Relating Reinforcement Learning Performance to
Classification Performance

John Langford

JLQHUNCH.NET

TTI-Chicago, 1427 E 60th Street, Chicago, IL 60637 USA

Bianca Zadrozny

ZADROZNYQUS.IBM.COM

IBM T.J. Watson, 1101 Kitchawan Road, Yorktown Heights, NY 10598 USA

Abstract

We prove a quantitative connection between
the expected sum of rewards of a policy and
binary classification performance on created
subproblems. This connection holds without
any unobservable assumptions (no assump-
tion of independence, small mixing time, fully
observable states, or even hidden states) and
the resulting statement is independent of the
number of states or actions. The statement
is critically dependent on the size of the re-
wards and prediction performance of the cre-
ated classifiers.

We also provide some general guidelines for
obtaining good classification performance on
the created subproblems. In particular, we
discuss possible methods for generating train-
ing examples for a classifier learning algo-
rithm.

1. Introduction

Motivation. Reinforcement learning on real-world
problems requires coping with large (possibly infi-
nite) state, observation, and action spaces. However,
many reinforcement learning algorithms (such as Q-
Learning (Watkins, 1989) and other algorithms (Sut-
ton & Barto, 1998)) are only tractable for small envi-
ronments with relatively few states and actions. This
disparity is commonly handled by adding a function
approximation step to the learning algorithms devel-
oped for small problems.

This approach is problematic. On the theoretical side,
strong and unrealistic assumptions about function ap-
proximation accuracy (such as assuming a small esti-
mation error for the entire space) are required to make

Appearing in Proceedings of the 22™% International Confer-
ence on Machine Learning, Bonn, Germany, 2005. Copy-
right 2005 by the author(s)/owner(s).

weak statements such as “the performance of an iter-
ation does not degrade much” for approximate policy
iteration (Bertsekas & Tsitsiklis, 1996). The practical
symptom of these weak performance guarantees is that
the application of reinforcement learning to real-world
problems typically requires the attention of experts,
many samples of experience, a great deal of computa-
tional time, or a combination of all three for success.

In order to eliminate this reliance on unrealistic func-
tion approximation, reinforcement learning algorithms
must be explicitly designed to be robust against pre-
diction errors. The method used here relates reinforce-
ment learning performance to classification perfor-
mance through a reduction from reinforcement learn-
ing to classification. Note that we are not claiming
that “reinforcement learning is classification” because
knowing what to predict and predicting it well does
not solve the temporal credit assignment problem—
how are past actions in an interactive environment re-
lated to future reward?

A Simple Relationship. The goal of reinforcement
learning is to find a policy

T:(OxAXR)"xO— A

which maps a history of (observation,action,reward)
sequences and a new observation to an action so as to
maximize the expected sum of rewards in an unknown
environment. The goal of (binary) classifier learning
is to produce a classifier

c: X —{0,1}

which maps features to a binary label so as to min-
imize the error rate with respect to some unknown
distribution.

A simple way to connect reinforcement learning to
classifier learning is to notice that a policy can be rep-
resented by a binary classifier which, given observa-
tions as input, predicts the correct action. Since for
any 2-action environment there is a sequence of cor-
rect actions that maximizes the rewards, choosing the

Relating Reinforcement Learning Performance to Classification Performance

correct actions would be equivalent to choosing the
correct labels and, consequently, minimizing the error
rate of the classifier.

However, some important issues are left open:

1. What if the number of actions is greater than 27

2. What if the classifier is sometimes wrong?
Shouldn’t later errors alter the correctness of ear-
lier decisions?

3. If a classifier learning algorithm optimizes classifi-
cation performance to some small error rate, does
that imply a good policy? What if the environ-
ment is fundamentally noisy?

Results. In section 2, we address each of these issues
and quantify the relationship between classification er-
ror rate and the expected sum of rewards performance
of an induced policy in noisy environments with in-
finite states, multiple actions, and varying stochastic
rewards. The analysis holds without any of the com-
mon assumptions used in past reinforcement learning
work such as independence, Markovian state transi-
tions and observable states. This is possible because
we condition the performance of a policy on the per-
formance of a binary classifier.

Note, however, that the existence of a relationship be-
tween policy performance and classifier error rate does
not provide any guidance on how to obtain a classifier
with a small error rate. In section 3 we provide some
general guidelines for obtaining such a classifier. In
particular, we discuss possible methods for generating
representative examples from which to train a classifier
learning algorithm.

1.1. Past Work

The RLGen analysis (Langford & Zadrozny, 2003) and
algorithm relates the error rate of a classifier on cer-
tain examples created with a generative model to the
performance of a policy. The work presented here is
significantly more general in scope. In particular, it
does not necessarily assume a generative model.

The Policy Search by Dynamic Programming (Bagnell
et al., 2004) analysis is similar to the one presented
here, so we make pointwise comparisons throughout
the paper. A very rough summary is that we require
fewer assumptions, achieve tighter bounds without a
dependence on the distance between two measures,
and the analysis motivates different design choices.

The Conservative Policy Iteration algorithm (Kakade
& Langford, 2002) modifies approximate policy iter-
ation so that policy updates result in improvement

whenever a certain regression problem is solved well.
This technique is complementary to the analysis pre-
sented here.

The algorithms of Lagoudakis and Parr (2003) and
Fern et al. (2004) rely upon approximate policy it-
eration in order to construct a policy formed from a
classifier. Thus, they inherit the non-robust guaran-
tees of the approximate policy iteration framework.

Some earlier work (see theorem 3.1 of Khardon (1999))
can be understood as relating policy learning to clas-
sification.

2. A Reduction of Reinforcement
Learning to Classification

In this section we connect the prediction ability of
a classifier learning algorithm on certain problems to
the performance of a reinforcement learning algorithm.
This form of analysis®, known as a reduction, has some
subtle implications. In particular, assuming that the
classifier learning algorithm succeeds implies that:

1. We do not need to consider exploration explicitly.

2. We do not need to generate training sets for clas-
sifier learning.

3. We do not need to make assumptions (such
as smoothness, Markovian dynamics, observable
states and fast mixing) about the environment
which are typically introduced in order to create
predictability.

What is the analysis good for if it hides crucial issues
in reinforcement learning? It gives us insight into what
are the critical prediction problems necessary for solv-
ing reinforcement learning and the relative difficulty
of these problems. This may lead to algorithms which
attempt to more directly answer these prediction prob-
lems, yielding better performance.

2.1. Definitions

We define the reinforcement learning problem in a very
general manner that can capture most standard defini-
tions as special or equivalent cases. (See the Appendix
for a discussion). The reason for doing this is that the
analysis becomes both more general and simpler.

1One way to think about this form of analysis is “20
questions with faults”. I promise to answer any questions
about the location of a hidden object but lie some number
of times. Your goal (as the designer) is to come up with a
good set of questions such that if I lie rarely, you still have
good performance.

Relating Reinforcement Learning Performance to Classification Performance

Inspired by predictive state representations (Singh
et al., 2004) we avoid the use of “state” in the defi-
nition of reinforcement learning. The following defini-
tion is for a decision process (DP).

Definition 2.1 (Reinforcement Learning Problem) A
reinforcement learning problem D 1is defined as a con-
ditional probability table D(o',r|(0,a,7)*,0,a) on a set
of observations O and rewards r € [0,00) given any
(possibly empty) history (o0,a,r)* of past observations,
actions (from action set A), and rewards.

For simplicity, we avoid constraining a policy to be sta-
tionary and define the goal of reinforcement learning
as optimizing the T-step sum of rewards.

Definition 2.2 (Reinforcement Learning Goal)
Given some horizon T, find a policy 7 : (0,a)* — a,
optimizing the expected sum of rewards:

T
n(Dv 7'(') = E(o,a,r)TND,‘n' [Z Tt‘|

t=1
where Ty is the t-th observed reward. Here, the expecta-

tion is over the process which generates a history using
D and choosing actions from .

2.2. The Reduction

Preparation. Given the above definition of a rein-
forcement learning problem, there exists some optimal
policy m* which maximizes the expected sum of re-
wards for any valid history. We use n* in defining a
sequence of classification problems in the reduction.

The reduction initially assumes that we can solve mul-
ticlass reward-sensitive classification problems?. In
reward-sensitive classification, the rewards for predict-
ing a label correctly or incorrectly for an example
are not necessarily fixed at 1 and 0 respectively (as
in usual accuracy-maximizing classification) but can
be any positive real number. We rely on other work
(Langford & Beygelzimer, 2005) which states that any
cost-sensitive (or equivalently, reward-sensitive) clas-
sification problem can be broken down into multiple
binary classification problems.

Algorithm. The reduction consists of sequentially
building reward-sensitive classification problems for
each time step, always assuming that the optimal ac-
tions will be executed in the remaining steps. More
concretely:

1. Given the empty history, predict the action which
optimizes the expected sum of rewards assuming
that 7* is followed for the next T' — 1 steps.

2These problems can also be thought of as “do regres-
sion and pick the best”.

2. Given that we use the first predictor, predict the
action which optimizes the expected sum of re-
wards assuming that 7* is followed for the next
T — 2 steps.

3. Given that we use the first and second predictors,
predict the action which optimizes the expected
sum of rewards assuming 7* is followed for the
next T — 3 steps. And so forth.

Discussion. These problems are not “predict accord-
ing to the measure over states induced by 7* at time
step T” as in Bagnell et al. (2004). Instead, we take
into account the policies that were constructed in pre-
vious steps. We chose to construct the problems in
this manner because this allows stronger performance
guarantees. Similarly, the prediction problems are or-
dered from first-to-last rather than last-to-first as in
Bagnell et al. (2004). With the last-to-first approach a
wrong action choice made in the first step renders later
prediction performance irrelevant. With the first-to-
last approach, a wrong action choice made in the last
step given the first steps merely degrades performance.
This observation allows us to eliminate a dependence
on the “variation distance” between the measures in-
duced by 7* and w. This dependence is inherent to
the algorithm and setting analyzed. From the reduc-
tion’s viewpoint, the dependence is difficult to accept
because it can be large even for 7 of equivalent perfor-
mance to 7. (In experiments not reported here the
ordering also appears to be important.)

Note that this way of constructing the prediction prob-
lems is not optimal in general. (It is, however, the
best for which we know how to prove a performance
guarantee.) The first classifier is learned assuming a
perfect policy for the later steps. But because the later
policy may be imperfect, the first classifier should be
adjusted to take later mistakes into accounts. This can
be done safely (without harming performance) using
either an iteration-over-T" classifier update mechanism
(as in Bagnell et al. (2004)) or a mixture update mech-
anism (as in Langford and Zadrozny (2003)) similar to
the conservative policy iteration algorithm (Kakade &
Langford, 2002).

2.3. Analysis

Definitions. The reduction algorithm gives us a se-
quence of reward-sensitive classifiers ¢y, ..., ¢, one for
each time step. We can consider them together as one
policy 7 defined by:

t—1

7((0,a,7)7 1 0p) = i ((0,a,7) 71, 0p)

where o; is the tth observation and (o,a,r)"! is

the first ¢ — 1 observed (observation, action, reward)

Relating Reinforcement Learning Performance to Classification Performance

triples. Each classifier has a reward rate:

T
lt(D7 T, ct) = E(a,O,T)TND,(TF,Ct,TF*) [Z rt’]

t'=t

where the composite policy (r, ¢, 7*) uses m for ¢t — 1
steps then ¢; for one step and #n* for the remaining
T —t steps.

The regret of a policy is defined as the difference be-
tween the expected reward of the policy and the ex-
pected reward of the optimal policy:

p(D,m) =n(D,7*) —n(D,)
Each classifier has a regret:
pt(D, ™, Ct) = lt(D, , 71':) — lt(D, T, Ct)

Lemma 2.3 (Relative RL Regret) For every rein-
forcement learning problem D and every policy m =
ci,...,cT, we have:

T
p(D,?T) = Zpt(Dv7r7Ct)
t=1

This is the core technical result. The most similar
previous result was the PSDP analysis (Bagnell et al.,
2004). The PSDP analysis makes an explicit assump-
tion that the distribution over states of a near optimal
policy is known and characterizes the performance in
terms of the distance between the distribution over
states of the learned policy and the near optimal pol-
icy. The analysis here is more basic. In particular,
the same assumption could be added here yielding a
first-to-last PSDP-like analysis and explicit algorithm.
Proof.

,O(D,’/T) n(Daﬂ—*) _77<D77T)
T
= E(a7o,r)T~D,7r* |:Zt21 Tt
_E(a,o,7')T~D,7r [23:1 Tt]
T T
= Zt=1 E(a,o,r)TND,(ﬂ,ﬂ';‘Jr*) |:Zt’:1 Tt’:|
T
_E(a,O,T)TND,(w,ct,ﬂ'*) [Zt/:l Irt/:|
T T
= Zt:l E(G;O,T)TND,(ﬂ',ﬂ':(,ﬂ'*) |:Zt’:t rt’:|
T
_E(a,O,T‘)TND,(TI',Ct,ﬂ'*) [Zt’:t rt’]
= Yo (D) = (D, er)]
T
= Y1 oD, cr)

The first, second, fifth and sixth equalities are defini-
tions. The third equality follows from the “telescoping
property” of sums(2;7’1:1 ai—1 —a; = ap — ar). The
fourth equality follows because Zi;l 1 ¢ has an iden-
tical expectation for both processes. |

This lemma shows that the regret of the composite
policy created by the reduction can be decomposed
into the regrets of the component classifiers. This has
the following implications:

1. Small regret relative to the optimal policy can be
achieved by solving only these T reward-sensitive
classification problems. This is in contrast to
methods like Q-learning(Watkins, 1989) which at-
tempt to predict the value function of states and
actions at many locations. Similarly, the algo-
rithm E? (Kearns & Singh, 1998) can be thought
of as attempting to learn a model sufficiently pow-
erful to approximately predict the value of all poli-
cies.

2. In the presence of errors, the optimal reward-
sensitive classification problems that need to be
solved are partially associated with the optimal
policy and partially associated with earlier sub-
optimal choices.

Note again that this result does not tell us how to solve
these prediction problems because it does not tell us
how to construct training sets for reward-sensitive clas-
sifier learning at each step. The next section discusses
some methods for solving these prediction problems.

To Binary Classification. This reduction can be
easily combined with the SECOC (Sensitive Error Cor-
recting Output Code) reduction (Langford & Beygelz-
imer, 2005) which reduces (multi-class) cost-sensitive
classification to binary (accuracy-maximizing) classifi-
cation. The relevant details of this reduction are that
it maps maps cost-sensitive examples to binary clas-
sification examples and (hence) measures D on cost-
sensitive examples to measures SECOC(D) over bi-
nary classification examples. For any binary classifier
distribution D’; the error rate of a binary classifier ¢
is defined as:

e(D',c)= Pr
() (@,y)~D’

(c(x) #y)
And the binary classification regret is defined as:
pp(D',¢) = e(D',¢) —mine(D',)

The above lemma and the SECOC reduction give the
following result.

Theorem 2.4 (Reinforcement Learning To Binary
Classification) For every reinforcement learning prob-
lem D and policy w defined by binary classifiers c; ob-
tained through the SECOC reduction, we have:

T
p(D,7) <4 [pp(SECOC(Dy),ct) Y | pir(Dy, 7, ca)

t=1 a

Relating Reinforcement Learning Performance to Classification Performance

where ¢, is a classifier that always takes action a and
Dy is the distribution over sequences, (0,a,r)'" 1, o;.

Proof. The proof is a conjunction of an earlier theo-
rem (Langford & Beygelzimer, 2005) that reduces cost-
sensitive classification to binary classification and the
Relative RL regret lemma 2.3.

Cost-sensitive classification is defined by a distribution
D over examples (z,11,...,1;,) where I; € [0,00) is the
cost of predicting class ¢ (without loss of generality,
we assume that there exists an ¢ with I; = 0). The
cost-sensitive loss is defined as:

lcs(Da h) = E(a:,ll,..A,lk)ND I:lh(.L)}

which is the expected cost of the choices made. Simi-
larly the cost-sensitive regret is defined as:

pes(D,h) = les(D,h) — min les(D,h).

which is the expected cost of the choices made minus
the expected cost of the optimal choices.

The SECOC reduction naturally maps D to a new dis-
tribution SECOC(D) over binary examples (z’,0) or
(2,1) and has the following guarantee for a multiclass
classifier h. formed out of the binary classifier c:

pes(D,) < 4\/pb<SECOC<D>, OB yp S 1

For our reinforcement learning reduction, the number
of classes is equal to the number of available actions
(k = |A|) and the loss [, is the difference in reward
between acting according to the optimal action (then
following 7*) and acting according to a (then following
7*). The expected value of this difference is the regret
Pt(Dt>7T7Ca)-

Applying this analysis to each time step ¢t and com-
bining the results with lemma 2.3 gives the theorem.

This theorem shows that the regret of the policy (on
the left-hand side) is bounded by the regret of the
binary classifiers py(c;, SECOC(D;)) and a particular
sum. The sum is over actions (implying that a problem
with many actions is inherently more difficult) and the
term is the regret of following action a and then acting
according to the optimal policy rather than acting ac-
cording to the optimal policy at timestep ¢. This last
term is a time-dependent form of advantage (Baird,
1993) which implies that achieving small policy regret
is harder when there is a large difference in the value
of actions.

3. Obtaining Good Prediction
Performance

Good classifier prediction performance is usually
achieved through a combination of several factors in-
cluding expert knowledge, the use of learning algo-
rithms that are known to perform well for similar
tasks and, perhaps most importantly, the availability
of training examples drawn from the same distribution
as the examples about which the classifier is expected
to make predictions. In this section, we explain each
of these factors and discuss how they affect the pre-
diction performance needed for solving reinforcement
learning problems.

3.1. Expert knowledge

In many practical machine learning situations, a hu-
man expert knows (at least implicitly) how to make
correct predictions and learning is used to transfer this
knowledge to a machine. This is true, for example, in
text classification or face recognition. In these situa-
tions, it is often possible to facilitate learning by em-
bedding the expert’s knowledge into the feature rep-
resentation. In other words, we can represent the ex-
amples using features that are known by the expert to
be predictive for the particular problem in hand.

Another way of using expert’s knowledge to improve
predictive performance is to use a prior (in a Bayesian
setting) that favors solutions which seem more reason-
able to the expert. This makes the task of learning
easier since it reduces the space of possible solutions
and, consequently, the amount of data that is needed
for achieving a certain performance level.

3.2. Past performance in other problems

Traditionally, in applied machine learning research,
we test classifier learning algorithms on many differ-
ent problems and prefer algorithms that exhibit better
performance across a wide variety of problems. This
methodology implies that learning algorithms that are
considered successful in practice have over time implic-
itly incorporated information about the characteristics
of typical prediction problems.

One significant outstanding question in the context
of reductions to classification is whether or not the
prediction problems created through reductions share
the characteristics of typical classification problems.
If this is the case, classifier learners that have been
developed using natural problems as benchmarks will
tend to also be successful for problems created through
reductions. Experimental results for some simple re-
ductions (Zadrozny et al., 2003; Beygelzimer et al.,

Relating Reinforcement Learning Performance to Classification Performance

2004; Langford & Zadrozny, 2005) suggest that this is
true, but more work needs to be done.

3.3. Training examples

The main source of information for a classifier learn-
ing algorithm is a set of labeled training examples that
inform the learner what are the correct labels for a set
of observations. Most classifier learning algorithms are
designed with the assumption that the training exam-
ples are independently drawn from the same distribu-
tion as the examples for which the classifier is expected
to make predictions. This assumption cannot always
be fulfilled for reinforcement learning problems. For
example, suppose that we have an agent in the world
who travels to a conference in Bonn, Germany. If this
is the first trip abroad for the agent, it is difficult to
think of any past experiences as being drawn from the
same distribution as the agent is being tested on.

Nevertheless, there are several mechanisms available
for providing examples from the (approximate) test
distribution that rely on some piece of extra informa-
tion (such as a human expert or a generative model).

1. RL as Information Transfer. There are a
number of applications of reinforcement learning
where a robot can be trained by a human (for ex-
ample assembly line manufacture, game playing,
etc.). If we think of the human as an oracle to
the optimal policy, then a small set of questions
can be directly asked and answered. This requires
an amount of work proportional to O(mT?|A|)
where m is the number of examples per time step,
|A| is the number of actions and T is the number
of time steps. The complexity is proportional to
O(T?) because the human must guide the policy
for O(T') timesteps for each of the T' prediction
problems.

2. Homing. A “homing” policy is a policy which al-
lows an inexact reset to an initial state (or initial
state distribution). This mechanism has been re-
cently analyzed for reinforcement learning (Evan-
Dar et al., 2005) with the result that it is possible
to learn to act near optimally by analyzing the
history of a process of intermittent homing, ex-
ploration and exploitation.

The internal representation of this algorithm
(which, intuitively, consists of probability tables
over observations given belief states and actions)
can be used to choose near-optimal actions given
past history. Consequently, the method here
could be used to find a more compact collection-
of-classifiers representation for the policy.

3. Resetting. Many reinforcement learning algo-
rithms are applied in a setting where a “reset to
the start” action is available. This might natu-
rally apply, for example, to a vacuuming robot
that always starts from the same location and
is easy to implement in simulators. The homing
analysis applies here as well, and can be tightened
by the removal of the need for homing.

4. Generative Model. A generative model an-
swers questions of the form “Given the state s
and action a, what is a draw for the next reward,
observation and state?” This form of information
is typically only available in the form of a simu-
lator for the actual reinforcement learning prob-
lem. With this simulator, it is possible to be-
have according to a near optimal policy using a
sparse sampling tree (Kearns et al., 1999) repeat-
edly. However, the computational complexity of
this process is extreme, so solving the sequence of
prediction problems discussed here may compile
the information about what is the correct policy.

Somewhat surprisingly, it is possible to prove
that small error rate classification performance
with respect to samples extracted from a (expo-
nentially less expensive) trajectory tree (Kearns
et al., 2000) implies a near optimal policy (Lang-
ford & Zadrozny, 2003). This approach works
in stochastic environments where it is neverthe-
less possible to predict a near optimal action and
fails (via an inherently large error rate) in other
stochastic environments.

4. Discussion

A common complaint about learning theory in general
is that it provides analysis for worst case scenarios.
This can lead to unreasonably weak statements based
on unreasonably strong assumptions. However, in the
context of reinforcement learning, it is very difficult to
justify the assumptions behind an average case analy-
sis because we cannot easily assert that reinforcement
learning problems are drawn from some fixed known
probability distribution.

There is an alternative to the worst case/average case
debate. We can do analysis subject to a new assump-
tion. The assumption of prediction ability is a natu-
ral choice because we know simultaneously that in the
worst case we cannot predict, yet for the cases that we
care about we can often make successful predictions.

The result presented here can be thought about either
narrowly or broadly. The narrow view is that we have
made a quantitative connection between the ability of

Relating Reinforcement Learning Performance to Classification Performance

a classifier to perform well on certain problems and
the performance of a policy. This statement provides
intuition relating the minimum? difficulty of solving
reinforcement learning to the difficulty of solving clas-
sification.

The broader view is that we have created a new form
of analysis, even in the context of machine learning
reductions. Other machine learning reductions relate
the performance of one task to the performance of an-
other by a mapping from one task to another inherent
in the learning process (as discussed in Beygelzimer
et al. (2004)). The essential difference here is that we
can analyze and discuss the quantitative relationship
between learning problems without explicit reference
to a training set. This change is undesirable because
the analysis does not lead directly to a reinforcement
learning algorithm. The change may also be a neces-
sity in reinforcement learning because of the sometimes
unavoidable need to predict without prior representa-
tive experience as discussed in section 3.3.

References

Bagnell, D. (2004). Personal communication.

Bagnell, D., Kakade, S., Ng, A., & Schneider, J.
(2004). Policy search by dynamic programming. Ad-
vances in Neural Information Processing Systems 16
(NIPS*2003).

Baird, L. C. (1993). Advantage updating (Technical
Report). Wright Laboratory.

Bertsekas, D. P., & Tsitsiklis, J. N. (1996). Neurody-
namic programming. Athena Scientific.

Beygelzimer, A., Dani, V., Hayes, T.,
ford, J., & Zadrozny, B. (2004). Reduc-
tions between classification tasks. Preprint at
http://hunch.net/~jl/projects/reductions/
mc_to_c/mc_submission.ps.

Lang-

Evan-Dar, E., Kakade, S., & Mansour, Y. (2005).
Reinforcement learning in POMDPs without re-
sets. Preprint at http://www.cis.upenn.edu/
“skakade/papers/rl/learn_pomdp.ps.

Fern, A., Yoon, S., & Givan, R. (2004). Approximate
policy iteration with a policy language bias. Ad-
vances in Neural Information Processing Systems 16
(NIPS*2003).

3Tt is only a minimum of course because we did not
fully address how to gain the information necessary to learn
these predictions. In other words we did not solve the
temporal credit assignment problem.

Kakade, S., & Langford, J. (2002). Approximately
optimal approximate reinforcement learning. Pro-
ceedings of the Nineteenth International Conference
on Machine Learning (ICML-2002) (pp. 267-274).

Kearns, M., Ng, A., & Mansour, Y. (1999). A sparse
sampling algorithm for near-optimal planning in
large markov decision processes. Proceedings of the

Sixteenth International Joint Conference on Artifi-
cial Intelligence (IJCAI-1999) (pp. 1324-1331).

Kearns, M., Ng, A., & Mansour, Y. (2000). Approxi-
mate planning in large pomdps via reusable trajec-
tories. Advances in Neural Information Processing
Systems 12 (NIPS*1999).

Kearns, M., & Singh, S. (1998). Near optimal rein-
forcement learning in polynomial time. Proceedings
of the Fifteenth International Conference on Ma-
chine Learning (ICML-1998) (pp. 260-268).

Khardon, R. (1999). Learning to take actions. Machine
Learning, 35, 57-90.

Lagoudakis, M., & Parr, R. (2003). Reinforcement
learning as classification: Leveraging modern clas-
sifiers. Proceedings of the Twentieth International
Conference on Machine Learning (ICML-2003) (pp.
424-431).

Langford, J., & Beygelzimer, A. (2005). Sensitive
error correcting output codes. Proceedings of the
Eighteenth Annual Conference on Learning Theory
(COLT-2005). To appear.

Langford, J., & Zadrozny, B. (2003). Reducing T-step
reinforcement learning to classification. Preprint at
http://hunch.net/~jl/projects/reductions/
RL_to_class/colt_submission.psb.

Langford, J., & Zadrozny, B. (2005). Estimating class
membership probabilities using classifier learners.
Proceedings of the Tenth International Workshop on
AI and Statistics (AISTATS-2005) (pp. 198-205).

Singh, S., James, M. R., & Rudary, M. R. (2004). Pre-
dictive state representations: A new theory for mod-
eling dynamical systems. Proceedings of the Twenti-

eth Annual Conference on Uncertainty in Artificial
Intelligence (UAI-2004) (pp. 512-519).

Sutton, R. S., & Barto, A. G. (1998). Reinforcement
learning: An introduction. MIT Press.

Watkins, C. (1989). Learning from delayed rewards.
Doctoral dissertation, Cambridge University.

Relating Reinforcement Learning Performance to Classification Performance

Zadrozny, B., Langford, J., & Abe, N. (2003). Cost-
sensitive classification by cost-proportionate exam-
ple weighting. Proceedings of the International Con-
ference on Data Mining (ICDM-2003) (pp. 435—
442).

Appendix

A. Relationships between different
reinforcement learning problem and
goal definitions

The definition of reinforcement learning on a decision
process (DP) used in this paper is mathematically ele-
gant (both general and simple). It is important, how-
ever, to understand how this definition relates to the
definitions that have been used in most previous re-
inforcement learning work. There are two standard
definitions: the MDP and the POMDP definitions.

Definition A.1 (MDP Reinforcement Learning) The
reinforcement learning problem is defined by a set of
states S, a set of actions A, an initial state distribution
p(s), and two conditional probability tables: p(s'|s,a),
giving the probability of state s’ when action a is ex-
ecuted in state s, and p(r|s’) giving the reward distri-
bution for each state s’.

An MDP is a DP with the Markov assumption
(the next state and reward distributions only de-
pend on the current state and action). Thus, an
MDP can be encoded by a DP through the mappings:
s — o, p(o/]a,0),p(rlo") — D(o',r|(0,a,7)",0,a) —
D(o',r|(0,a)). The last mapping is always feasible
because D can express an arbitrary conditional dis-
tribution between r and o', as is necessary. Note that
because a history can be empty, the initial state dis-
tribution is p(o) = D(o', 7).

Another commonly used definition is the POMDP def-
inition.

Definition A.2 (POMDP Reinforcement Learning)
The reinforcement learning problem is defined by a set
of states S, a set of actions A, a set of observations O,
and two conditional probability tables: p(o,r|s), giving
the joint probability of observation o and reward r for
each state s, and p(s'|s,a), giving the probability of
state s’ when action a is executed in state s.

An unconstrained POMDP and a DP are equally gen-
eral. In particular, for any sequence of (observa-
tion, action, reward) triples, there exists a DP and
a POMDP which predict the sequence with probabil-
ity 1. This property means that POMDPs and DPs
are “fully general” and assume no structure about the

world. The advantage of DP is simplicity—there is no
need to mention or use states.

For reinforcement learning goals, one common alter-
native is to consider the v discounted sum of rewards.

Definition A.3 (Reinforcement Learning Goal) For
somey € (0,1), find a policy 7 : (0,a)* — a optimizing
the expected sum of rewards:

Ty (D,m) = E(o,a,r)*wﬂ-,D Z 'Vtrt

t=1

where ry is the t-th observed reward. Here, the expecta-
tion is over the process which generates a history using
D and choosing actions from .

One reason why this definition is convenient is that
there exists a stationary (rather than nonstationary)
policy that is optimal with respect to this goal for any
MDP.

A basic statement can be made (Bagnell, 2004) re-
lating this goal to the T step goal used in this pa-
per whenever rewards are bounded. In particular,
for every reinforcement learning problem D, every -,
and every tolerance ¢ > 0, there exists a hard hori-
zon T and a modified reinforcement learning problem
D'(D) such that for all policies m we have |1, (D,) —
n(D'(D),)| < e. (Here, we add the specification of
the reinforcement learning problem to the performance
measure.)

To do this, we first define* T = ﬁ In =2, Then, we
let D’(D) be the reinforcement learning problem which
for any valid history of D with probability v uses D to
draw the next observation and reward and with proba-
bility 1—+ draws the a special “end world” observation
and 0 reward. Any history with an “end world” always
results in an “end world” observation and 0 reward.
The proof that this works is simple—the accumulated
“end world” probability decreases the expected value
of rewards at timestep ¢ by 7 and truncating the sum
at T changes the expectation by at most e.

A similar transformation from T-step reward to -
discounted reward can be defined by choosing v very
near to 1, then altering the reinforcement learning
problem so all rewards after T" timesteps are 0.

Together these transformation imply that there is lit-
tle mathematical difference between the expressiveness
of these two performance goals. We prefer the T-step
formulation because of the simplicity attained by elim-
inating v and avoiding infinite sums.

“This is for the case where r € [0,1]. The size of the
reward interval rescales € in general.

