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Abstract

The conditional distribution of a discrete
variable y, given another discrete variable x,
is often specified by assigning one multino-
mial distribution to each state of x. The cost
of this rich parametrization is the loss of sta-
tistical power in cases where the data actually
fits a model with much fewer parameters. In
this paper, we consider a model that parti-
tions the state space of x into disjoint sets,
and assigns a single Dirichlet-multinomial to
each set. We treat the partition as an un-
known variable which is to be integrated
away when the interest is in a coarser level
task, e.g., variable selection or classification.
Based on two different computational ap-
proaches, we present two exact algorithms for
integration over partitions. Respective com-
plexity bounds are derived in terms of de-
tailed problem characteristics, including the
size of the data and the size of the state space
of x. Experiments on synthetic data demon-
strate the applicability of the algorithms.

1. Introduction

Conditional probability distributions are central in
both predictive (classification and regression) and in-
ferential (discovery of association and causality) appli-
cations. For example, Bayesian networks represent a
multivariate probability distribution as a collection of
univariate conditional distributions (e.g., Pearl, 1988;
Heckerman et al., 1995).

In the case of discrete variables, the multinomial dis-
tribution gives the most general parametrization. If y
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is a discrete variable with r states, then r − 1 “free”
parameters are sufficient to specify the distribution
of y. When the distribution of y is considered con-
ditionally on another discrete variable x (possibly a
vector (x1, . . . , xs) representing s parents of y) with
q states, then the most general parametrization uses
altogether (r − 1)q free parameters. The meaning
of “free” depends on the chosen statistical paradigm.
In the Bayesian framework—which we adopt in this
paper—it corresponds to a local independence assump-
tion and hence often to a Dirichlet prior on the param-
eters (Geiger & Heckerman, 2002).

It is generally acknowledged that the Dirichlet-
multinomial model is often too flexible. This is espe-
cially the case when the number of parameters is large
but the size of the data is small. If stronger assump-
tions concerning the relationship between the multi-
nomial parameters can be made, then learning power
can be enhanced. In the context of Bayesian networks,
local models have been studied. Friedman and Gold-
szmidt (1996) present a non-Bayesian treatment of de-
cision trees, whereas Chickering et al. (1997) offer a
Bayesian approach using decision graphs. A shortcom-
ing of both these methods is that they search for a sin-
gle best local structure only. Rather, what we would
like to do is to sum over possible structures in a man-
ner of model averaging. To approximate such aver-
ages (under a slightly different model), Golinelli et al.
(1999) propose a Markov chain Monte Carlo method.
These three methods have the drawback that they pro-
vide no quality guarantee for the output. Thus, an un-
wanted layer of uncontrolled uncertainty is introduced
by these methods.

In this paper we ask: When can local models be han-
dled exactly and with sufficient efficiency? To an-
swer this we restrict our attention to partition mod-
els. A partition model groups the states of the condi-
tioning variable, x, into a relatively small number of
groups called levels. Each level specifies a Dirichlet-
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multinomial model that is shared by the states that
belong to that group. Partition models are thus more
general than decision trees, which build a tree based
on a fixed representation of x as a vector (x1, . . . , xs)
of several variables. However, the expression power of
partition models and decision graphs are equal: both
can represent arbitrary groupings of the states of x.
Here we prefer the partition representation over de-
cision graphs, for the partition representation makes
explicit certain model characteristics that are interest-
ing from the computational point of view. We note
that our partition model is simpler than the hierar-
chical variant proposed by Golinelli et al. (1999), in
which the states within a group have a similar, not
necessarily identical, model.

We stress that this paper concerns learning with struc-
tured models of conditional distributions (partition
models in particular). Thus, this work is complemen-
tary to those that consider inference in Bayesian net-
works under a given structured model (Poole, 1997).
The difference between these two tasks is not only in
the goal but also in the algorithmic techniques used.

As an example of a partition model, consider a genetic
penetrance model. Suppose there are two genes, each
with two variants: one “predisposing” allele and one
“normal” allele. A genotype G over two genes consists
of two pairs of alleles; one allele is inherited from the
mother and the other from the father. For a binary
trait, the penetrance of G is the probability that a
person who carries G has the trait. For two genes the
penetrance function can be represented as a matrix,
where the element of the ith row and the jth column
is the penetrance of the genotype with i − 1 copies
of the predisposing allele of the first gene and j − 1
copies of the predisposing allele of the second gene.
For example, the matrix

F =





0.1 0.1 0.3
0.1 0.3 0.3
0.3 0.3 0.9



 (1)

involves three levels of penetrances, each correspond-
ing to a subset of genotypes. Grouping genotypes may
be justified, as different genotypes can be responsible
for the same intermediate products (e.g., proteins).

The rest of this paper is organized as follows. In Sec-
tion 2, we recall the role of the multinomial model in
prediction and inference. The idea of partitioning is
formulated in Section 3. In Section 4, we present two
exact algorithms for averaging over possible partitions;
some modifications are discussed in Section 5. The ap-
plicability of the presented algorithms is demonstrated
by experiments on synthetic data in Section 6. Sec-
tion 7 presents concluding remarks.

2. Preliminaries

We consider a data sequence z[1], . . . , z[m], where each
z[t] is a pair (x[t], y[t]) of two variables; typically each
x[t] is vector-valued. For convenience, suppose that
these variables take small integer values, x[t] in X =
{1, . . . , q} and y[t] in Y = {1, . . . , r}. We briefly denote
x for the sequence (x[1], . . . , x[m]) and similarly y for
(y[1], . . . , y[m]). We are interested in specifying the
conditional distribution p(y |x), because this type of
conditional distribution plays a central role in various
applications, e.g., in learning Bayesian networks (see,
e.g., Cooper & Herskovits, 1992; Heckerman et al.,
1995; Chickering et al., 1997).

To incorporate the idea of learning from data, the dis-
tribution of y given x is supposed to be a mixture of
multinomial distributions:

p(y |x) =

∫

p(θ)

q
∏

j=1

r
∏

k=1

θ
Njk

jk dθ . (2)

Here Njk is the number of ts for which y[t] = k and
x[t] = j, and θjk are nonnegative real numbers, called
multinomial parameters, satisfying

∑r
k=1 θjk = 1 for

all j. The density function p(θ) is called a prior.

A conditional model can be used, for instance, in pre-
diction. The prediction, or classification, problem is to
guess y[t] given x[t] along with the past observations
z[1], . . . , z[t − 1]. A Bayesian approach to prediction
relies on the conditional p(y[t] |x[t], z[1], . . . , z[t − 1]),
which is proportional to p(y |x).

One may also be interested in learning the underlying
structure of the data generating process. For example,
in variable selection the goal is to select from a set of n
variables {x1, . . . , xn} the subset {xi1 , . . . , xis

} that is
responsible for the variation in a variable y, while the
rest of the variables are regarded as irrelevant “noise”
with respect to y. When approaching this task, it is
convenient to specify a conditional distribution of the
form p(y |xi1 , . . . ,xis

) (assuming y is conditionally in-
dependent of the remaining n− s variables). Identify-
ing the parents of a variable in this way is a key task
in structure learning in Bayesian networks.

3. Partition Models

The multinomial model does not force us to use q(r−1)
“free” parameters. Instead, the prior allows for repre-
senting arbitrary soft and hard dependences among
the parameters. Here we introduce a simple class of
priors that facilitate feasible computations.

Instead of q parameters, we allow for ` ≤ q parameters.
This is to say that some states of x share a multino-



Computational Aspects of Bayesian Partition Models

mial parameter vector. More precisely, each state j in
X = {1, . . . , q} is mapped to a level L(j) ∈ {1, . . . , `}.
For different levels h = 1, . . . , ` we assign a multino-
mial parameter vector λh. The mapping L, called a
partition, and the parameters λ1, . . . , λ` are treated as
independent random variables (vectors).

To make model specification and computations conve-
nient, we suppose that the prior of L has a modular
structure.

Definition 3.1 A prior on partitions is state-wise
modular if there exist numbers ρjh ≥ 0, with
∑`

h=1 ρjh = 1 for all j, such that the prior probability
of any partition L factorizes as

p(L) = ρ1L(1) · · · ρqL(q) .

For example, an “uninformative” state-wise modular
prior is given by setting ρjh = 1/` for all j (the uniform
prior). Henceforth we suppose that the prior on L is
state-wise modular. Further, for each parameter λh

we assign a Dirichlet prior,

λh ∼ Dirichlet(αh1, . . . , αhk) .

Together, the above assignments imply a prior p(θ).
Namely, the parameters θ can be viewed as the result
of first drawing the parameters λ1, . . . , λ` and then
drawing (independently) a mapping L which sets each
θj to λL(j).

Substitution into (2) gives

p(y |x) =

∫

∑

L

p(L) p(λ)
∏̀

h=1

r
∏

k=1

λMhk

hk dλ , (3)

where Mhk =
∑

j∈L−1(h)Njk depends on L (and on

the data). Reversing the order of integration and sum-
mation yields an alternative mixture representation,

p(y |x) =
∑

L

p(L)f(L) , (4)

where L runs through all partitions, and for f(L) we
have a closed-form expression involving the gamma
function Γ,

f(L) =
∏̀

h=1

Γ(αh)

Γ(αh +Mh)

r
∏

k=1

Γ(αhk +Mhk)

Γ(αhk)
. (5)

Here αh =
∑

k αhk and Mh =
∑

k Mhk. Note the
implicit dependence on L (and on the data).

It is worth noting that a partition L not only partitions
the state space X = {1, . . . , q} into disjoint groups, but

also assigns a distinct level to each group. Moreover,
the number of (nonempty) groups varies between 1 and
` depending on the partition L.

Straightforward integration over partitions is compu-
tationally demanding. Namely, the number of par-
titions, `q, grows rapidly with q. A similar compu-
tational problem is faced by Chickering et al. (1997)
when they consider maximization over decision graphs.
They suggest a greedy algorithm which, in general, is
suboptimal. In the next section, we present two dif-
ferent exact algorithms for computing the sum (4) and
discuss how the applicability of these methods depends
on the problem parameters `, m, q, and r.

4. Two Exact Approaches

We give two algorithms for summing over partitions.
Both algorithms apply dynamic programming and can
be viewed as instances of the general variable elimina-
tion algorithm (see, e.g., Stearns & Hunt III, 1996;
Dechter, 1999). The state-wise algorithm sums over
each L(j) (the level of state j) in turn. Its dual, the
level-wise algorithm, sums over each L−1(h) (the states
of level h) in turn.

4.1. The State-Wise Algorithm

From now on, treat N as a matrix of size q × r and
M as a matrix of size ` × r. Let Nj. and Mh. denote
the jth and the hth row of the matrices N and M ,
respectively.

The state-wise algorithm is based on the following it-
erative representation of the sum (4).

Lemma 4.1 Define

g0(M) =
∏̀

h=1

Γ(αh)

Γ(αh +Mh)

r
∏

k=1

Γ(αhk +Mhk)

Γ(αhk)
,

and iteratively for j = 1, . . . , q,

gj(M) =
∑̀

L(j)=1

ρjL(j) gj−1(M
′) ,

where M ′ is obtained from M by replacing the L(j)th
row ML(j). by ML(j). +Nj.. Then p(y |x) = gq(0).

Proof: It is easy to see that gq(0) =
∑

L p(L) g0(M),
where each row Mh. of the matrix M satisfies Mh. =
∑

j∈L−1(h)Nj.. Thus by (4) and (5) we have p(y |x) =

gq(0) as claimed.

This representation suggests a dynamic programming
algorithm for integration over partitions. First we
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compute g0(M) for all relevant matrices M ; a matrix
M is relevant if there exists a partition that together
with the observed matrix N yields M . Then we con-
tinue by computing the function g1, and so forth. Fi-
nally the desired value can be read as gq(0).

An alternative implementation, memoization, pro-
ceeds recursively. First it calls gq(0) which in turn
calls gq−1(M) for a number of different matrices M,
etc., until finally the recursion stops at calling g0(M)
for some relevant matrices M . In this way only the
relevant matrices are constructed along the calls.

To analyze the computational complexity of these
methods we bound the number of relevant matri-
ces. Since there are m data records, an obvious up-
per bound is m`r. However, this bound can be im-
proved fairly easily. Namely, we note that the column
sums of the matrices M and N must be equal. In
the worst case all columns sums are equal to m/r.
Hence, we have at most (m/r)(`−1)r relevant matri-
ces. From this we obtain the total time complexity
of O(min{m, q}(m/r)(`−1)r), since only those states
of x need to be considered which occur in the data.
We conclude that the state-wise algorithm is practical
when the numbers r and ` are small. In particular, for
r = ` = 2 the algorithm runs in time quadratic in m.
Also, we note that the algorithm is linear in q. The
space complexity of the algorithm is O((m/r)(`−1)r).

4.2. The Level-Wise Algorithm

For a large maximum number of levels, `, the state-
wise algorithm is impractical. To tackle this case, we
introduce an alternative approach, the level-wise al-
gorithm. The running time of this algorithm is not
sensitive to ` but it grows exponentially in q.

Here we may slightly relax the assumption of state-
wise modular priors.

Definition 4.1 A prior on partitions is level-wise
modular if there are numbers ψSh ≥ 0 such that for
any partition L,

p(L) = ψL−1(1)1 · · ·ψL−1(`)`. (6)

Proposition 4.2 If a prior on partitions is state-wise
modular, then it is also level-wise modular.

Proof: We assume the notation above. For each level
h and each subset S of X = {1, . . . , q} let ψSh = 1 if S
is empty and set ψSh =

∏

j∈S ρjh otherwise. Clearly
condition (6) is met.

The following result gives a useful expression for the
conditional probability p(y |x).

Lemma 4.3 For each level h = 1, . . . , ` and every
subset S of X = {1, . . . , q} define

wh(S) = ψSh
Γ(αh)

Γ(αh +Mh)

r
∏

k=1

Γ(αhk +Mhk)

Γ(αhk)
,

where Mhk =
∑

j∈S Njk. Then

p(y |x) =
∑

L

∏̀

h=1

wh(L−1(h)) .

Proof: Obvious from the definitions.

By a level-wise modular prior we can express that a
set T cannot appear as the set L−1(h) for some level h,
by simply letting ψTh = 0. When this kind of restric-
tions obey a suitable structure they can be exploited to
obtain faster algorithms. We now introduce some no-
tation which facilitates such considerations, however,
related discussions are postponed till Section 5. Let
Sh denote the collection of sets that can be obtained
as unions of L−1(1), . . . , L−1(h). That is,

Sh =
{

h
⋃

h′=1

L−1(h′) : p(L) > 0
}

.

We also set S0 = {∅} for convenience.

The level-wise algorithm is based on the following rep-
resentation of the sum over partitions.

Lemma 4.4 For h = `, . . . , 1 define recursively

uh(S) =
∑

T∈Sh−1:T⊆S

wh(S − T )uh−1(T ) ,

with the boundary u0(∅) = 1. Then p(y |x) = u`(X ).

Proof: Immediate from Lemma 4.3.

The straightforward dynamic programming algorithm
is as follows. First compute u1(S) for every subset S
of X , then compute u2(S) for every subset S of X , and
so on, until finally u`(S) is computed—but in this case
for S = X only.

To bound the computational complexity we consider
the worst case when Sh equals the power set 2X = {S :
S ⊆ X} for all levels h. We note that the values wh(S)
can be computed in time O(rm+r `2q) (assuming that
the values of the gamma function can be evaluated in
constant time). Then we observe that each function
uh, for h = 1, . . . , `−1, can be computed in time O(3q).
Thus, the total time complexity is O(rm+r `2q +`3q).
This simplifies to O(`3q) for all parameter values of our
interests. The space requirement is O(2q).
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The applicability of the level-wise algorithm depends
essentially on the state space size q. Roughly, com-
putations are feasible when q is less than 20. This is
a crucial limitation since the partitioning method, in
general, is best suited for cases where the state space
is so large that the plain Dirichlet-multinomial model
suffers from low power, that is, when q is large. How-
ever, as we show next, partitioning much larger state
spaces is tractable when suitable restrictions on the
possible partitions are made (via the collections Sh).

5. Monotone Partitions

In many cases the variable x is actually a vector
(x1, . . . , xs) of length s, where each component xi takes
values in a finite set, say in Xi = {1, . . . , qi}. Thus we
have q = q1 · · · qs. To incorporate the idea of mono-
tonicity, we assume that each set Xi is equipped with
a linear order <; here we assume the natural order of
integers. Building on these orders we let ≺ denote the
ordinary partial order of vectors in X = X1 ×· · ·×Xs.
That is, (j1, . . . , js) ≺ (j′1, . . . , j

′
s) if ji ≤ j′i for all i

and ji < j′i for at least one i.

Definition 5.1 A partition L:X → {1, . . . , `}, is
monotone if L(j) ≤ L(j′) whenever j ≺ j′.

We note that many popular models for the conditional
distribution of y given x induce a monotone partition.
For example, an additive model y = g(x1 + · · · + xs +
ε)—where y is a binary variable, ε is an independent
noise variable, and g is a threshold function—induces a
monotone partition. Similarly a multiplicative model
implies a partition that is monotone. A concrete exam-
ple of a monotone partition is given by the penetrance
model (1) introduced in Section 1.

To allow monotone partitions only, we slightly modify
the structure of the prior of partitions.

Definition 5.2 A prior on partitions is monotone
level-wise modular if there are numbers ψSh ≥ 0 such
that for any partition L,

p(L) =

{

ψL−1(1)1 · · ·ψL−1(h)h if L is monotone;
0 otherwise.

We next proceed to algorithmic issues on computing
p(y |x) allowing monotone partitions only. We observe
that the level-wise algorithm applies. Furthermore,
each Sh is the family of �-closed subsets of X , denoted
by S�: A set S is �-closed if j ∈ S and j ≺ j ′ together
imply that also j′ belongs to S.

To bound the complexity of the level-wise algorithm
(under the monotonicity restriction), we estimate the

number |S�| of �-closed subsets of X . Given this num-
ber, a time complexity bound for computing p(y |x)
is simply O(`|S�|2). The following result covers the
cases where X is one- or two-dimensional.

Proposition 5.1 Let X = X1×· · ·×Xs with |Xi| = qi.
(a) If s = 1, then |S�| = q1 + 1. (b) If s = 2, then
|S�| =

(

q1+q2

q1

)

.

Proof: (a) Note that any �-closed family is either
empty or of the form {q1, q1 − 1, . . . , q1 − c + 1} for
some c ∈ {1, . . . , q1}.

(b) Let S be a �-closed subset of X . For i = 1, . . . , q2
let ci denote the number of vectors of the form (j1, i)
in S. The number of different sets S in S� is given
∑q1

c1=0

∑c1

c2=0 × · · · ×
∑cq2−1

cq2
=0 1, which we recognize to

be equal to the binomial coefficient
(

q1+q2

q1

)

.

In the general case, s > 2, we do not know any closed-
form expression for |S�|. However, when qi = 2 for all
i, then |S�| equals the number of nonempty antichains
of subsets of a set of size s. The following bound is due
to Kleitman and Markowsky in 1975 (see Kahn 2002,
Corollary 1.4); here all logarithms are base 2.

Proposition 5.2 Let X be a Cartesian product
{1, 2}s. Then log |S�| ≤ (1 + 2 log(s+ 1)/s)

(

s
bs/2c

)

.

This bound is not very encouraging, though, show-
ing only that computations are feasible up to around
s = 5. For larger numbers of states, qi > 2, we can
expect to gain more from the monotonicity constraint;
we leave this issue for future research.

We notice that the monotonicity constraint reduces
the number of possible sets from 2q to a number that
can be computationally feasible. This is especially the
case when s is small. For instance, let s = 2 and
q1 = q2 = 5. Then, by Proposition 5.1, there are only
(

5+5
5

)

= 252 distinct �-closed sets, which is much less
than the number of all subsets, 225 = 33,554,432.

6. Experimental Results

We have implemented the state-wise and the (non-
monotone) level-wise algorithm described in this pa-
per. Our implementation is written in the C++ pro-
gramming language. The experiments to be described
next were run on an ordinary desktop PC with a
2.4 GHz Pentium processor and 1.0 GB of memory.

The main objective of these experiments is to gauge
the speed of the algorithms for different problem pa-
rameters. In addition, we illustrate how integration
over partitions finds its use in a variable selection task.
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For lack of space we omit experiments on an impor-
tant application: learning Bayesian networks. How-
ever, conclusions about when the presented exact al-
gorithms are practical can be drawn (Section 6.3).

6.1. Running Time Analysis

For speed measurements, we generated a data set of
200 records each with 8 binary variables. We used the
uniform distribution independently for each record and
variable. The first variable was treated as the variable
y. The next log q variables form the variable (vector) x
with q states. When experimenting with the state-wise
algorithm, we let q take values in {8, 32, 128}; for the
level-wise algorithm q was set to 8 or 16. Besides the
data set of 200 records, a smaller data set comprising
the first 50 records was also used.

Table 1(a) displays results for the state-wise algorithm.
The number of levels, `, was set to 2, 3, or 4; results
are not shown for the cases that ran out of memory.
The results are in good agreement with our analytic
bound. Clearly, the computations are feasible for ` = 2
but they become impractical when ` = 4, unless q is
very small. Also the data size, m, plays an important
role in the time requirement. However, increasing m
from 50 to 200 is less drastic than what is suggested
by the complexity bound. We also see that the influ-
ence of q on the time requirement is not always linear.
For example, when m = 50 and ` = 3, increasing q
from 8 to 32 does not lead to a 4-fold increase in time
requirement, but to a 350-fold increase. This can be
explained by noticing that for q much smaller than m,
the number of different matrices explored by the algo-
rithm is much less than the rough analytic estimate.

Results for the level-wise algorithm are shown in Ta-
ble 1(b). The number of levels, `, was set to 4, 8 or 16.
The result are in perfect agreement with the derived
bound: the state space size q plays a crucial role, and
the effect of the number of levels ` is about linear. As
the time complexity does not depend on the data size,
Table 1(b) shows the results for the case m = 200 only.

6.2. Variable Selection

The variable selection task was performed on two sim-
ple data sets. One of these can be efficiently analyzed
using the state-wise algorithm, whereas the level-wise
algorithm is faster on the other data set.

The first data set, called Parity5, consists of 200
records, each with a binary class variable y and 20
binary explanatory variables x1, . . . , x20. We gener-
ated each record independently. First, the values for
the explanatory variables were drawn from the uni-

Table 1. The speed of (a) the state-wise algorithm and (b)
the state-wise algorithm as a function of the number of
data records (m), the number of states of the explanatory
variable (q), and the number of levels in the partition (`).

(a)

m q ` Time (Sec.)

50 8 2 0.0008
3 0.02
4 0.24

32 2 0.03
3 7.0

128 2 0.13
3 29.5

200 8 2 0.001
3 0.03
4 0.38

32 2 0.25
128 2 1.8

(b)

m q ` Time (Sec.)

200 8 4 0.007
8 0.019

16 4 45
8 134
16 314

form distribution. Then the value for the class vari-
able was set to the (odd) parity of the first 5 variables,
x1 +x2 + · · ·+x5 (mod 2), with probability 0.9 and to
its reverse with probability 0.1. Note that the remain-
ing 15 explanatory variables do not carry information
about y. Also note that the data generating model
corresponds to a partition with two groups.

The second data set, called Penetrance2, consists of
400 records, each with a binary class variable y and 10
explanatory variables x1, . . . , x10 with four states 0, 1,
2, 3. We generated each record independently. First,
the values for the explanatory variables were drawn
as follows: We drew a binary sequence x′1, . . . , x

′
10

along a Markov chain with uniform initial distribu-
tion and set x′i+1 = x′i with probability 0.8. Similarly
we drew another sequence x′′1 , . . . , x

′′
10. Finally, we set

xi = x′i + 2x′′i . The value of the class variable was
generated based on the values of the variables x3 and
x8 as follows: Let i and j be the number of ones in the
binary representations of x3 and x8, respectively. We
set y = 1 with the probability Fi+1,j+1, where F is the
3 × 3 penetrance matrix (1) introduced in Section 1.

From both Parity5 and Penetrance2 we made 10 data
sets of different sizes by including the first 10%, 20%,
. . . , 100% records of the original data set.
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Figure 1. Learning the correct variable subset for (a) Par-
ity5 and (b) Penetrance2 under a partition model and a
plain Dirichlet model. The posterior probability of the cor-
rect subset (vertical axis) shown as a function of the data
size (horizontal axis).

Given a data set consisting of sequences y and x, we
selected a set of variables that maximizes the poste-
rior probability. First, to a subset S = {i1, . . . , is} of
{1, . . . , n} (n equals 20 for Parity5 and 10 for Pen-
etrance2) we assigned a constrained uniform prior:

p(S) =
(

n
s

)−1
/(u+1) if s ≤ u, and p(S) = 0 otherwise

(u = 5 for Parity5 and u = 2 for Penetrance2). Then
we selected a subset S of {1, . . . , n} so as to maximize
p(S)p(y |x, S). Here p(y |x, S) = p(y |xi1 , . . . ,xis

),
computed either by the state-wise algorithm (for Par-
ity5) or by the level-wise algorithm (for Penetrance2).
Both algorithms were run under the uniform state-
wise modular prior, with the optimal number of levels,
` = 2 for Parity5 and ` = 3 for Penetrance2. In the
Dirichlet prior all hyperparameters were set to 1.

Figure 1 shows how the posterior probability of the
correct subset grows as a function of the data size.
For comparison, results under the plain Dirichlet prior,
with all hyperparameters equal to 1, are also given.

For Parity5 the partition model is superior to the plain
Dirichlet model. As indicated by the rapid change in
the posterior probabilities, the former learns the cor-
rect variable set from 80 data records, whereas the
latter model requires 140 examples. For Penetrance2
the partition model requires 240 records, whereas the
plain Dirichlet model learns the correct subset only
when given all the 400 examples. Note that for Pene-
trance2 we used a non-monotone partition model, al-
though the underlying partition is monotone.

6.3. On Learning Bayesian Networks

The above results help in estimating when it is compu-
tationally feasible to use exact partitioning models in

learning Bayesian networks. Consider the case where
each variable can have at most s parents from the n−1
possible candidates, where n is the total number of
variables. For n = 20 and s = 4, for example, 101,120
evaluations are needed.1 With 1, 10, and 100 hours
of running time, we can use, respectively, 0.036, 0.36,
and 3.6 seconds per evaluation. From Table 1 we con-
clude that for many values of the parameters m, q, and
` already 1 hour of total running time suffices. (For
monotone partitions we can expect that computations
are efficient for a larger region of parameter values.)

To learn Bayesian network structures on larger num-
bers of variables one may combine exact integration
over partitions with a heuristic search for the network
structure. Chickering et al. (1997) demonstrate that
greedy search using decision graphs (equivalent to par-
tition models) as the local models, can result in signif-
icantly more accurate network models than using the
plain Dirichlet model or decision trees. They consider,
e.g., data generated from the Alarm model (Beinlich
et al., 1989) which contains 37 categorial variables,
each with 4 or less states. We note that in this bench-
mark domain exact integration over partitions offers a
sound alternative to heuristic maximization when the
interest is in the network structure. Our running time
analysis suggests that the state-wise algorithm runs
sufficiently fast, provided that one allows for just two
levels; for three or more levels, incorporation of addi-
tional constraints seems necessary.

7. Discussion

We have considered computational issues concerning
Bayesian partition models of discrete conditional dis-
tributions. From the statistical point of view, the ad-
vantage of partition models over the commonly used
Dirichlet-multinomial model is the smaller number
of parameters. We do, of course, acknowledge that
no model is generally better than any other model,
and thus have focused on how well we can perform
Bayesian learning, that is, utilize prior information.
Regarding partition models, this paper contributes in
three ways. First, it presents algorithms for integration
over unknown partitions, which is required in coarse
level Bayesian learning tasks. Second, these algo-
rithms are exact, meaning that there is no uncertainty
about the quality of the output; as far as we know, ex-
isting related methods are restricted to optimization
with uncontrolled quality (Friedman & Goldszmidt,
1996; Chickering et al., 1997). Third, we investigated
how the computational complexity of the algorithms

1Note that exact structure discovery is computationally
feasible up to around 25 variables (Koivisto & Sood, 2004).
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depends on several problem parameters, and found fea-
sible parameter regions. Note also that the presented
algorithms can be easily modified so that they find
an optimal (maximum a posteriori) partition instead.
Namely, the algorithms essentially exploit the distribu-
tive law on the sum-product semiring—conversion to
the max-product semiring is straightforward (see, e.g.,
Stearns & Hunt III, 1996; Dechter, 1999).

Two exact computational approaches were presented:
the state-wise and the level-wise algorithm. The anal-
ysis of these algorithms reveals different complexity
characteristics. Roughly, if the number of levels, `, is
small, say at most 3, then the state-wise algorithm is
efficient, irrespective of the state space size q = |X |. If
` is larger, then one can use the level-wise algorithm,
provided that q is not too large, say q < 20. Further-
more, for monotone partitions exact computations are
feasible when the state space X is a Cartesian product
of a few totally ordered sets. These characterizations
facilitate decision making about which algorithm to
use in a particular problem setting, or whether exact
computations are intractable.

We also measured the speed of the algorithms and il-
lustrated their use in variable selection on two syn-
thetic data sets. Our results agree with earlier ob-
servations (Friedman & Goldszmidt, 1996; Chickering
et al., 1997) in that local models can be more pow-
erful than the plain Dirichlet model. In addition, we
observed that exact Bayesian reasoning can be compu-
tationally feasible in settings that are of practical in-
terest. (Certainly there are also important cases where
the presented algorithms are far too slow.)

Besides the computational challenges, finding the best
partitioning constraints for a data analysis problem at
hand is domain specific and a matter of background
knowledge. If no single configuration of the constraints
can be fixed, it is reasonable to average over different
choices, whenever computationally feasible.

There are various directions for future research. E.g.,
it might be fruitful to consider cases where x, y, or
both are continuous. For continuous x, existing meth-
ods rely on Markov chain Monte Carlo (Denison et al.,
2002); it is not clear whether exact techniques apply.
However, when just y is continuous the level-wise al-
gorithm readily applies. Finally, we plan to apply the
presented algorithms to genotype-phenotype analysis
which aims at locating genes for complex diseases.
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