch between Da and Dp here is
more prominent than in the toy data, as manifested
by the error rates of logistic regression trained alone
on Da. This makes M-Logit more advantageous in the
comparison: not only does it give the best results but
it also converges faster than others with the size of Dp

l .

To examine the effect of C on the performance of M-
Logit, we present in Figure 6 the test error rates of
M-Logit using five different C: C = 2, 4, 6, 8, 10. Here
the Dp

l are determined by active learning as described
in Section 5. Clearly, the results for the 5 different
C’s are almost indistinguishable. This relative insen-
sitivity of M-Logit to C may partly be attributed to
the adaptivity brought about by active learning. With
different C, the Dp

l are also selected differently, thus
counteracting the effect of C and keeping M-Logit ro-
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Figure 3. Illustration of active data selection by M-Logit. Only iterations 0,1,5,10,13 are shown. The different symbols
are defined as: blue ◦ = Dp labeled “−1”, red ◦ = Dp labeled “+1”, green • = Da labeled “−1”, and magenta • = Da

labeled “+1”. The numbers in black denote Dp
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boundaries symbolize weakened participation of the associated Da in determining w. This may only be visible in the
zoomed figure (iteration 13).
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Figure 4. Test error rates of M-Logit and logistic regression
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function of size of Dp
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randomly selected from Dp. The error rates are an average
over 50 independent trials of random selection of Dp

l .

bust.

7. Conclusions

We have proposed an algorithm, the “Migratory-
Logit” or M-Logit, which is capable of learning in the
presence of mismatch between the (auxiliary) training
data Da and the (primary) testing data Dp. The basic
idea of our method is to introduce an auxiliary variable
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Figure 5. Test error rates of M-Logit and logistic regression
on the Wisconsin Breast Cancer Databases of UCI, as a
function of size of Dp

l . The primary labeled data Dp
l are

actively selected from Dp, using the method in Section 5.

μi for each example (xa
i , ya

i ) ∈ Da, which allows xa
i to

migrate to the class ya
i when it cannot be correctly

classified along with xp by the classifier. The migra-
tions of Da are controlled by the inequality constraint
1

Na

∑Na

i=1 ya
i μi ≤ C, where C ≥ 0 is an appropriate

bound limiting the average migration. The primary
labeled data Dp

l play a pivotal role in correctly learn-
ing the classifier, we have presented an method to ac-
tively selecting Dp

l , which enhances the adaptivity of
the entire learning process. We have developed a fast
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Figure 6. Comparison of M-Logit with different C’s, using
the Wisconsin Breast Cancer Databases of UCI. The pri-
mary labeled data Dp

l are actively selected from Dp, using
the method in Section 5.

learning algorithm to enhance the ability of M-Logit
to handle large auxiliary data sets.

The results from both toy data and the Wisconsin
Breast Cancer Databases show that M-Logit yields
significant improvements over the standard logistic re-
gression, demonstrating that if the classifier trained on
Da is to generalize well to Dp, the mismatch between
Da and Dp must be compensated.
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Appendix

Proof of Theorem 1: Let f ′(z) be the first deriva-

tive of f(z). We have
∑N

i=1 f(bi + zi) =
∑N

i=1 f(bi) +∑N
i=1

∫ zi

0
f ′(x + bi)dx. The first term on the right side is

a constant and hence, the problem in (9) is equivalent to

max{zi}
N∑

i=1

∫ zi

0

f ′(bi + x)dx (A-1)

Because f ′′(z) < 0, we have for any τ1 ≤ τ2 that f ′(τ1 +
x) ≥ f ′(τ2 + x) and consequently

∫ Δ

0
f ′(τ1 + x)dx ≥ ∫ Δ

0
f ′(τ2 + x)dx

∀ τ1 ≤ τ2 and Δ ≥ 0
(A-2)

By (8), there exists 0 ≤ r < n(bn+1 − bn) such that R =
nbn −∑n

k=1 bk + r =
∑n

k=1 kΔk where Δk = bk+1 − bk

for k = 1, · · · , n − 1, and Δn = r/n. We now use (A-
2) to distribute Δ1, 2Δ2, · · · , nΔn to z1, z2, · · · , zN such
that the resulting {zi} maximize (A-1). As Δk ≥ 0 for
k = 1, · · · , n, and any distribution of {kΔk}Nk=1 to {zk}Nk=1

makes
∑N

i=1 zi =
∑n

k=1 kΔk = R, the constraints of (10)
and (11) are automatically satisfied.

Initially zi = 0 for i = 1, 2, · · · , N .

As Δ1 = b2 − b1 ≥ 0, by (A-2),
∫ Δ1
0

f ′(b1 + x)dx ≥∫ Δ1
0

f ′(b2 + x)dx, therefore Δ1 is distributed to z1, i.e.,
z1 ← z1 + Δ1, which makes b1 + z1 = b2.

Similarly Δ2 = b3 − b2 ≥ 0, by (A-2),
∫ Δ2
0

f ′(b2 + x)dx ≥∫ Δ2
0

f ′(b3 +x)dx, therefore 2Δ2 is equally distributed to z1

and z2, i.e., z1 ← z1 + Δ2 and z2 ← z2 + Δ2, which makes
b1 + z1 = b2 + z2 = b3.

Generally, kΔk is equally distributed to z1, z2, · · · , zk. Af-
ter the distribution of kΔk, k = 1, 2, · · · , n, we have
zk =

∑n
i=k Δi for k = 1, 2, · · · , n and zk = 0 for k =

n + 1, n + 2, · · · , N , which is equal to the solution in (12).
Because the problem is strictly concave, the solution is
unique and globally optimal. �

Derivation of Equation (15): By definition of logis-

tic regression, w is the parameter of the conditional dis-

tribution Pr(y|x) = σ(ywT x), with x given and fixed.

Let g = ∂ ln σ(ywT x)/∂w = [1 − σ(ywT x)]yx. Then

Ey(ggT ) =
∑

y=−1,1 σ(ywT x)[1 − σ(ywT x)]2xxT . Using

σ(−wT x) = 1−σ(wT x), we obtain Ey(ggT ) = σ(wT x)[1−
σ(wT x)]xxT . Summing E(ggT ) over all primary and aux-

iliary data points (assuming the data are independent), we

obtain the formula of Q. �
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