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Abstract

This paper is concerned with the problem
of predicting relative performance of clas-
sification algorithms. It focusses on meth-
ods that use results on small samples and
discusses the shortcomings of previous ap-
proaches. A new variant is proposed that
exploits, as some previous approaches, meta-
learning. The method requires that exper-
iments be conducted on few samples. The
information gathered is used to identify the
nearest learning curve for which the sampling
procedure was carried out fully. This in turn
permits to generate a prediction regards the
relative performance of algorithms. Exper-
imental evaluation shows that the method
competes well with previous approaches and
provides quite good and practical solution to
this problem.

1. Introduction

The problem of predicting relative performance of al-
gorithms continues to be an issue that is worth inves-
tigating further. There are many algorithms that can
in principle be used on any given problem. The user
can make a direct comparison of the considered algo-
rithms on any given problem using a cross-validation
evaluation scheme. However the computational costs
of this approach are significant. If it is desirable to
avoid running every algorithm.

It is thus useful to have a principled way that would
help us to determine which algorithms are likely to
lead to the best results on a new problem. The com-
mon thread of many previous methods is to store pre-
vious experimental results on different datasets. The
datasets are characterized using a set of measures, in-
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cluding the dataset in question for which we seek an
advice. A (meta-)learning method is used to generate
a prediction (i.e relative ordering of algorithms) for the
new case.

Some methods rely on dataset characteristics in the
form of statistical and information-theoretic measures
(D. Michie, 1994; Brazdil et al., 2003). These mea-
sures need to be identified beforehand, which is a non-
trivial task. Even if we can come up with a set of
supposedly good candidate measures, it is not guaran-
teed that these will be useful in the end. Typically we
need to verify whether these are useful in the task of
predicting the relative performance of algorithms.

These difficulties have led some researchers to explore
alternative ways to achieve the same aim. Some have
used simplified versions of some of the algorithms re-
ferred to as landmarks (Bensussan & Giraud-Carrier,
2000; Pfahringer et al., 2000). The results of these
landmark algorithms are then used as measures to esti-
mate the relative performance of algorithms. Although
the initial results were promissing, the method has not
been extensively used afterwards.

Other researchers have proposed to use simplified ver-
sions of the data, which are sometimes referred to as
sampling landmarks. The performance of algorithms
on samples can be used again to estimate their relative
performance. However, the methods that exploited in-
formation from sampling landmarks were on the whole
inconclusive. The results did not show a clear advan-
tage of using this kind of information (Firnkranz &
Petrak, 2001; Soares et al., 2001). Somewhat surpris-
ingly, using more information in the form of more sam-
ples did not lead to marked improvement.

This somewhat startling finding motivated us to inves-
tigate this issue further, which in turn enabled us to
come up with a new solution. The method described
here exploits information about learning curves which
has already proved to be useful in other contexts (Leite
& Brazdil, 2004). The method requires that experi-
ments be conducted on few samples for the algorithms
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in question. The information gathered is used to iden-
tify the nearest learning curves, for which the sam-
pling procedure was carried out fully. This in turn
permits to generate the prediction regards the relative
performance of the algorithms. Experimental evalua-
tion shows that the method competes well with previ-
ous approaches and provides quite good and practical
solution to this problem.

The rest of the paper is organized as follows. The
next section provides more details regards the sam-
pling method and how we can predict the outcome of
learning. Section 3 discusses the experiments and the
results obtained. The final section describes our con-
clusions.

2. Using Sampling to Predict the
Outcome of Learning

As we have mentioned earlier, the method described
relies on performance estimates obtained on samples.
The method proceeds in two phases. In the first one,
we generate a model by training the given algorithm on
a small sample of the data. After this, another small
sample (from the same data) is used to carry out tests
and to obtain the required estimates of performance.

Different sampling strategies have been described in
literature. Simple strategies use a fixed number or
fixed fraction of cases. Some more elaborate strate-
gies try to find an optimum sample size using a suc-
cession of models generated by a given learning algo-
rithm on the basis of a sequence of samples. Some
authors have used samples that increase by a fixed
amount (John & Langley, 1996), while others have
used progressively increasing samples (Provost et al.,
1999; Leite & Brazdil, 2004). Usually the aim is to
determine the sample size in which the accuracy does
not increase any more, called a optimal sample size.
Fig. 1 shows a typical learning curve and the optimal
sample size is represented by S*. The corresponding
accuracy is represented by a*.

Our aim is to predict the accuracy a; at a particular
sample size S;, on the basis of known measurements,
corresponding to an initial segment consisting of #S
samples. Let us examine again the learning curve rep-
resented in Fig. 1. Suppose the points a1, as and
as constitute the initial segment. So, our aim is to
estimate what happens afterwards.

The prediction of a; is done on the basis of previ-
ous knowledge about the algorithm in question. The
knowledge is stored in the form of learning curves ob-
tained earlier on other (similar) datasets. The aim is
to use these curves to make predictions of accuracy on

o,

Accur acy

St S S B s

Figure 1. Learning Curve

a curve that is only partly known (we have information
about the initial segment only).

The details of this method are described in the follow-
ing. First, we will discuss how the learning curves are
represented. Then, we will show how certain learning
curves are identified on the basis of existing informa-
tion for the purpose of prediction. Finally, we show
how the prediction is generated and how this can de-
termine the relative ordering of pairs of algorithms !.
The reader can consult Fig. 2 for an overview of the
method.

Input:

Ay, Ay (2 algorithms)

d (dataset in question), L (database of n learning curves)
Parameters:

#S (size of the initial segment)

k (number of neighbors)

S; (size of dataset d expressed as sample size)
Output:

Decision (1 or 0), regards A, > A,.

Run the algorithms A, and A, on dataset d

while varying samples from m =1 to #S.
Calculate accuracies A, g, and Agdm

(construct partial learning curves)

Analyze the learning curves stored and

calculate distances dp(d,j)(j =1..n)
Identify k curves for algorithms A, and A,

with the smallest distance.
Retrieve the corresponding accuracies of A, for size S,

Qp.jnl---Op jnk, and combine them.

Repeat this also for A,.
Return value 1 if the combined accuracy (mean) of A,

is higher than the combined accuracy of A,.

Otherwise return O.

Figure 2. The basic algorithm for predicting relative per-
formance

2.1. Representation of Learning Curves

Suppose we have datasets {Dp, Da,...,D,} and for
each one we have a learning curve available (later we

!This goal is similar to the one used by others (Kalousis
& Theoharis, 1999), but the method used here is different.
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will discuss a variant of this basic method which uses
N learning curves per dataset). Each learning curve
is represented by a vector < a;1,a;2,..,ai, >, where
a;,m represents the accuracy of the given algorithm on
dataset D; on m-th sample in the sequence. Following
previous work (Provost et al., 1999) the sizes follow a
geometric progression. The sequence spans across the
whole dataset.

2.2. Identification of Appropriate Learning
Curves for the Purpose of Prediction

Suppose we are interested in dataset D and we have
information about the initial segment of the learning
curve (e.g. the first #S=3 points). We employ a
nearest neighbor algorithm (k-NN) to identify similar
datasets and retrieve the appropriate learning curves.
Here the k-NN algorithm represents a meta-learner
that helps us to resolve the issue of predicting the accu-
racy for a particular sample. As k-NN uses a distance
measure to identify k similar cases, we need to adapt
the method to our problem.

Here we just use the information concerning the initial
segment. The distance function between datasets D;
and D; takes into acount the results of both algorithms
considered (A4, and A,) and is defined by

where m spans across the initial segment. In other
words, the method takes into acount a given pair of
algorithms and tries to identify cases (i.e. datasets)
which are most similar to the current one.

2.3. Predicting Accuracy and Determining
which Algorithm is Better

Once k learning curves have been identified, we gen-
erate the prediction regards the accuracy for a given
sample size S; 2. That is, if the dataset in question
can be described, say, using 12 samples, we would try
to predict the accuracy of the 12-th sample(S12).

If we use k>1 curves, then, in general, the retrieved
values will differ. One obvious way to estimate the
accuracy a; on the basis of this information is by using
the mean value.

Our task is to use this information to resolve the fol-

2 Apart from this we use also an additional mechanism
of adaptation described in a separate section later.

lowing decision problem. Suppose we have 2 algo-
rithms, A, and A, then our aim is to determine which
one of the two is likely to give better results. The de-
cision is easy to make, as we can just compare the
predicted accuracies (the means) and select the one
that is better.

Some alternatives as to how the problem can be for-
mulated are discussed further on.

2.4. Using Aggregated Learning Curves

It is a well known fact that the performance of
many algorithms may vary substantially when differ-
ent portions of data are selected from a given source.
This phenomenon is usually referred to as wvariance
(Breiman, 1996). The problem is even more apparent
if we use small samples. As a consequence, the learn-
ing curves do not always look like the one shown in
Fig. 1 which is monotonically increasing. The curves
obtained from real data often include points that ap-
pear to jump up and down. This has an adverse affect
on the method described.

To minimize this problem we have decided to generate
a smoothed-out curve on the basis of N learning curves
per dataset. Each individual learning curve is obtained
using a different portion of the data, using a method
similar to N cross-validation. Each point 4, ,,, the m-
th point of smoothed curve for dataset i, represents
the mean of the corresponding points of the individual
learning curves.

2.5. Adaptation of the Retrieved Curves

As was described earlier, the retrieved learning curve is
used to generate a prediction. We note that even if we
retrieved the nearest curve to the one given, in general,
the accuracies will not coincide. It may happen that all
the accuracies will be above (below) the given curve.
So if we use this curve directly for prediction, we can
expect that the accuracy a; for sample .S; will be off
the target.

We note that even if we used a larger segment in the
matching process, we may retrieve exactly the same
curve, without being able to affect the final prediction.
In other words, the predicted accuracy will be biased
by form of the retrieved learning curves. This fact ex-
plains the somewhat surprising finding that if we use
more information (i.e. larger segment in matching),
this may not always lead to improvements. This could
be one of the reasons for the somewhat discouraging re-
sults reported in literature (Fiirnkranz & Petrak, 2001;
Soares et al., 2001).

We are interested to correct this shortcoming. If we
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provide a system with more information it should work
better! We have adopted the following strategy to
overcome (or to mitigate) this problem.

The strategy exploits the notion of adaptation as in
Case-based Reasoning (Kolodner, 1993; Leake, 1996).
The main idea behind this is not only to retrieve a
partial solution (i.e. a curve), but to adapt it to new
circumstances. One straightforward way of doing this
is by mowving each retrieved curve to the partial curve
available for the new dataset (see Figure 3). This
adaptation can be seen as a way of combining the in-
formation of the retrieved curve with the information
available for the new dataset.
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Figure 3. Adaptation of the retrieved learning curve

We have designed a simple adaptation procedure
which modified the retrieved curve using a scale co-
efficient (named f).

Supose that the new dataset is D; and its partial learn-
ing curve ¢; :< a;,1,04,2, ..., Q5,45 >. Supose also that
¢r 1< Qp1,Qr2, ..., Qr ym > is one of the retrieved curves.
We adapt the retrieved curve ¢, to ¢; by multiplying
each point of ¢, by f. The adapted version of ¢, will
be given by ¢, : a;. ; = f X a;.

The scale coefficent f is the one that minimizes the
euclidean distance between the two curves on the ini-
tial segment < 1,...,#S5 >. Besides we consider that
each point has a different weight. The idea is to give
more importance to points occuring later on the learn-
ing curve. The weigths increases as the sample sizes
increases. An obvious way to express this idea is to
define the weight as the sample size associated to the
considered point (w; = #5;).

The following equation determines f:

S (aig x ar; x w?)

Zf::sl (a7 ; x w3)

f=

(2)

The inclusion of the adaptation in our algorithm is
straightforward. After retrieving the curves we adapt
them to the partial learning curves.

3. Empirical Evaluation

As we have explained earlier in this paper, our aim is
to devise a method for a simple decision problem: Sup-
pose we have 2 algorithms, which one will give better
accuracy on a given dataset?

In our experimental study we have used the following
two algorithm, C5 (Quinlan, 1998) and SVM 3. We
could have chosen others. Which algorithm we use
is not really so important, as long as one competes
well with the other. This condition was satisfied with
the datasets used (the default accuracy is discussed
further on). Both algorithms were used with default
settings for similar reasons to the ones mentioned. Our
aim was not to achieve the highest possible accuracy,
but predict which of the two given algorithms will be
better.

This decision problem is represented as classification
task as follows: If C5 is better than SVM (shortly
C5>SVM), then we say the class is 1, while in the op-
posite case the class is 0. To get the true classification
we have used the usual cross-validation evaluation pro-
cedure on each dataset for the two given algorithms.

Our first aim is to determine the accuracy of our ap-
proach. That is, can the samples be used to obtain
high accuracy on our classification task?

Besides, our other aim was to compare these results to
a previous method which relies on dataset character-
istics instead. So, we have elaborated a variant of the
method that would enable us to evaluate this. Instead
of using results on samples when searching for nearest
learning curves, we would use the seven characteristics
used earlier (Brazdil et al., 2003).

The first approach is identified here as MDS (meta-
learning on data samples) and the second one as MDC
(meta-learning with data characteristics).

We have used 30 datasets in the evaluation. Some
come from UCI (Blake & Merz, 1998), others were

3We have used the libsvm (Chang & Lin, 2001) imple-
mentation provided by the e1071 (Dimitriadou et al., 2004)
package of R (R Development Core Team, 2004). We have
used a radial basis kernel.
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used within project METAL (MetaL,, 1999).

The samples were generated using a geometric pro-
gression as follows. The size of m;-th sample is set
to the rounded value of 26+0-5Xmi  Thus the size of
the first sample is 265, giving 91 after rounding, and
the second sample is 27, giving 128 etc. Table 1 shows
the relationship between the sample number and the
actual sample size.

Table 1. Relationship between the sample number and the
actual sample size

m 1 2 5 20 25
size 91 128 181 65536 370728

In this experiment the number of samples used is 1.
We have just used the first sample (91 cases). The
results are shown in Table 2. As we can see, the initial
problem has a default accuracy of 53%. Our approach
(MDS) achieves accuracy of 77% and outperforms the
one that uses dataset characteristics (MDC).

Besides, we have observed that our approach is much
faster to execute than the alternative one (MDC). It
needs to examine only a part of the data to obtain the
estimate. The process is fast, despite the fact that we
need to train a classifier in each case. This is because
training on small samples is relatively fast. Characteri-
sation of the entire dataset is much slower, particularly
if the dataset is large.

3.1. The Effect of Curve Adaptation on
Relative Performance Prediction

In this section we describe an experiment whose aim
was to evaluate the adaptation procedure described
earlier. Here it is referred to as A_MDS, while the
method without adaptation is called MDS. The dif-
ference between A_MDS and MDS relies in the adap-
tation of the retrieved learning curves to the partial
learning curves.

Our aim here was to determine which of the versions
(A_MDS or MDS) has better performance. Besides we
also compare the computational costs of MDS (which
has a very similar cost to A_MDS) to a cross-validation
approach to our decision problem. For each dataset
we consider the time cost of MDS as the time spent
on training all the classifiers needed to obtain the two
partial learning curves (one for A, and other for A,).

The experimental setup was the same employed in the
experiment described previously. The only difference
is that we have varied the size of the initial segment
to test the adaptation procedure.

Table 2. Classification results for C5 > SVM

dataset MDS MDC true
class

win/loss

acetylation 0
adult (METAL)
contraceptive
musk

parity
quisclas
recljan2jun97
adult (UCI)
allbp
allhyper

ann

car

cmc

krkopt

mfeat
nursery
optdigits
pendigits
pyrimidines
quadrupeds
sat
segmentation
shuttle

sick
spambase
splice
thyroid0387
waveform21
waveform40
yeast

I+ o+

OO0 O0OFHRORRFRRRERPRRERRERROFFOODOFHKFHRERERFROOOORO
++

OHHHFHOFHHFHROODOOODO0OOOOOOORHFEFHOFROHF,HOOOO
COOHOOFRFHRHOOFROOFHOOOORREKFEFHEFEFORKFEOR

Correctly Classified 23 20
Accuracy 7% 67% -
(23/30)  (20/30)
Default Accuracy - - 53%
(16/30)

The results concerning the accuracies of A_MDS and
MDS are shown in Figure 4.
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1
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0.8
1

0.7
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Figure 4. The effect of curve adaptation on the accuracy

We can see that for MDS the results do not improve if
we use more samples. In fact, we observe a drop in the
accuracy as the initial segment sizes increases. In con-
trast, the accuracy of A_MDS as we use more samples.
If we use all the data it reaches almost 100% accu-
racy. In this sence it is equivalent to a cross-validation
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evaluation scheme.

We observe that A_MDS outperforms MDS if the ini-
tial segment sizes is greater than 5.

This means that if we use only few samples the adap-
tation procedure harms the performance.

This result is in our view of interest to others. Adap-
tation should be used if the dataset is relatively large
and so constructing an initial segment with more than
5 points is justified.

As for the time computational costs the results are
presented in Figure 5.
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Figure 5. Time comparison between MDS and cross-
validation

The time costs are presented in the y axis using a log1g
scale. The results for the 30 datasets are summarized

using a geometric mean 4.

The dotted line, which remains constant as the initial
segment sizes increases, represents the average time
needed to run a cross 10 fold cross-validation on each
dataset. The value for this average is 25.7 seconds.

The solid line represents the time costs for A_MDS.
Both lines cross when the number of samples is be-
tween 11 and 12. This means that the time of A_MDS
is the same as in the cross-validation approach.

When the number of samples is between 5 and 6
A_MDS is about 10 times faster than cross-validation.
A number of samples equal to 7 corresponds to a point
when A_MDS is 5.4 times faster than cross-validation
and reaches still quite good accuracy (86.6%).

“We have chosen the geometric mean because it corre-
spond to arithmetic mean when using a log scale.

4. Parameters of Our Method: The
Values Used and Future Work

The method described involves various parameters. In
this section we briefly justify why certain choices were
made and discuss other options that could be taken.

Choice of Algorithms and Datasets: In this
study we have used a pair of algorithms (C5 and SVM)
and 30 datasets. Further work could be carried out to
verify that the results hold in other settings.

Using significance tests: The decision problem re-
gards whether we should use algorithms A, or A, could
be formulated as 3-class problem as other authors have
sugested (Kalousis & Theoharis, 1999). Class 1 (-1)
would be attributed to cases when Ap is significantly
better (worse) than A,. All other cases would be clas-
sified as 0. We plan to verify whether the main result
holds also for this scenario.

Representation of the Learning Curve: Each
learning curve is represented by a sequence of points.
The sample sizes follow a geometric progression. Both
the initial size (91 cases) and the increment represent
parameters of the method are considered fixed. Other
settings could be tried in future, although we do not
think the results could be improved dramatically this
way. Besides, instead of saving point-to-point infor-
mation about learning curves, one could take a model-
based approach. In principle it would be possible to fit
a predefined type of curve through the points and save
the curve parameters. The distance measure could
then be redefined accordingly. As the curve fitting
is subject to errors, it remains to be seen whether this
approach would lead to better results.

Number of Curves Constructed per Dataset:
We have used both a single curve and N=10 curves
per dataset. As has been pointed out earlier, the
N=10 curves were compacted into a single aggregated
smoothed-out curve. The results with this curve were
much better than the results with a single curve. Fur-
ther work could be done to determine the advantages
/ disadvantages of using other values than 10.

Size of the initial segment of the learning curve
used in matching: It appears that the segment con-
sisting of only one sample provides already quite a lot
of information for a good decision. We have exper-
imented with other values and should quantify what
the net benefit is of using a larger segment.
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Using data characteristics: In the work on pre-
dicting the stopping point on a learning curve, one
particular dataset characteristic - the dataset size (i.e.
number of cases) - was shown to be useful (Leite &
Brazdil, 2004). Addition of this attribute led to bet-
ter performance. We plan to examine whether this
could also improve the method described here and
whether some other characteristics could be exploited
(e.g. number or entropy of classes etc.).

Value of k in the k-NN procedure: In our ex-
periments we have used the value k=3. We have ex-
perimented with other different values (both lower and
higher than 3), but the results were on the whole com-
parable. These results could be validated further by
conducting further experiments.

5. Discussion

In this section discusses some related work which has
not been covered in the earlier sections of this paper.

The issue of accuracy prediction has been addressed
for by others (Bensussan & Kaloussis, 2001). There
are several differences between this work and the one
presented here. The most important one is that the
authors did not use sampling landmarks, but other
methods, including for instance landmarks. Although
landmarking enabled to construct regression models
with rather low MAD error, it failed to provide a good
ranking of classifiers. As we have demonstrated, the
method proposed here does not suffer from this short-
coming.

6. Conclusions

We have described a method that exploits the infor-
mation about learning curves to determine which of
two learning algorithm is likely to be better on a new
problem.

The method requires that experiments be conducted
on few samples. The information gathered is used to
identify the nearest learning curves, for which the sam-
pling procedure was carried out fully. This in turn
permits to generate the prediction regards the relative
performance of the given algorithms.

We have carried out experimental evaluation of the
method using 30 datasets. Our approach (MDS)
achieves accuracy of about 77% and outperforms the
method that uses dataset characteristics only (MDC).

Besides being much faster, it does not require to come
up with data characteristics that are suitable for pre-
diction. The information of the algorithms on data

samples provides that information. The method is
thus usable in other circumstances where we have
limited knowledge about why some algorithms work,
while others don’t.

An interesting issue arises why previous attempts in
this direction were inconclusive. Previous approaches
did not exploit the information regards learning curves
as we have done. This we believe is an important as-
pect that makes a difference.

Besides, we have re-used the idea of case adaptation to
ovecome one fundamental problem which the previous
methods did not manage to resolve. That is, how can
we explain the fact if we use more samples, the perfor-
mance does not really improve. If we use adaptation,
this problem is resolved.

With a larger number of samples we get more accu-
racte predictions. When the number of samples is 7
whe obtain quite a good compromise between speed
and accuracy. The method is about 5.4 times faster
than cross-validation, but still achieves quite good ac-
curacy.

In conclusion, the approach presented provides quite
good and practical solution to the problem of estimat-
ing which algorithm is better than another.
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