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Abstract

This paper presents an algorithm to estimate
simultaneously both mean and variance of a
non parametric regression problem. The key
point is that we are able to estimate vari-
ance locally unlike standard Gaussian Pro-
cess regression or SVMs. This means that
our estimator adapts to the local noise. The
problem is cast in the setting of maximum a
posteriori estimation in exponential families.
Unlike previous work, we obtain a convex op-
timization problem which can be solved via
Newton’s method.

1. Introduction

Regression estimation aims at finding labels y ∈ Y
(where Y = R or Y = Rn) for a given observation
x ∈ X such that some measure of deviation between
the estimate ŷ(x) and the random variable y|x is mini-
mized. Various methods have been used to accomplish
this task, from linear models, over neural networks, re-
gression splines, Watson-Nadaraya estimators, to Reg-
ularization Networks, Support Vector Machines, and
Gaussian Processes (Wahba, 1990; Williams, 1998).

Most regression methods rely on the assumption that
the noise level is uniform throughout the domain
(Williams, 1998), or at least, its functional dependency
is known beforehand (Schölkopf et al., 2000). For in-
stance, in Gaussian Process regression one treats the
noise level as a hyperparameter and solves the arising
nonconvex problem by iterative optimization.

The assumption of a uniform noise model, however,
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is not always satisfied. In other words, the amount
of noise may depend on the location. In this pa-
per, we deal with a means of addressing this issue
in a Gaussian Process regression framework. More
specifically, we make the noise itself a random vari-
able which is estimated nonparametrically along with
the mean of the distribution as proposed in (Goldberg
et al., 1998). In this sense, our methods closely re-
sembles (Cawley et al., 2003) and (Yuan & Wahba,
2004) which independently proposed a kernel method
to deal with this problem in the context of LMS regres-
sion: they truly estimate µ(x) = IE(Y |x) and log σ2(x)
with σ2(x) = V (Y |x) directly. While being intuitively
appealing, it has a major shortcoming: the optimiza-
tion problems arising from the setting are nonconvex,
potentially exhibiting several local optima. Moreover,
the variance need not be log-normally distributed.

To turn this nonconvex optimization problem into a
convex one, our idea is to change the parameteri-
zation of the problem. Instead of directly estimat-
ing the functional mean and variance parameters, we
propose to estimate the associated natural parame-
ter θ1(x) = µ(x)/σ2(x) and θ2(x) = 1/σ2(x) of the
exponential family representation of the normal dis-
tribution. Now, the optimization problems using the
exponential family setting are convex.

The challenge to solve this problem is to obtain a sta-
tistically plausible setting while retaining attractive
properties of the optimization problem, such as con-
vexity. Secondly, in the case of kernel methods, there is
the problem of choosing a suitable covariance function.
We will address this issue only as far as it concerns the
overall formulation of the optimization problem: auto-
matic kernel adaptation methods, such as (Lanckriet
et al., 2004) apply.
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2. The Model

Assume that we have a conditionally normal random
variable, that is, y|x ∼ N (µ(x),Σ(x)). In this case,
p(y|x) is a member of the exponential family for appro-
priate sufficient statistics Φ(x, y). It is well known that
in such cases the negative log-likelihood − log p(y|x; θ)
is a convex function in the natural parameter θ. As we
shall see below, this can be used to estimate both mean
and covariance of the process in a pointwise fashion,
which leads to heteroscedastic regression estimators.

2.1. Exponential Families

We begin with basic facts about exponential families.
Let X be the domain of x and 〈·, ·〉 the scalar product
in a Hilbert space. Denote by φ(x) the sufficient statis-
tics of x. In exponential families the density p(x; θ) is

p(x; θ) = exp (〈φ(x), θ〉 − g(θ)) (1a)

where g(θ) = log
∫
X

exp(〈φ(x), θ〉) dx. (1b)

Here, θ is the natural parameter and g(θ) is the log-
partition function, often also called the cumulant gen-
erating function. This setting can be extended to con-
ditional densities via

p(y|x; θ) = exp (〈φ(x, y), θ〉 − g(θ|x)) (2)

In analogy to the above φ(x, y) now denotes the suffi-
cient statistics of y|x for the purpose of estimation of
conditional probabilities and we will refer to g(θ|x) as
the conditional log-partition function. It is well known
that g(θ) and g(θ|x) are convex C∞ functions in θ.

2.2. Estimation with Exponential Families

Assume that we observe iid (independently and iden-
tically distributed) data drawn from a distribution
p(x, y), i.e. (X, Y ) := {(x1, y1), . . . , (xm, ym)} ⊂ X ×
Rn. One possibility to estimate θ is to maximize the
likelihood p(Y |X; θ). This is equivalent to minimizing

− log p(Y |X; θ) =
m∑

i=1

g(θ|xi)−
m∑

i=1

〈φ(xi, yi), θ〉 . (3)

Clearly if φ(x, y) is high dimensional, minimization of
(3) will lead to overfitting. Hence we need to introduce
a prior on θ. A popular choice (Altun et al., 2004) is
to use a normal prior, that is p(θ) ∝ exp(− 1

2λ2 ‖θ‖2).
This leads to the following negative log-posterior on θ

m∑
i=1

g(θ|xi)−
m∑

i=1

〈φ(xi, yi), θ〉+
1

2λ2
‖θ‖2 + c (4)

It can be minimized by convex optimization. Due to
an extension of the representer theorem (Wahba, 1990)
the minimizer θ∗ of (4) satisfies

θ∗ ∈ span{φ(xi, y) where 1 ≤ i ≤ m and y ∈ Y} (5)

Eq. (5) allows us to expand (4) in terms of scalar ex-
pansion coefficients and to use the kernels

k((x, y), (x′, y′)) = 〈φ(x, y), φ(x′, y′)〉 . (6)

This allows us to avoid evaluating φ(x, y) directly at
all. Moreover, this also leads to a Gaussian Process
estimation problem by defining the stochastic process

t(x, y) := 〈φ(x, y), θ〉 where θ ∼ N (0, λ21). (7)

It is well known that (7) leads to a Gaussian Process
with covariance kernel λ2k((x, y), (x′, y′)) (Williams,
1998; Altun et al., 2004).

2.3. Conditionally Normal Distributions

The above discussion covers a large class of exponential
family estimates ranging from classification over CRFs
to spatial Poisson models. We now specify the choice
of φ(x, y) which will lead to regression estimators. We
begin with an unconditionally normal model:

p(y) = (2π)
−n
2 |Σ|− 1

2 exp
(
− 1

2 (y − µ)>Σ−1(y − µ)
)

= exp
(
〈(y,−0.5yy>), (θ1, θ2)〉 − g(θ1, θ2)

)
(8)

Here, θ2 = Σ−1, θ1 = Σ−1µ and φ(y) := (y,−0.5yy>).
Clearly θ2 � 0, as the variance - covariance matrix
has to be positive definite. Moreover, the log-partition
function is given by

g(θ1, θ2) =
1
2
θ>1 θ−1

2 θ1 +
n

2
log 2π − 1

2
log det θ2 (9)

As we are concerned with conditional normal distribu-
tions, that is, where y|x is normal, we need to design
φ(x, y) such that for fixed x, φ(x, y) only contains lin-
ear and quadratic terms in y. We have:

Lemma 1 If y|x is conditionally normal, the suf-
ficient statistics φ(x, y) decompose into φ(x, y) =
(φ1(x, y), φ2(x, y)), where φ1(x, y) is homogeneous lin-
ear and φ2(x, y) is homogeneous quadratic in y.

2.4. Parametric Expansion

We now cast the MAP estimation problem into one of
finding scalar coefficients. From (5) we know that the
mode of p(θ|X, Y ) lies in the span of φ(xi, y) for all xi

and for all y ∈ Y. Naively, this would lead to

θ∗ =
m∑

i=1

∑
y∈Y

αiyφ(xi, y). (10)
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This attempt, however, is doomed to fail, as Y = R
or Y = Rn: we would have an infinite number of
terms. However, we know from Lemma 1 that φ(x, y)
can be decomposed into terms φ1i(x) and φ2ij(x) for
1 ≤ i, j ≤ n. We denote k1i(x, x′) := 〈φ1i(x), φ1i(x)〉
and k2ij(x, x′) := 〈φ2ij(x), φ2ij(x′)〉 the corresponding
inner products. This allows us to compute the various
terms of required for (4) as follows:

[
Σ−1(x)µ(x)

]
i
=

m∑
l=1

α1ilk1i(xl, x) (11)

[
Σ−1(x)

]
ij

=
m∑

l=1

α2ijlk2ij(xl, x) (12)

〈φ(x, y), θ〉 =
m∑

i=1

n∑
u=1

α1uiyuk1u(xi, x)− (13)

1
2

m∑
i=1

n∑
u,v=1

yuyvα2uviα2uvjk2u(xi, x).

‖θ‖2 =
m∑

i,j=1

n∑
u=1

α1uiα1ujk1u(xi, xj)+ (14)

m∑
i,j=1

n∑
u,v=1

α2uviα2uvjk2u(xi, xj).

Here, the indices [·]i and [·]ij denote the i-th coordinate
of a vector and the ij-th entry of a matrix respectively,
and α ∈ Rm×n+m×n×n. Plugging the expansions into
the above derivation leads to a regression algorithm in
its fullest generality.

Unfortunately, deriving a Newton-type method for
this, which requires computation of second derivatives
and semidefinite matrix constraints, is a problem best
left to computer algebra tools, as it involves arrays of
tensors of the fourth order.

Consequently, for the rest of the paper we focus on
special cases, such as one-dimensional heteroscedastic
regression (n = 1) and rotation invariant situations.
This will be sufficient to convey the fundamental ideas
without obscuring the main points of the model.

3. Analysis and Special Cases

3.1. Scalar Version

Matters are much simpler in the case of scalar regres-
sion Y = R, as mean and variance are now scalars,
too. Without loss of generality we set

φ(x, y) = (yφ1(x),−0.5y2φ2(x)). (15)

This leads to the estimates for mean and variance:

σ−2(x) = 〈θ2, φ2(x)〉 (16a)

µ(x)σ−2(x) = 〈θ1, φ1(x)〉 (16b)

Before going into technical details we discuss a small
(but important) modification of the model of the pre-
vious section: Using a normal prior on θ implies that
the mode of the prior is obtained for 〈φ(x, y), θ〉 = 0.
In other words, the prior peaks for random variables
with infinite variance and zero mean. This is not an
acceptable modeling assumption and we can fix it eas-
ily by introducing an offset to θ.

σ−2(x) = 〈θ2, φ2(x)〉+ θ̄2 (17)

where θ̄2 > 0 with the constraint 〈θ2, φ2(x)〉+ θ̄2 ≥ 0.
If no prior knowledge is given about this offset θ̄2 it
can be set to the constant variance estimation of a
Gaussian Process regression. The log-partition func-
tion g(θ|x) becomes

g(θ|x) =
1
2
〈θ1, φ1(x)〉2(〈θ2, φ2(x)〉+ θ̄2)−1 (18)

− 1
2

log(〈θ2, φ2(x)〉+ θ̄2) + c.

where c is some constant offset (see equation (9)).
We are now in a position to state the negative log-
posterior in terms of coefficients α1, α2 ∈ Rm. For
this purpose, we denote K1 the matrix obtained from
K1ij := 〈φ(xi), φ(xj)〉 and K2 analogously. This yields
the following expansion whose maximization is the
same as maximizing p(θ|X, Y ):
m∑

i=1

[
−yi[K1α1]i +

y2
i

2
[K2α2]i +

[K1α1]2i
2([K2α2]i + θ̄2)

(19a)

− 1
2

log([K2α2]i + θ̄2)
]

+
1

2λ2

[
α>1 K1α1 + α>2 K2α2

]
subject to [K2α2]i + θ̄2 ≥ 0 for all i. (19b)

Details on how to solve (19) are given in Section 4. It
is a convex problem with linear constraints. Eq. (19b),
however, is unnecessary as log([K2α2]i+ θ̄2) provides a
sufficient barrier function. So as long as we start with
a feasible set of variables, which can easily be obtained
by α2, and we never let the objective function diverge
to ∞ we can ignore (19b).

3.2. Constant Variance

Of particular interest is the special case where the vari-
ance is assumed to be constant. There (15) can be
simplified to

φ(x, y) = (yφ1(x),−0.5y2). (20)



Heteroscedastic Gaussian Process Regression

With θ2 ∈ R we may simplify (19) further to obtain

m∑
i=1

[
−yi[K1α1]i +

y2
i

2
θ2 +

[K1α1]2i
2(θ2 + θ̄2)

]
(21)

− m

2
log(θ2 + θ̄2) +

1
2λ2

[
α>1 K1α1 + θ2

2

]
subject to θ2 + θ̄2 ≥ 0. As before, this is a convex
optimization problem. For fixed θ2 it is easy to see (by
taking derivatives with respect to α1 that the optimal
choice of α1 needs to satisfy

−K1y +
1

θ2 + θ̄2
K>

1 K1α1 +
1
λ2

K1α1 = 0 (22)

This is solved by α1 = ( 1
θ2+θ̄2

K1 + 1
λ2 1)−1y pro-

vided this regularized matrix has full rank. Tak-
ing into account that [K1α1] = µ(x)σ−2(x) and that
σ−2(x) = θ2 + θ̄2 is constant yields a solution identical
to standard Gaussian Process regression.

What is typically done in GP regression is that one
solves for α1 for fixed θ2 and subsequently an opti-
mal θ2 given α1 is found, and so on iteratively until
some convergence is reached. This is highly subop-
timal, and in implementations we found that such a
procedure may take over 100 iterations (in the het-
eroscedastic case) until it converges to its minimum.
Eq. (20) on the other hand offers a convex joint op-
timization problem, which allows for fast convergence
in only a few iterations. We will discuss details in
Section 4.

In traditional GP regression literature θ2 is treated as
a hyperparameter, that is, as a variable extraneous to
the overall regression problem. What the above rea-
soning shows, though, is that θ2 is an integral part of
a convex optimization problem which allows joint es-
timation of mean and variance. Hence the algorithmic
improvements of the current paper also apply to the
homoscedastic case.

3.3. Rotation Invariant Settings

We now proceed to discuss a setting for vector valued
regression, i.e. y ∈ Y = Rn, where the equations can
be stated more compactly than in Section 2.4. More
specifically, we assume that

φ(x, y) = (y ⊗ φ1(x),−0.5yy> ⊗ φ2(x)). (23)

Here, ⊗ denotes the tensor product. It follows from
(23) and the spherically symmetric prior on θ that ev-
ery entry of the linear (and quadratic term respec-
tively) in φ(x, y) is treated in the same fashion. This
assumption implies that our model is rotation invari-
ant in the observations. The following holds:

Theorem 2 Denote by φ(x, y) the sufficient statistics
of a conditional normal distribution y|x. Then if for
all θ and for all rotations O ∈ SO(n) there exists θ′ =
Oθ such that

p(y|x; θ) = p(Oy|x; θ′) for all y ∈ Rn and x ∈ X .

then φ(x, y) satisfies (23) for some φ1, φ2.

Proof For fixed x, θ, θ′, O the above condition and
choosing arbitrary y ∈ Rn implies that for log p(y|x; θ)
and log p(Oy|x; θ′) all of the terms constant, linear and
quadratic in y need to match.

Moreover, since this equality simultaneously also has
to hold for all θ, we can infer that there must exist cor-
responding features in each linear and quadratic entry.
This, however, is only satisfied for a Cartesian product
setting, which proves the claim.

The above theorem implies that for most practical pur-
poses (23) is the right choice of sufficient statistics
should we wish to perform joint regression1.In terms
of implementation it means that we can drop the dou-
ble and triple indices in k as required in Section 2.4.
Instead, we have

〈φ(x, y), θ〉 =
m∑

i=1

y>α1ik1(xi, x)− 1
2
y>α2iyk2(xi, x)

‖θ‖2 =
m∑

i,j=1

α>1iα1jk1(xi, xj) + tr(α>2iα2jk2(xi, xj))

where α1i ∈ Rn and α2i ∈ Rn×n. Plugging the result
into the log-posterior we obtain a convex problem in
complete analogy to (19). Details are omitted for the
sake of brevity.

An important special case is homoscedastic vector-
valued regression. In other words, φ(x, y) = (y ⊗
φ1(x),−0.5yy>). Here, we estimate both the mean
and the joint noise covariance matrix simultaneously.

3.4. Predictive Variance and Uncertainty

So far, we have not made much use of the Bayesian
setting of the problem besides performing maximum
a posteriori estimation. In particular, we ignored the
fact that a true estimate would require integrating out
θ leading to

p(Y |X) =
∫ ∏

i

p(yi|xi, θ)p(θ)dθ. (24)

1Note that this is for instance the case for geographical
coordinates.
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Inference on novel observations is carried out by com-
puting p(Ytest|Ytrain, X). In the case of GP regression
with fixed variance this is possible, as Y can be seen
to be the sum of two GPs: one inducing correlations
between observations with covariance kernel k(x, x′)
and an iid Gaussian noise process.

In the case of intractable integrals, conversely, one re-
sorts to approximations such as the Maximum a Poste-
riori estimate. This is how the optimization problems
in the previous sections were derived. However, we
can obtain somewhat more information, as for fixed
variance (i.e. fixed θ2) the integral with respect to θ1

becomes tractable. Again, as before, we only deal with
the scalar case to reduce index clutter. Extensions to
the vector-valued setting are straightforward.

Our derivation works as follows: first we transform
the problem in θ1 into one of dealing with random
variables drawn from a Gaussian Process via

t(x) := 〈φ1(x), θ1〉 where θ1 ∼ N (0, λ21) (25)

It is well known (Williams, 1998) that t is a GP
with mean 0 and covariance kernel λ2〈φ1(x), φ1(x′)〉 =
λ2k1(x, x′). Hence, observing T ∈ Rm on X yields

T ∼ N (0, λ2K1). (26)

Moreover, from (16) it follows that

y(x) ∼ N (σ2(x)t(x), σ2(x)) (27)

where σ2(x) is given by (17). As fixing θ2 implies fix-
ing σ2(x) we can now simply infer the distribution of
Y ∈ Rm, as it is the sum of two normal random vari-
ables. Let S = diag{σ2(x1), . . . , σ2(xm)} ∈ Rm×m.
We obtain

Y ∼ N (0, S + λ2SK1S). (28)

This means that having observed Ytrain we see that
Ytest|Ytrain is conditionally normal with

Ytest|Ytrain ∼ N (StestM,StestV Stest)) (29)

where

M =Kcross(λ−2S−1
train + Ktrain)−1S−1

trainYtrain (30a)

V =S−1
test + λ2Ktest− (30b)

λ2Kcross(λ−2S−1
train + Ktrain)−1K>

cross

and where we decomposed S and K1 via

S =
[

Strain 0
0 Stest

]
and K1 =

[
Ktrain Kcross

K>
cross Ktest

]
.

One may check that (30a) is identical to the estimate
obtained by minimizing (19) with respect to θ1 for
fixed θ2. This means that the overall estimator is ob-
tained by the following algorithm:

Algorithm 1 Heteroscedastic regression
1. Solve optimization problem (19) to obtain the

MAP estimate for the variance and mean inherent
to the estimation problem.

2. Compute the predictive variance according to
(30b) by a matrix inversion.

3.5. Comparison to Existing Methods

In the following we compare our approach, as de-
scribed in Section 2.3 to the heteroscedastic estima-
tors of (Yuan & Wahba, 2004; Cawley et al., 2003).
In both of those papers the following model is used to
estimate p(y|x, θ):

p(y|x, θ) = exp
(
− (y − µ(x))2

2σ2(x)
− 1

2
log(2πσ2(x))

)
µ(x) = 〈φ1(x), θ1〉 (31)

σ2(x) = exp(〈φ2(x), θ2〉).

Moreover, a normal prior on θ1, θ2 is assumed. This
yields the following likelihood term:

− log p(y|x, θ) =
1
2
(y − 〈φ1(x), θ1〉)2 exp(−〈φ2(x), θ〉)

+
1
2
〈φ2(x), θ〉. (32)

While − log p(y|x, θ) is obviously convex in θ1 and θ2

whenever the other parameter is fixed, one can check
that this is not the case when dealing with the opti-
mization over (θ1, θ2) jointly.

Note that (31) requires the estimator to allocate its
capacity to equal proportions in the noisy and in the
noise-free regime. This may not be very useful, as we
can expect the noisy observations to be more unreli-
able and that they vary to a larger degree. Reparame-
terizing by the rescaled mean and the inverse variance,
as done in Section 2.3 resolves this problem.

4. Optimization

At first sight, (19) represents a formidable problem.
For m observations, we have m nonnegativity con-
straints, 2m variables and a dense matrix in R2m×2m.
A naive approach would require in the order of 6m2

double storage, and in the order of 1000m3 floating
point operations. This makes problems of size larger
than m = 4000 impracticable for workstations with
1GB of memory. Instead, we design an algorithm
which is linear in the sample size (both storage and
CPU) and quadratic in the precision required.
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4.1. Newton Type Approach with Line Search

Denote by F (α) the objective function (19a) of our
problem. The first issue we need to take care of is
strict feasibility of the solution set at any time. As
long as the initial guess of (α1, α2) satisfies the lin-
ear constraints (19b), the logarithmic term in (19a)
ensures that we never leave the domain of feasibility
as long as we perform descent on the objective func-
tion.2 Setting α1 = α2 = 0 does the trick, due to the
nonzero offset θ̄2 > 0. In a Newton method, the search
direction is computed by

∆α = −(∂2
αF (α))−1∂αF (α) (33)

In order to ensure that α + ∆α actually decreases the
objective function, we perform line search in the di-
rection of ∆α (this can be done at only linear cost per
function evaluation). This is important in particular
wherever quadratic approximation of F underlying the
Newton step is not very accurate, i.e. when we are far
away from the optimum.

To ensure that α + ∆α remains feasible, we need to
compute the maximum γ for which α2 + γ∆α2 is fea-
sible, that is K2(α2 + γ∆α2) + θ̄2 ≥ 0. We obtain this
via

γmax = min
{

[K2α2]i + θ̄2

−[K2∆α2]i
where [K2∆α2]i < 0

}
Subsequently a line search is carried out in the range

0 ≤ γ ≤ min(10, 0.95γmax). (34)

The uppper bound of 10 ensures that we do not waste
too much time on parts of the line search which are
unlikely to yield good improvements (in the quadratic
convergence phase of the Newton method the step
length be in the order of 1). Equally well, the bound
of 0.95γmax ensures that we remain strictly feasible as
the objective function diverges for γmax. This yields a
first optimization algorithm (Algorithm 2).

4.2. Reduced Rank Expansion

The dominant term is to solve the linear system (33).
As the Hessian may often be ill conditioned, we take

2F (α) is not even defined outside the feasible domain as
it involves computing the logarithm of a negative number.

Algorithm 2 Heteroscedastic regression
Set α1 = α2 = 0
repeat

Compute ∂αF (α) and ∂2
αF (α) and ∆α using (33)

Compute γ using (34) and γopt via line search.
Update α← α + γopt∆α.

until ‖∂αF (α)‖ < εtol

advantage of this situation and use a conjugate gradi-
ent solver.

Such modifications make computation of systems up
to size 7000 observations feasible (a total of 980MB
for storing two kernel matrices). For further im-
provements we need to approximate the kernel ma-
trices themselves, as their storage becomes the domi-
nant part. We use positive diagonal pivoting (Fine &
Scheinberg, 2001).

This factorization can be obtained at O(mn2) time
and O(mn) cost, where n is the dimensionality re-
quired. In particular, we can use a lower degree of
resolution when it comes to estimating the variance
than the mean parameter. This means that turning a
standard GP regression estimator into a heteroscedas-
tic estimator incurs not much overhead.

We have the following complexity: we need O(mn)
memory to store the relevant columns of the kernel
matrices. Furthermore, we need O(mn2) time to deter-
mine the pivots. Computing a Hessian vector product
costs O(mn) time and we require c of them per Newton
iteration. Assuming a constant number C of Newton
steps we have a total budget of O(mn2 + Ccmn) op-
erations, where c may be as large as n worst case.

4.3. Performance

To illustrate our reasoning, we ran our algorithm on
toy data from (Yuan & Wahba, 2004) for varying sam-
ple sizes, as described in Section 5. Figure 1 shows the
performance of the CG algorithm using explicit com-
putation of the Hessian, implicit Hessian vector prod-
ucts and reduced rank expansions. The experiments
were run on a 3GHz P4 workstation using Linux 2.6, a
non-SSE3 version of ATLAS, Python 2.4 and using the
CREST machine learning toolbox. The expected time
requirements for our algorithm are O(m2.1), O(m1.4),
and O(m0.95) for explicit computation of the Hessian,
implicit Hessian vector products, and reduced rank ex-
pansion respectively.

5. Experiments

Toy Data Following (Yuan & Wahba, 2004) we used
the following normal distribution to generate data for
illustrative purposes:

µ(xi) = 2(exp(−30(xi − 1/4)2) + sin(πx2
i ))

and σ2(xi) = exp(2 sin(2πxi)).

More specifically, we sampled m points in a regular
grid on the interval [0, 1] and randomly generated the
corresponding yi according to a normal law. Estima-
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m 0.1 0.2 0.5 1 2 5 10 20
Direct Hessian 8 18 90 607 3551 - - -
Hessian vector 9 15 38 115 752 - - -
Reduced rank 7 7 12 30 54 179 368 727

Figure 1. Runtime of the Newton-type implementation
(time in seconds vs. sample size (in 1000s) of the data set).

tion was performed using Gaussian kernels. Figure 2
shows the estimation for m = 50.

Spatial Interpolation Comparison 2004 The
variable to be predicted is ambient radioactivity mea-
sured in Germany. The data by the German Federal
Office for Radiation Protection (BfS), are gamma dose
rates reported by means of the national automatic
monitoring network (IMIS).3

The values of gamma dose rates at 200 locations mea-
sured for 10 days are used to tune the kernel hyperpa-
rameters and λ. It includes two scenarios for testing:
set 1, which is a “normal” and set 2, which contains
an anomaly in radiation at a specific location. As the
training data for these two days was only made avail-
able to the participants, our training data was 200
points randomly picked from the 808 points from the
given results.

We compared standard GP regression with our het-
eroscedastic GP (HGP) model. In both cases, we used
Gaussian RBF kernels. To adjust the parameters, we
used the 10 previous days to adapt the kernel widths
and the prior variance by means of crossvalidation.

To assess performance we perform a 10 random esti-
mates of the error for the 808 points of each of the two
scenario datasets. More specifically (in keeping with
the methodology of the benchmark) we use a random
subset of 200 points for training and the remaining
608 points for testing. Fine-tuning of the prior vari-
ance parameters (with individual terms for k1 and k2

for HGP) on the subset of 200 points is done by 10-fold
crossvalidation.

As can be seen in Table 1 the root mean squared error
3http://www.ai-geostats.org/events/sic2004/index.htm

Figure 2. Top: Data, true mean, estimated mean, 95%
confidence bars (dotted lines). Note that in the low-noise
regions the regression is much more accurate. Bottom:
variance estimate. The thin line represents the true vari-
ance while the thick line shows its estimate.

(RMSE) of GP regression and HGP regression on the
normal scenario is very comparable. This is not sur-
prising as we have no reason to believe that radioactiv-
ity would exhibit highly nonuniform behavior. On the
anomaly scenario, however, GP regression is unable to
cope with the increase in noise, whereas HGP adapts
easily. Especially, our model predicts almost correctly
the extreme values at the point of the explosion.

6. Summary and Outlook

We presented a scalable method for performing het-
eroscedastic GP regression.4 In particular for reduced
rank expansion HGP regression scales almost linearly.

More experiments and applications are needed to cor-
roborate the algorithm further, e.g. details regarding
the predictive variance, vector-valued estimation, etc.
Applications are meteorological data, estimation of
ore, denoising of DNA microarray measurements, and

4See http://sml.nicta.com.au/∼quoc.le for code.
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Figure 3. Spatial Interpolation Comparison 2004 Dataset (SIC2004) for set 2. Left: mean estimate for standard GP
regression, Middle: mean estimate for Heteroscedastic GP regression, Right: variance estimate for Heteroscedastic GP
regression. Note the difference in the mean estimate due to the fact that standard GPR is unable to adapt to the increase
in noise at the location of the outbreak (GPR ends up oversmoothing).

GP Regression log variance Heteroscedastic GP Regression
(Williams, 1998) (Yuan & Wahba, 2004) (this paper)

Normal day 13.3± 0.4 12.1± 0.7 12.8± 0.6
Anomaly 86.8± 6.5 69.3± 7.2 49.4± 6.5

Table 1. RMSE for GPR, Heteroscedastic GPR, and log variance model

estimation of variance for MRI imaging experiments.
Such work is currently ongoing and will be published
separately.

Note that GP regression is not the only case where
heteroscedasticity can be incorporated. For instance,
in ν-SV regression one can turn the margin itself into
a nonparametric function which is estimated together
with the actual regression. The solution of this can
be found as a quadratic program and we are currently
researching this aspect.
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