Learning the Structure of Markov Logic Networks

Stanley Kok
Pedro Domingos

KOKS @CS.WASHINGTON.EDU
PEDROD @ CS.WASHINGTON.EDU

Department of Computer Science & Engineering, University of Washington, Seattle, WA 98195, USA

Abstract

Markov logic networks (MLNs) combine logic and
probability by attaching weights to first-order clauses,
and viewing these as templates for features of Markov
networks. In this paper we develop an algorithm
for learning the structure of MLNs from relational
databases, combining ideas from inductive logic pro-
gramming (ILP) and feature induction in Markov net-
works. The algorithm performs a beam or shortest-
first search of the space of clauses, guided by a
weighted pseudo-likelihood measure. This requires
computing the optimal weights for each candidate
structure, but we show how this can be done effi-
ciently. The algorithm can be used to learn an MLN
from scratch, or to refine an existing knowledge base.
We have applied it in two real-world domains, and
found that it outperforms using off-the-shelf ILP sys-
tems to learn the MLN structure, as well as pure ILP,
purely probabilistic and purely knowledge-based ap-
proaches.

1. Introduction

Statistical learning handles uncertainty in a robust and prin-
cipled way. Relational learning (also known as inductive
logic programming) models domains involving multiple re-
lations. Recent years have seen a surge of interest in com-
bining the two, driven by the realization that many (if not
most) applications require both, and by the growing ma-
turity of the two fields (Dietterich et al., 2003). Most ap-
proaches to date combine a logical language (e.g., Prolog,
description logics) with Bayesian networks (e.g., Friedman
et al. (1999); Kersting and De Raedt (2001)). However,
the need to avoid cycles in Bayesian networks causes many
difficulties when extending them to relational representa-
tions (Taskar et al., 2002). An alternative is to use undi-
rected graphical models, also known as Markov networks
or Markov random fields. This is the approach taken in
Appearing in Proceedings of the 22™¢ International Conference

on Machine Learning, Bonn, Germany, 2005. Copyright 2005 by
the author(s)/owner(s).

relational Markov networks (Taskar et al., 2002). How-
ever, RMNs use a very restricted logical language (con-
junctive database queries), and this limits the complexity
of phenomena they can efficiently represent. In particular,
RMNs require space exponential in the size of the cliques
in the underlying Markov network. Recently, Richard-
son and Domingos (2004) introduced Markov logic net-
works (MLNs), which allow the features of the underlying
Markov network to be specified by arbitrary formulas in
finite first-order logic, and can compactly represent distri-
butions involving large cliques.

Richardson and Domingos used an off-the-shelf ILP sys-
tem (CLAUDIEN (De Raedt & Dehaspe, 1997)) to learn
the structure of MLNSs. This is unlikely to give the best re-
sults, because CLAUDIEN (like other ILP systems) is de-
signed to simply find clauses that hold with some accuracy
and frequency in the data, not to maximize the data’s like-
lihood (and hence the quality of the MLN’s probabilistic
predictions). In this paper, we develop an algorithm for
learning the structure of MLNs by directly optimizing a
likelihood-type measure, and show experimentally that it
outperforms the approach of Richardson and Domingos.
The resulting system is arguably the most powerful com-
bination to date of statistical and relational learning, while
still having acceptable computational requirements.

We begin by briefly reviewing the necessary background in
ILP (Section 2), Markov networks (Section 3), and Markov
logic networks (Section 4). We then describe in detail our
algorithm for structure learning in MLNs (Section 5). Fi-
nally, we report our experiments with the new algorithm
and discuss their results (Section 6).

2. Logic and ILP

A first-order knowledge base (KB) is a set of sentences or
formulas in first-order logic (Genesereth & Nilsson, 1987).
Formulas are constructed using four types of symbols: con-
stants, variables, functions, and predicates. Constant sym-
bols represent objects in the domain of interest (e.g., peo-
ple: Anna, Bob, Chris, etc.). Variable symbols range
over the objects in the domain. Function symbols (e.g.,

Learning the Structure of Markov Logic Networks

MotherOf) represent mappings from tuples of objects to
objects. Predicate symbols represent relations among ob-
jects in the domain (e.g., Friends) or attributes of objects
(e.g., Smokes). A ferm is any expression representing an
object in the domain. It can be a constant, a variable,
or a function applied to a tuple of terms. For example,
Anna, x, and Mother0f(x) are terms. An atomic formula
or atom is a predicate symbol applied to a tuple of terms
(e.g., Friends(x, MotherOf(Anna))). A ground term is
a term containing no variables. A ground atom or ground
predicate is an atomic formula all of whose arguments are
ground terms. Formulas are recursively constructed from
atomic formulas using logical connectives and quantifiers.
A positive literal is an atomic formula; a negative literal is
a negated atomic formula. A KB in clausal form is a con-
junction of clauses, a clause being a disjunction of literals.
A definite clause is a clause with exactly one positive literal
(the head, with the negative literals constituting the body).
A possible world or Herbrand interpretation assigns a truth
value to each possible ground predicate.

ILP systems learn clausal KBs from relational databases,
or refine existing KBs (Lavra¢ & DZeroski, 1994). In the
learning from entailment setting, the system searches for
clauses that entail all positive examples of some relation
(e.g., Friends) and no negative ones. For example, FOIL
(Quinlan, 1990) learns each definite clause by starting with
the target relation as the head and greedily adding literals
to the body. In the learning from interpretations setting,
the examples are databases, and the system searches for
clauses that are true in them. For example, CLAUDIEN
(De Raedt & Dehaspe, 1997), starting with a trivially false
clause, repeatedly forms all possible refinements of the cur-
rent clauses by adding literals, and adds to the KB the ones
that satisfy a minimum accuracy and coverage criterion.

MACCENT (Dehaspe, 1997) is an early example of a sys-
tem that combines ILP with probability. It finds the max-
imum entropy distribution over a set of classes consistent
with a set of constraints expressed as clauses. Like our al-
gorithm, it builds on Markov network ideas; however, it
only performs classification, while the goal here is to do
general probability estimation (i.e., learn the joint distri-
bution of all predicates). Also, MACCENT only allows
deterministic background knowledge, while MLNs allow it
to be uncertain; and MACCENT classifies each example
separately, while MLNs allow for collective classification.

3. Markov Networks

A Markov network (also known as Markov random field)
is a model for the joint distribution of a set of variables
X = (X1,Xq,...,X,,) € X (Della Pietra et al., 1997). It
is composed of an undirected graph G and a set of potential
functions ¢i. The graph has a node for each variable, and

the model has a potential function for each clique in the
graph. A potential function is a non-negative real-valued
function of the state of the corresponding clique. The joint
distribution represented by a Markov network is given by

P(x=2) = [[ouleg) (1)
k

where z (1, is the state of the kth clique (i.e., the state of
the variables that appear in that clique). Z, known as the
partition function, is given by Z = Y _ . [, ox(z{ky)-
Markov networks are often conveniently represented as
log-linear models, with each clique potential replaced by
an exponentiated weighted sum of features of the state,
leading to

P(X=zx)= %exp ijfj(x))

A feature may be any real-valued function of the state. This
paper will focus on binary features, f;(z) € {0,1}. In
the most direct translation from the potential-function form
(Equation 1), there is one feature corresponding to each
possible state x(;y of each clique, with its weight being
log ¢ (7). This representation is exponential in the size
of the cliques. However, we are free to specify a much
smaller number of features (e.g., logical functions of the
state of the clique), allowing for a more compact represen-
tation than the potential-function form, particularly when
large cliques are present. MLNs take advantage of this.

Markov network weights have traditionally been learned
using iterative scaling (Della Pietra et al., 1997). However,
maximizing the likelihood (or posterior) using a quasi-
Newton optimization method like L-BFGS has recently
been found to be much faster (Sha & Pereira, 2003). Work
on learning the structure (i.e., the features) of Markov net-
works has been relatively sparse to date. Della Pietra et al.
(1997) induce conjunctive features by starting with a set
of atomic features (the original variables), conjoining each
current feature with each atomic feature, adding to the net-
work the conjunction that most increases likelihood, and re-
peating. McCallum (2003) extends this to the case of con-
ditional random fields, which are Markov networks trained
to maximize the conditional likelihood of a set of outputs
given a set of inputs.

4. Markov Logic Networks

A first-order KB can be seen as a set of hard constraints
on the set of possible worlds: if a world violates even one
formula, it has zero probability. The basic idea in MLNs
is to soften these constraints: when a world violates one
formula in the KB it is less probable, but not impossible.
The fewer formulas a world violates, the more probable
it is. Each formula has an associated weight that reflects
how strong a constraint it is: the higher the weight, the

Learning the Structure of Markov Logic Networks

greater the difference in log probability between a world
that satisfies the formula and one that does not, other things
being equal.

Definition 4.1 (Richardson & Domingos, 2004) A Markov
logic network L is a set of pairs (F;,w;), where F; is a
formula in first-order logic and w; is a real number. To-
gether with a finite set of constants C' = {c1,ca,...,c|c|},
it defines a Markov network My, ¢ (Equations 1 and 2) as
follows:

1. My, c contains one binary node for each possible
grounding of each predicate appearing in L. The value
of the node is 1 if the ground predicate is true, and 0
otherwise.

2. M7y, c contains one feature for each possible grounding
of each formula F; in L. The value of this feature is 1 if
the ground formula is true, and 0 otherwise. The weight
of the feature is the w; associated with Iy in L.

Thus there is an edge between two nodes of M7, ¢ iff the
corresponding ground predicates appear together in at least
one grounding of one formula in L. An MLN can be
viewed as a template for constructing Markov networks.
From Definition 4.1 and Equations 1 and 2, the probability
distribution over possible worlds = specified by the ground
Markov network My, ¢ is given by

F
P(X=x)= % exp <Z wlnl(:c)> 3)

where F' is the number formulas in the MLN and n,(x)
is the number of true groundings of F; in z. As formula
weights increase, an MLN increasingly resembles a purely
logical KB, becoming equivalent to one in the limit of all
infinite weights.

In this paper we will focus on MLNs whose formulas are
function-free clauses and assume domain closure, ensuring
that the Markov networks generated are finite (Richard-
son & Domingos, 2004). In this case, the groundings
of a formula are formed simply by replacing its variables
with constants in all possible ways. For example, if C' =
{Anna, Bob}, the formula Vx Smokes(x) = Cancer(x)
in the MLN L yields the features Smokes(Anna) =-
Cancer(Anna) and Smokes(Bob) = Cancer(Bob) in
the ground Markov network M7, ¢. See Richardson and
Domingos (2004, Table II) for details.

MLN weights can be learned by maximizing the likeli-
hood of a relational database. (As often in ILP, a closed-
world assumption is made, whereby all ground atoms not
in the database are assumed false.) However, as in Markov
networks, this requires computing the expected number of
true groundings of each formula, which can take exponen-
tial time. Although this computation can be done approx-
imately using Markov chain Monte Carlo inference (Della

Pietra et al., 1997), Richardson and Domingos found this to
be too slow. Instead, they maximized the pseudo-likelihood
of the data, a widely-used alternative (Besag, 1975). If x
is a possible world (relational database) and x; is the /th
ground atom’s truth value, the pseudo-log-likelihood of =
given weights w is

log Pj(X=x) =Y log Poy(X;=2,|MB.(X1)) (4)
=1
where M B, (X)) is the state of X,;’s Markov blanket in the
data (i.e., the truth values of the ground atoms it appears in
some ground formula with), and

P(Xy=x|MB;(X;)) =

exp (Zf;l win; (m))
exp (3, wini(aixm) +exp (3o, wini (o)

where n;(x) is the number of true groundings of the ith
formula in &, n;(2x,—)) is the number of true groundings
of the ith formula when we force X; = 0 and leave the
remaining data unchanged, and similarly for n;(z[x,—1)-

(&)

Singla and Domingos (2005) proposed a discriminative ap-
proach to learning MLN weights, but did not learn MLN
structure, like we do here. Richardson and Domingos first
learned the structure of an MLN using CLAUDIEN, and
then learned maximum pseudo-likelihood weights for it us-
ing L-BFGS. In the next section we propose a sounder ap-
proach.

5. Structure Learning in MLNs

MLN structure learning can start from an empty network
or from an existing KB. Either way, like Richardson and
Domingos (2004), we have found it useful to start by
adding all unit clauses (single predicates) to the MLN. The
weights of these capture (roughly speaking) the marginal
distributions of the predicates, allowing the longer clauses
to focus on modeling predicate dependencies.

The design space for MLN structure learning algorithms
includes the choice of evaluation measure, clause construc-
tion operators, search strategy, and speedup methods. We
discuss each of these in turn.

5.1. Evaluation Measures

We initially used the same pseudo-likelihood measure as
Richardson and Domingos (Equation 4). However, we
found this to give undue weight to the largest-arity pred-
icates, resulting in poor modeling of the rest. We thus de-
fined the weighted pseudo-log-likelihood (WPLL) as

log Pt (X =1) =
ZT‘ER Cr 22721 10g Pw (Xr,k :‘T’I‘,klMBLE(XT,kZ)) (6)

Learning the Structure of Markov Logic Networks

where R is the set of first-order predicates, g, is the num-
ber of groundings of first-order predicate 7, and . j, is the
truth value (0 or 1) of the kth grounding of r. The choice
of predicate weights ¢, depends on the user’s goals. In our
experiments, we simply set ¢, = 1/g,., which has the effect
of weighting all first-order predicates equally. If modeling
a predicate is not important (e.g., because it will always be
part of the evidence), we set its weight to zero. We used
WPLL in all versions of MLN learning in our experiments.

To combat overfitting, we penalize the WPLL with a struc-
F

ture prior of e~ 2 i where d; is the number of pred-
icates that differ between the current version of the clause
and the original one. (If the clause is new, this is simply
its length.) This is similar to the approach used in learning
Bayesian networks (Heckerman et al., 1995). Following
Richardson and Domingos, we also penalize each weight
with a Gaussian prior.

A potentially serious problem that arises when evaluating
candidate clauses using WPLL is that the optimal (maxi-
mum WPLL) weights need to be computed for each can-
didate. Given that this involves numerical optimization,
and may need to be done thousands or millions of times,
it could easily make the algorithm too slow to be practi-
cal. Indeed, in the UW-CSE domain (see next section), we
found that learning the weights using L-BFGS took 3 min-
utes on average, which is fast enough if only done once, but
unfeasible to do for every candidate clause. Della Pietra
et al. (1997) and McCallum (2003) address this problem
by assuming that the weights of previous features do not
change when testing a new one. Surprisingly, we found this
to be unnecessary if we use the very simple approach of ini-
tializing L-BFGS with the current weights (and zero weight
for a new clause). Although in principle all weights could
change as the result of introducing or modifying a clause,
in practice this seldom happens. Second-order, quadratic-
convergence methods like L-BFGS are known to be very
fast if started near the optimum. This is what happens in our
case; L-BFGS typically converges in just a few iterations,
sometimes one. The time required to evaluate a clause is in
fact dominated by the time required to compute the number
of its true groundings in the data, and this is a problem we
focus on in Subsection 5.4.

5.2. Clause Construction Operators

When learning an MLN from scratch (i.e., from a set of unit
clauses), the natural operator to use is the addition of a lit-
eral to a clause. When refining a hand-coded KB, the goal
is to correct the errors made by the human experts. These
errors include omitting conditions from rules and including
spurious ones, and can be corrected by operators that add
and remove literals from a clause. These are the basic op-
erators that we use. In addition, we have found that many

common errors (wrong direction of implication, wrong use
of connectives with quantifiers, etc.) can be corrected at
the clause level by flipping the signs of predicates, and we
also allow this. When adding a literal to a clause, we con-
sider all possible ways in which the literal’s variables can
be shared with existing ones, subject to the constraint that
the new literal must contain at least one variable that ap-
pears in an existing one. To control the size of the search
space, we set a limit on the number of distinct variables
in a clause. We only try removing literals from the origi-
nal hand-coded clauses or their descendants, and we only
consider removing a literal if it leaves at least one path of
shared variables between each pair of remaining literals.

5.3. Search Strategies

We have implemented two search strategies, one faster and
one more complete. The first approach adds clauses to the
MLN one at a time, using beam search to find the best
clause to add: starting with the unit clauses and the expert-
supplied ones, we apply each legal literal addition and dele-
tion to each clause, keep the b best ones, apply the opera-
tors to those, and repeat until no new clause improves the
WPLL. The chosen clause is the one with highest WPLL
found in any iteration of the search. If the new clause is
a refinement of a hand-coded one, it replaces it. (Notice
that, even though we both add and delete literals, no loops
can occur because each change must improve WPLL to be
accepted.)

The second approach adds & clauses at a time to the MLN,
and is similar to that of McCallum (2003). In contrast
to beam search, which adds the best clause of any length
found, this approach adds all “good” clauses of length [be-
fore attempting any of length [4+ 1. We call it shortest-first
search.

Table 1 shows the structure learning algorithm in pseudo-
code, Table 2 shows beam search, and Table 3 shows
shortest-first search for the case where the initial MLN con-
tains only unit clauses.

5.4. Speedup Techniques

The algorithms described in the previous section may be
very slow, particularly in large domains. However, they
can be greatly sped up using a combination of techniques
that we now describe.

e Richardson and Domingos (2004) list several ways
of speeding up the computation of the pseudo-log-
likelihood and its gradient, and we apply them to the
WPLL (Equation 6). In addition, in Equation 5 we ig-
nore all clauses that the predicate does not appear in.

e When learning MLN weights to evaluate candidate

Learning the Structure of Markov Logic Networks

Table 1. MLN structure learning algorithm.

Table 2. Beam search for the best clause.

function StructLearn(R, M LN, DB)

inputs: R, a set of predicates
M LN, a clausal Markov logic network
D B, arelational database
output: Modified M LN
Add all unit clauses from R to M LN
for each non-unit clause c in M L N (optionally)
Try all combinations of sign flips of literals in ¢, and
keep the one that gives the highest WPLL(M LN, D B)
Clausesg < {All clausesin M LN}
LearnWeights(M LN, DB)
Score «— WPLL(M LN, DB)
repeat
Clauses < FindBestClauses(R, M LN, Score, Clausesg, DB)
if Clauses # 0
Add Clauses to MLN
LearnWeights(M LN, D B)
Score «+— WPLL(M LN, DB)
until Clauses = ()
for each non-unit clause cin M LN
Prune ¢ from M L N unless this decreases WPLL(M LN, D B)
return M/ LN

clauses, we use a looser convergence threshold and
lower maximum number of iterations for L-BFGS than
when updating the MLN with the chosen clause(s).

We compute the contribution of a predicate to the WPLL
approximately by uniformly sampling a fraction of its
groundings (true and false ones separately), computing
the conditional likelihood of each one (Equation 5), and
extrapolating the average. The number of samples can
be chosen to guarantee that, with high confidence, the
chosen clause(s) are the same that would be obtained if
we computed the WPLL exactly. This effectively makes
the runtime of the WPLL computation independent of
the number of predicate groundings (Hulten & Domin-
gos, 2002). At the end of the algorithm we do a final
round of weight learning without subsampling.

We use a similar strategy to compute the number of true
groundings of a clause, required for the WPLL and its
gradient. In particular, we use the algorithm of Karp and
Luby (1983). In practice, we found that the estimates
converge much faster than the algorithm specifies, so
we run the convergence test of DeGroot and Schervish
(2002, p. 707) after every 100 samples and terminate if
it succeeds. In addition, we use looser convergence cri-
teria during candidate clause evaluation than during up-
date with the chosen clause. (See Sebag and Rouveirol
(1997) for a related use of sampling in ILP.)

When most clause weights do not change significantly
with each run of L-BFGS, neither do most conditional
log-likelihoods (CLLs) of ground predicates (log of
Equation 5). We take advantage of this by storing the
CLL of each sampled ground predicate, and only recom-
puting it if a clause weight affecting it changes by more

function FindBestClauses(R, M LN, Score, Clausesqg, D B)
inputs: R, a set of predicates
M LN, a clausal Markov logic network
Score, WPLL of M LN
Clausesg, a set of clauses
D B, arelational database
output: BestClause, a clause to be added to M LN
BestClause «—
BestGain «— 0
Beam «— Clausesg
Save the weights of the clauses in M LN
repeat
Candidates < CreateCandidateClauses(Beam, R)
for each clause c € Candidates
Addcto MLN
LearnWeights(M LN, DB)
Gain(c) < WPLL(M LN, DB) — Score
Remove ¢ from M LN
Restore the weights of the clauses in M LN
Beam « {The b clauses ¢ € Candidates with highest
Gain(c) > 0and with Weight(c) > € >0}
if Gain(Best clause ¢* in Beam) > BestGain
BestClause « c*
BestGain «— Gain(c™)
until Beam = @) or BestGain has not changed in two iterations
return { BestClause}

than some threshold §. When a CLL changes, we sub-
tract its old value from the total WPLL and add the new
one. The computation of the gradient of the WPLL is
similarly optimized.

e We use a lexicographic ordering on clauses to avoid re-
dundant computations for clauses that are syntactically
identical. (However, we do not detect clauses that are
semantically equivalent but syntactically different; this
is an NP-complete problem.) We also cache the new
clauses created during each search and their counts,
avoiding the need to recompute them in later searches.

6. Experiments
6.1. Databases

We carried out experiments on two publicly-
available databases: the UW-CSE database used
by Richardson and Domingos (2004) (available at
http://www.cs.washington.edu/ai/mln), and McCallum’s
Cora database of computer science citations as seg-
mented by Bilenko and Mooney (2003) (available at
http://www.cs.utexas.edu/users/ml/riddle/data/cora.tar.gz).

The UW-CSE domain consists of 22 predicates and
1158 constants divided into 10 types. Types include:
publication, person, course, etc. Predicates include:
Professor(person), AdvisedBy(personl,person2),
etc. Using typed variables, the total number of possible
ground predicates is 4,055,575. The database contains a
total of 3212 tuples (ground atoms). We used the hand-
coded knowledge base provided with it, which includes 94

Learning the Structure of Markov Logic Networks

Table 3. Shortest-first search for the best clauses.

function FindBestClauses(R, M LN, Score, Clausesqg, D B)
inputs: R, a set of predicates
M LN, a clausal Markov logic network
Score, WPLL of M LN
Clausesg, a set of clauses
D B, arelational database
output: BestClauses, a set of clauses to be added to M LN
Save the weights of the clauses in M LN
if this is the first time FindBestClauses is called
Candidates — 0
l—1
repeat
if [= 1 or this is not the first iteration of the repeat loop
if there is no clause in Candidates of length < [
that was not previously extended
l—1+1
Clauses < {Clauses of length I — 1 in M LN not previ-
ously extended } U {s best clauses of length { —1 in
Candidates not previously extended }
Candidates «— Candidates U
CreateCandidateClauses(C'lauses, R)
for each clause ¢ € C'andidates not previously evaluated
Addcto MLN
LearnWeights(M LN, D B)
Gain(c) < WPLL(M LN, DB) — Score
Remove ¢ from M LN
Restore the weights of the clauses in M LN
Candidates < {m best clauses in Candidates}
until [= 1,,, . or there is a clause ¢ € Candidates with
Gain(c) > 0and Weight(c) > e >0
BestClauses < {The k clauses ¢ € Candidates with highest
Gain(c) > 0 and with Weight(c) > € >0}
Candidates «— Candidates \ BestClauses
return BestClauses

formulas stating regularities like: each student has at most
one advisor; if a student is an author of a paper, so is her
advisor; etc. Notice that these statements are not always
true, but are typically true.

The Cora dataset is a collection of 1295 different cita-
tions to 112 computer science research papers. We used
the author, venue, title and year fields. The goal is to
determine which pairs of citations refer to the same pa-
per (i.e., to infer the truth values of all groundings of
SameCitation(cl, c2)). These values are available in the
data. Additionally, we can attempt to deduplicate the au-
thor, title and venue strings, and we labeled these manually.
We defined predicates for each field that discretize the per-
centage of words that two strings have in common. For ex-
ample, WordsInCommonInTitle20%(titlel,title2)
is true iff the two titles have 0-20% of their words in com-
mon. These predicates are always given as evidence, and
we do not attempt to predict them. Using typed vari-
ables, the total number of possible ground predicates is
5,225,411. The database contained a total of 378,589 tu-
ples (ground atoms). A hand-crafted KB for this domain
was provided by a colleague; it contains 26 clauses stating
regularities like: if two citations are the same, their authors,
venues, etc., are the same, and vice-versa; if two fields of
the same type have many words in common, they are the
same; etc.

6.2. Systems

We compared nine versions of MLN learning: weight
learning applied to the hand-coded KB (MLN(KB)); struc-
ture learning using CLAUDIEN, FOIL and Aleph (Srini-
vasan, 2000) followed by weight learning (respectively
MLN(CL), MLN(FO) and MLN(AL)); structure learn-
ing using CLAUDIEN with the KB providing the lan-
guage bias as in Richardson and Domingos (2004), fol-
lowed by weight learning on the output of CLAUDIEN
merged with the KB (MLN(KB+CL)); structure learning
using our algorithm with beam search, starting from an
empty MLN (MLN(SLB)), starting from the hand-coded
KB (MLN(KB+SLB)), and starting from an empty MLN
but allowing hand-coded clauses to be added during the
first search step (MLN(SLB+KB)); and structure learning
using our algorithm with shortest-first search, starting from
an empty MLN (MLN(SLS)). We added unit clauses to
all nine systems. In addition, we compared MLN learn-
ing with three pure ILP approaches (CLAUDIEN (CL),
FOIL (FO), and Aleph (AL)), a pure knowledge-based
approach (the hand-coded KB (KB)), the combination of
CLAUDIEN and the hand-coded KB as described above
(KB+CL), and two pure probabilistic approaches (naive
Bayes (NB) (Domingos & Pazzani, 1997) and Bayesian
networks (BN) (Heckerman et al., 1995)). Notice that ILP
learners like FOIL and Aleph are not directly comparable
with MLNs (or CLAUDIEN), because they only learn to
predict designated target predicates, as opposed to finding
arbitrary regularities over all predicates. For an approxi-
mate comparison, we used FOIL and Aleph to learn rules
with each predicate as the target in turn.

We used the algorithm of Richardson and Domingos to
construct attributes for the naive Bayes and Bayesian net-
work learners. Since our goal is to measure predictive per-
formance over all predicates, not just the AdvisedBy(x,y)
predicate that Domingos and Richardson focused on, we
learned a naive Bayes classifier and a Bayesian network
for each predicate. (Attempting to learn a single Bayesian
network to predict all predicates simultaneously gave very
poor results; this is not surprising, since in this case there
are only four examples to learn from — one per training
area.) Following Richardson and Domingos, we tried using
order-1 and order-1+2 attributes, and report the best results.

We used the same settings for CLAUDIEN as Richardson
and Domingos, and let CLAUDIEN run for 24 hours on
a Sun Blade 1000 workstation.! We used the default FOIL
parameter settings except for the maximum number of vari-
ables per clause, which we set to 5 (UW-CSE) and 6 (Cora),
and the minimum clause accuracy, which we set to 50%.
For Aleph, we used all of the default settings except for the
maximum clause length, which we set to 4 (UW-CSE) and

!CLAUDIEN only runs on Solaris machines.

Learning the Structure of Markov Logic Networks

7 (Cora). The parameters used for our structure learning al-
gorithms were as follows: o = 0.01 (UW-CSE) and 0.001
(Cora); maximum variables per clause = 5 (UW-CSE) and
6 (Cora);? € = 1 (UW-CSE) and 0.01 (Cora); 6 = 10~%;
s = 200; m = 100,000; l,,0. = 3 (UW-CSE) and 7
(Cora); and £ = 10 (UW-CSE) and 1 (Cora). L-BFGS
was run with the following parameters: maximum itera-
tions = 10,000 (tight) and 10 (loose); convergence thresh-
old = 10~° (tight) and 10~* (loose). The mean and vari-
ance of the Gaussian prior were set to 0 and 100, respec-
tively, in all runs. Parameters were set in an ad hoc manner,
and per-fold optimization using a validation set could con-
ceivably yield better results.

6.3. Methodology

In the UW-CSE domain, we used the same leave-one-area-
out methodology as Richardson and Domingos (2004). In
the Cora domain, we performed five runs with train-test
splits of approximately equal size, ensuring that no true set
of matching records was split between train and test sets
to avoid contamination. For each system on each test set,
we measured the conditional log-likelihood (CLL) and area
under the precision-recall curve (AUC) for each predicate.
The advantage of the CLL is that it directly measures the
quality of the probability estimates produced. The advan-
tage of the AUC is that it is insensitive to the large number
of true negatives (i.e., ground atoms that are false and pre-
dicted to be false). The CLL of a predicate is the average
over all its groundings of the log of Equation 5, which we
smoothed by using a weighted average of this value with a
prior of 0.5 (with weights of 0.99 and 0.01, respectively).
The precision-recall curve for a predicate is computed by
varying the threshold CLL above which a ground atom is
predicted to be true. For both CLL and AUC, the values
we report are averages over all predicates (in the UW-CSE
domain) or all non-evidence predicates (in the Cora do-
main), with all predicates weighted equally. We computed
the standard deviations of the AUCs using the method of
Richardson and Domingos (2004). To obtain probabili-
ties from the ILP models and hand-coded KBs (required
to compute CLLs and AUCs), we treated them as MLNs
with all equal infinite weights.

6.4. Results

The results on the UW-CSE domain are shown in Table 4,
and the results on Cora are shown in Table 5.3 All versions
of our MLN structure learning algorithm greatly outper-

’In the Cora domain, we further sped up learning by
using syntactic restrictions on clauses similar to CLAU-
DIEN’s declarative bias; details are in an online appendix at
http://www.cs.washington.edu/ai/lsmln.

3We tried Aleph with many different parameter settings on
Cora, but it always crashed by running out of memory.

Table 4. Experimental results on the UW-CSE database.

System CLL AUC

MLN(SLS) —0.0614+0.004 0.53340.003
MLN(SLB) —0.088+0.005 0.47240.004
MLN(KB+SLB) | —0.140+0.005 0.430+0.003
MLN(SLB+KB) | —0.0714+0.005 0.551+£0.003
MLN(KB+CL) | —0.1154+0.005 0.506+0.004
MLN(CL) —0.151+0.005 0.3061-0.001
MLN(FO) —0.208+0.006 0.140+0.000
MLN(AL) —0.223+0.006 0.14840.001
MLN(KB) —0.14240.005 0.429+0.003
KB+CL —0.789+0.012 0.318+0.003
CL —0.5744+0.010 0.170+0.004
FO —0.6614+0.003 0.13140.001
AL —0.5794+0.006 0.11740.000
KB —0.8124+0.011 0.266+0.003
NB —0.370+0.005 0.390+0.003
BN —0.166+0.004 0.39710.002

Table 5. Experimental results on the Cora database.

System CLL AUC

MLN(SLS) —0.0544+0.000 0.81340.001
MLN(SLB) —0.058+0.000 0.78240.001
MLN(KB+SLB) | —0.0554+0.000 0.828+0.001
MLN(SLB+KB) | —0.0584+0.000 0.782+0.001
MLN(KB+CL) | —0.069+0.000 0.799+0.001
MLN(CL) —0.158+0.001 0.14840.000
MLN(FO) —0.213+0.000 0.52940.001
MLN(KB) —0.066+0.000 0.809+0.001
KB+CL —0.191+0.001 0.658%0.001
CL —0.693+0.000 0.14840.000
FO —0.7174£0.001 0.58340.001
KB —0.22940.001 0.65740.001
NB —0.4114+0.001 0.096+0.001
BN —0.25740.001 0.107+0.000

form using ILP systems to learn MLN structure, in both
CLL and AUC, in both domains. This is consistent with
our hypothesis that directly optimizing (pseudo-)likelihood
when learning structure yields better models. In both do-
mains, shortest-first search starting from an empty network
(MLN(SLS)) gives the best overall results, but is much
slower than beam search (MLN(SLB)) (see below).

The purely logical approaches (CL, FO, AL, KB and
KB+CL) did quite poorly. This occurred because they as-
signed very low probabilities to true ground atoms when-
ever they were not entailed by the logical KB, and this oc-
curred quite often. Learning weights for the hand-coded
KBs was quite helpful, confirming the utility of transform-
ing KBs into MLNs. However, structure learning gave
the best overall results. In the UW-CSE domain, refin-
ing the hand-coded KB (MLN(KB+SLB)) did not improve

Learning the Structure of Markov Logic Networks

on learning from scratch. Structure learning was unable to
break out of the local optimum represented by MLN(KB),
leading to poor performance. This problem is overcome if
we start instead from an empty KB but allow hand-coded
clauses to be added during the first step of beam search
(MLN(SLB+KB)).

MLNs also greatly outperformed the purely probabilistic
approaches (NB and BN). This was particularly noticeable
in the UW-CSE domain, which contains little conventional
attribute-value data but much relational information.

In the UW-CSE domain, shortest-first search without the
speedups described in Subsection 5.4 did not finish run-
ning in 24 hours on a cluster of 15 dual-CPU 2.8 GHz Pen-
tium 4 machines. With the speedups, it took an average of
5.3 hours. For beam search, the speedups reduced average
running time from 13.7 hours to 8.8 hours on a standard
2.8 GHz Pentium 4 CPU. To investigate the contribution of
each speed-up technique, we reran shortest-first search on
one fold of the UW-CSE domain, leaving out one technique
at a time. Clause and predicate sampling provide the largest
speedups (six-fold and five-fold, respectively), and weight
thresholding the smallest (1.025). None of the techniques
adversely affect AUC, and predicate sampling is the only
one that significantly reduces CLL (disabling it improves
CLL from —0.059 to —0.038). Inference times were rela-
tively short, taking a maximum of 1 minute (UW-CSE) and
12 minutes (Cora) on a standard 2.8 GHz Pentium 4 CPU.

We have also applied our algorithms to two time-changing
domains, and shown that they outperform pure ILP and
purely probabilistic approaches there (Sanghai et al., 2005).

In summary, both our algorithms are effective; we rec-
ommend using shortest-first search when accuracy is
paramount, and beam search when speed is a concern.

7. Conclusion and Future Work

Markov logic networks are a powerful combination of first-
order logic and probability. We have introduced an algo-
rithm to automatically learn first-order clauses and their
weights in MLNs. Empirical tests with real-world data in
two domains have shown the promise of our approach.

Directions for future work include speeding up the count-
ing of the number of true groundings of a first-order clause
(the most significant bottleneck in our algorithm), study-
ing alternate weight learning approaches, probabilistically
bounding the loss in accuracy due to subsampling, and ex-
tending our approach to probabilistic predicate discovery.

Acknowledgments: We thank Matt Richardson and Parag
Singla for helpful discussions. This work was partly funded
by ONR grant N00014-02-1-0408, and by a Sloan Fellow-
ship and an NSF CAREER Award to the second author.

References

Besag, J. (1975). Statistical analysis of non-lattice data. The
Statistician, 24, 179-195.

Bilenko, M., & Mooney, R. (2003). Adaptive duplicate detection
using learnable string similarity measures. Proc. KDD-03 (pp.
39-48).

De Raedt, L., & Dehaspe, L. (1997). Clausal discovery. Machine
Learning, 26, 99-146.

DeGroot, M. H., & Schervish, M. J. (2002). Probability and
statistics. Boston, MA: Addison Wesley. 3rd edition.

Dehaspe, L. (1997). Maximum entropy modeling with clausal
constraints. Proc. ILP-97 (pp. 109-125).

Della Pietra, S., Della Pietra, V., & Lafferty, J. (1997). Inducing
features of random fields. IEEE Trans. on Pattern Analysis and
Machine Intelligence, 19, 380-392.

Dietterich, T., Getoor, L., & Murphy, K. (Eds.). (2003). Proc.
ICML-2004 Wkshp. on Statistical Relational Learning. Banff,
Canada.

Domingos, P., & Pazzani, M. (1997). On the optimality of the sim-
ple Bayesian classifier under zero-one loss. Machine Learning,
29, 103-130.

Friedman, N., Getoor, L., Koller, D., & Pfeffer, A. (1999). Learn-
ing probabilistic relational models. Proc. IJCAI-99 (pp. 1300-
1307).

Genesereth, M. R., & Nilsson, N. J. (1987). Logical foundations
of artificial intelligence. San Mateo, CA: Morgan Kaufmann.

Heckerman, D., Geiger, D., & Chickering, D. M. (1995). Learn-
ing Bayesian networks: The combination of knowledge & sta-
tistical data. Machine Learning, 20, 197-243.

Hulten, G., & Domingos, P. (2002). Mining complex models from
arbitrarily large databases in constant time. Proc. KDD-02 (pp.
525-531).

Karp, R., & Luby, M. (1983). Monte Carlo algorithms for enu-
meration and reliability problems. Proc. FOCS-83 (pp. 56-64).

Kersting, K., & De Raedt, L. (2001). Towards combining induc-
tive logic programming with Bayesian networks. Proc. ILP-01
(pp. 118-131).

Lavra¢, N., & Dzeroski, S. (1994). Inductive logic programming:
Techniques and applications. Chichester, UK: Ellis Horwood.

McCallum, A. (2003). Efficiently inducing features of conditional
random fields. Proc. UAI-03 (pp. 403-410).

Quinlan, J. R. (1990). Learning logical definitions from relations.
Machine Learning, 5, 239-266.

Richardson, M., & Domingos, P. (2004). Markov logic networks
(Tech. Rept.). Dept. Comp. Sci. & Eng., Univ. Washington,
Seattle. http://www.cs.washington.edu/homes/pedrod/mln.pdf.

Sanghai, S., Domingos, P., & Weld, D. (2005). Learning mod-
els of relational stochastic processes (Tech. Rept.). Dept.
Comp. Sci. & Eng., Univ. Washington, Seattle. http://www.-
cs.washington.edu/homes/pedrod/Imrsp.pdf.

Sebag, M., & Rouveirol, C. (1997). Tractable induction and clas-
sification in first-order logic via stochastic matching. Proc.
1JCAI-97 (pp. 888-893).

Sha, F., & Pereira, F. (2003). Shallow parsing with conditional
random fields. Proc. HLT-NAACL-03 (pp. 134-141).

Singla, P., & Domingos, P. (2005). Discriminative training of
Markov logic networks. Proc. AAAI-05 (to appear).

Srinivasan, A. (2000). The Aleph manual (Tech. Rept.). Comput-
ing Laboratory, Oxford University.

Taskar, B., Abbeel, P., & Koller, D. (2002). Discriminative proba-
bilistic models for relational data. Proc. UAI-02 (pp. 485-492).

