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Abstract
We propose a novel ensemble learning algorithm
called Triskel, which has two interesting features.
First, Triskel learns an ensemble of classifiers,
each biased to have high precision on instances
from a single class (as opposed to, for example,
boosting, where the ensemble members are bi-
ased to maximise accuracy over a subset of in-
stances from all classes). Second, the ensem-
ble members’ voting weights are assigned so that
certain pairs of biased classifiers outweigh the
rest of the ensemble, if their predictions agree.
Our experiments demonstrate that Triskel often
outperforms boosting, in terms of both accuracy
and training time. We also present an ROC analy-
sis, which shows that Triskel’s iterative structure
corresponds to a sequence of nested ROC spaces.
The analysis predicts that Triskel works best
when there are concavities in the ROC curves;
this prediction agrees with our empirical results.

1. Introduction

Ensemble techniques have been demonstrated to be an ef-
fective way to reduce the error of a base learner across a
wide variety of tasks. The basic idea is to vote together
the predictions of a set of classifiers that have been trained
slightly differently for the same task. There is a strong body
of theory explaining why ensemble techniques work.

Nevertheless, it is straightforward to construct learning
tasks that confound existing ensemble techniques. For ex-
ample, consider a synthetic “layered cake” binary learning
task shown in Figure 1. The Support Vector Machine algo-
rithm (Vapnik, 1982) with a linear kernel learns a decision
surface with a large error. Boosting SVM does not help: at
each iteration, the classifier is unable to stop making mis-
takes on the middle two regions; these regions then get even
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Figure 1. The “layered cake” task: (a) decision surface learned by
a single SVM with linear kernel (circled instances are classified
incorrectly); (b) an ensemble of three linear SVMs that has zero
training error when combined with a simple majority vote.

more weight on the next iteration, and eventually boosting
gives up because it can not find a classifier with error less
than 0.5. However, Figure 1(b) shows that ensemble meth-
ods are in principle well suited to this task: when combined
with a simple unweighted vote, the set of three linear deci-
sion surfaces yields an ensemble with zero error.

Motivated by this example, we propose a novel ensemble
learning algorithm called Triskel, which has two interesting
features. First, Triskel learns an ensemble of classifiers that
are biased to have high precision for one particular class.
For example, in Figure 1(b), one of the “outer” classifiers
is biased to (i.e. has high precision, albeit mediocre recall,
for) the positive class, and the other classifier is biased
to the negative class. In contrast, most existing ensemble
techniques use ensemble members that are biased to focus
on various regions of the instance space. For example, each
round of boosting focuses on instances that were misclassi-
fied in previous rounds; and bagging involves hiding some
of the training data from each ensemble member.

The second interesting feature is the manner in which
Triskel assigns weights to the ensemble members. Triskel
uses weighted voting like most ensemble methods, but the
weights are assigned so that certain pairs of biased classi-
fiers outweigh the rest of the ensemble, if their predictions
agree. For example, in Figure 1(b), the two “outer” classi-
fiers dominate the vote if they agree. If they disagree, the
“inner” classifier casts the deciding vote. Our algorithm is
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named after a Celtic spiral design with three branches. In
its simplest incarnation, Triskel uses an ensemble of three
classifiers: one classifier biased to the positive class, one
classifier biased to the negative class, and one unbiased
classifier to make predictions when the others disagree.

We make the following contributions. First, we motivate
and describe Triskel, our novel approach to ensemble learn-
ing, and describe various ways to construct the biased clas-
sifiers on which Triskel relies. Second, we evaluate Triskel
on a variety of real-world tasks and demonstrate that our
method often outperforms boosting, in terms of both ac-
curacy and training time. Finally, we present a qualitative
analysis of the algorithm using ROC graphs and discuss
how Triskel represents a middle ground between covering
algorithms and ensemble techniques such as boosting.

2. Related work

Dietterich (2000) discusses three fundamental ways in
which an ensemble can achieve better performance: sta-
tistical, computational and representational. The statistical
analysis starts with the observation that any learning algo-
rithm tries to find a hypothesis that has a good accuracy
on the training data. When the amount of the training data
is small, there may be many different hypotheses that all
give the same accuracy on the training data. Constructing
an ensemble out of all these accurate classifiers can allow
the algorithm to reduce the risk of choosing the wrong hy-
pothesis. The computational argument is that many learn-
ing algorithms perform some sort of local search in the hy-
potheses space that may get stuck in a local optima. Exam-
ples include gradient-based search in neural networks and
greedy search in decision trees. An ensemble constructed
by running the local search from multiple different start-
ing points may result in a better approximation to the true
hypothesis. Finally, the representational analysis follows
from the fact that a learning algorithm may not be capable
of representing the true function either because it is outside
of its hypothesis space or because it does not have sufficient
training data to explore all of its hypothesis space to find it
(e.g. the classifier would stop searching once it finds a hy-
pothesis that fits the training data). By combining several
different hypotheses (e.g. using a weighted sum) it may be
possible to expand the space of representable functions.

Perhaps the best-known ensemble methods are bagging
(Breiman, 1996) and boosting (Shapire, 1990; Freund,
1995), in particular AdaBoost (Freund & Shapire, 1997).
Bagging generates different training sets by drawing ran-
domly with replacement from the original data set. The
classifiers’ decisions are combined using the majority vote.
AdaBoost performs several learning iterations on the same
training set. However, in each iteration it adjusts the
weights of the training instances to emphasise the exam-

ples that were misclassified by the last learned classifier.
The decisions of the classifiers in the ensemble are com-
bined using weighted voting, where the weights depend on
the error of the classifier on the training set. Another exam-
ple of error-based instance weighting is (Breiman, 1999).

Since bagging constructs its training sets (and, hence,
its ensemble members) independently from the others, it
mainly addresses the statistical and, to a lesser extent, com-
putational problems. AdaBoost constructs each new hy-
pothesis to eliminate remaining errors and, thus, is directly
trying to address the representational problem. It has been
shown that by focusing on incorrectly classified instances
AdaBoost minimises a particular error function of the en-
semble on the training data called the negative exponential
of the margin (Freund & Shapire, 1997; Dietterich, 2000).

3. The Triskel Algorithm

One of the problems with AdaBoost is that in each sub-
sequent iteration, the base learner is presented with more
and more difficult problems. The redistribution of instance
weights is based on the errors of the last learned hypothesis
on the training data. Over multiple iterations, this can re-
sult in weight distributions that are too complex for the base
learner to handle. For example, suppose we would like to
boost an SVM with a linear kernel on the data set shown in
Figure 1(a). The diagram shows the decision surface that
an SVM would learn on this data in the first iteration. We
can see that the distribution of errors is such that a linear de-
cision surface will do a poor job on such task. Specifically,
the weight distribution will switch in this case between in-
ner and outer instances after each boosting iteration without
improvements to the resulting ensemble accuracy.

Nonetheless, the example in Figure 1(a) can be handled
perfectly by an ensemble of three linear separators shown
in Figure 1(b) combined using a majority vote. One classi-
fier separates part of positive instances from the rest of pos-
itives and negatives, one classifier separates part of negative
instances, and the remaining classifier handles the instances
where the first two classifiers disagree.

An analogy with covering (e.g. (F̈urnkranz, 1999)) can be
drawn. A covering algorithm tries to identify rules with
high precision that cover a large number of (ideally, uni-
formly labelled) training examples. These instances are
then removed from the training set, and the learning con-
tinues until all examples are covered. In our algorithm, one
classifier covers the data instances that can be confidently
classified as positive, one classifier covers the data that can
be confidently classified as negatives, and the last classifier
is used to handle the remaining “hard” instances. A simi-
lar idea of separating “hard” instances, but using a different
approach was also explored in (Ferri et al., 2004).
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To identify instances that can be confidently classified as
positive or negative, we usebiasedclassifiers. A classifier
that is biased towards predicting positives will usually have
a high precision on negative instances and vice versa. We
train a biased classifier for each class (see Sec. 3.2). All
instances where the biased classifiers agree are considered
“easy”, all other instances are “hard”. The third classifier,
thearbiter, is then trained only on those “hard” instances.
The intuition is that the feature patterns among the “hard”
instances may be different from those among the “easy”
training examples. By separating away the “easy” instances
and training the arbiter only on the “hard” ones, we make
the learning problem for the arbiter easier since it only has
to deal with a supposedly more regular subset of the data.

Like AdaBoost, we are trying to improve (boost) the clas-
sification accuracy of the base classifier on the training set
by increasing the representational power using the ensem-
ble. Both AdaBoost and Triskel try to enhance the decision
surface of the ensemble by focusing on hard instances. The
main difference is, however, in how the hard instances are
defined. In AdaBoost, the hard instances are defined as
the instances where the base classifier makes mistakes. In
Triskel, the hard instances are defined as the instances that
cannot be classified “confidently”, where we assume that
we can classify an instance “confidently” if a pair of bi-
ased classifiers agree on its label. The expectation is that
we can achieve better results by splitting one hard classifi-
cation problem into a series of easier ones, instead of con-
structing increasingly difficult problems as in AdaBoost.

Consider first the Triskel algorithm for binary tasks. As-
sume that a classifier is a function mapping data instances
onto a binary set of classes:h : X → {−1,+1}. Similarly
to AdaBoost, Triskel is an iterative algorithm. In each it-
eration, we train a pair of biased classifiers: one classifier
biased towards the positive class, and one classifier biased
towards the negative class. For a discussion of different
ways of biasing classifiers, see Sec. 3.2.

Next, we evaluate the biased classifiers on the training data
and obtain two sets of instances: “easy” examples, where
the biased classifiers agree; and “hard” examples, where
they disagree. To obtain the training set for the next it-
eration, the weights of the “easy” instances are reduced
and the weights of the “hard” instances are increased. The
training set obtained after the last iteration is used to train
thearbiter classifier. Algorithm 1 shows the details.

To combine the decisions of the learned classifiers, we use
a conventional weighted voting scheme, with the weights
set in such a way that some ensemble members’ votes can
dominate the others. Specifically, we use a sequence of ex-
ponentially decreasing weights such that if two biased clas-
sifiers from a given iteration agree on the label of a new in-
stance, then their combined vote outweighs the votes of the

Algorithm 1 Triskel
/* To trainon{. . . , (xi, yi), . . .} (yi = ±1) */
Choose the method of weight adjustment:
Weasy = 0;Whard = 1, or /* “separation” */
Weasy = 1/2;Whard = 2 /* “soft covering” */
D0(i) = 1/N for each instancei
for t = 1, 2, . . . ,K do

h+
t = Learn with weightsDt−1, biased to class +1

h−t = Learn with weightsDt−1, biased to class -1
αt = 2K−t

for each instancei do

∆t,i =
{

Weasy , if h+
t (xi) = h−t (xi) = yi

Whard , otherwise
Dt(i) = Dt−1(i) ·∆t,i and normalise

end for
end for
hK+1 = Learn with weightsDK , unbiased
αK+1 = 1
/* To classifyinstancex */

return y = sign
[∑K+1

t=1 αth
∗
t (x)

]
, where h∗t (x) =

h+
t (x) + h−t (x) for t ≤ K, andh∗K+1(x) = hK+1(x).

classifiers from all subsequent rounds. Essentially, in each
iteration we classify and separate the “easy” instances and
then use the ensemble members from subsequent iterations
to handle the remaining “hard” instances in a recursive way.

There are two principle ways in which the instance weights
can be adjusted during training. One way is to set the
weights of the “easy” instances to zero, leaving the weights
of the “hard” instances unchanged. In this case, the classi-
fiers in each subsequent iteration are trained on a shrink-
ing subset of the training data. This method is similar to
covering, since after each iteration, the covered part of the
training instances is completely removed from considera-
tion. The problem with this method is that it may quickly
“run out of instances”. That is, the number of instances left
in consideration may quickly become too small to train a
sensible classifier. The second way to adjust the instance
weights is more similar to boosting, when the weights of
“easy” instances are reduced, while the weights of “hard”
instances are increased. In our experiments, we increase or
reduce the weights by the factor of 2 (see Algorithm 1).

3.1. Handling Multi-class Problems

Two well-known methods to convert a multi-class problem
into a series of binary problems areone-vs-allandone-vs-
one. In the one-vs-all method, the initial multi-class prob-
lem is converted to a set ofC binary classification prob-
lems, whereC > 2 is the number of classes. In each
of these binary problems, the goal is to learn to separate
a selected class from the instances belonging to all other
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classes. The one-vs-one method is very similar to one-vs-
all, except that a binary classification problem is created
for each pair of classes, and a separate binary classifier is
trained for each of these tasks. Classification of a new in-
stance is done by classifying it with all binary classifiers
and then voting their predictions.

Both of these methods have disadvantages. The one-vs-
all method is known to perform quite poorly when used
in conjunction with SMO. In contrast to that, the one-vs-
one method performs well, but is computationally more
expensive, because a larger number of binary classifiers is
needed (forC > 3). However, in conjunction with Triskel
it is possible to use a compromise between one-vs-all and
one-vs-one methods. We call this extension Triskel-M. For
each class, a binary problem is created in order to separate
this class (‘positive instances’) from all others (‘negative
instances’). These classifiers are biased towards high pre-
cision on the positive class and used similar as in binary
Triskel: if exactly one of the biased classifiers predicts pos-
itive, this prediction is returned. If more than one or none
of the biased classifiers predict positive, the prediction of
the arbiter is returned. The arbiter should be trained in one-
vs-one mode to achieve a better accuracy.

3.2. Generating Biased Classifiers

Some machine learning algorithms have an inherent way
of setting a bias. Bayesian classifiers, for example, output
a probability distribution. The class with the highest poste-
rior probability as calculated by the classifier is predicted.
It is easy to bias a Bayesian classifier by either modifying
the prior probabilities or to impose biased thresholds on the
posterior probabilities. Support Vector Machines also use
a confidence value threshold.

There are, however, more generic ways to bias classifiers.
Resampling techniques have been used to address the prob-
lem of imbalance in the training set. But resampling can of
course also be used to create an imbalance, which is what
we need for Triskel. Akbani et al. (2004) found that for im-
balanced datasets undersampling the majority class to elim-
inate the bias leads to good performance, although some of
the training examples are discarded.

We implemented a biased classifier with undersampling
with a tunable bias parameter that ranges from 0 (no bias)
to 1 (discard all instances of one class). In preliminary ex-
periments, we also experimented with oversampling to cre-
ate biased classifiers, but we found that creating the bias
through undersampling does not hurt the overall perfor-
mance of Triskel, even if as little as 10% of the training
instances of one class are kept (bias value 0.9). For some
datasets, the performance was even slightly better than the
approach with oversampling. Additionally, because we
drop 90% of the instances for one class, training becomes

faster. Therefore we decided to use undersampling with
bias 0.9 for our final experiments.

4. Experimental Results

We evaluated Triskel on several multi-class datasets from
the well-known UCI repository. Because of its very good
accuracy, we chose AdaBoost as the benchmark ensemble
algorithm for our experiments. We used SMO (Platt, 1999)
with a linear kernel as a base classifier. However, additional
experiments conducted with nonlinear SMO kernels and
Naive Bayes classifiers suggest that our claims are valid
regardless of the base classifier.

When comparing ensemble methods, accuracy is not the
only important factor. The reduced error of ensemble al-
gorithms comes at the price of a greater computational ef-
fort. Therefore, time and memory consumption has to be
compared as well. Both are usually related to the ensem-
ble size. We used three different AdaBoost ensembles with
3, 10 and 50 rounds. We compared these against standard
Triskel with 1 round and discarding easy instances for the
arbiter (Weasy = 0) (Triskel-1) and against Triskel with
weighting (Weasy = 1/2;Whard = 2) with 2 and 4 rounds
(denoted as Triskel-W2 and Triskel-W4). Note that for a bi-
nary Triskel, the actual ensemble size is twice the number
of rounds plus one. SMO can handle only binary problems.
We chose a one-vs-one scheme to convert the multi-class
problems into a series of binary problems. For compari-
son, we also used Triskel-M (see section 3.1) with 1 round
(denoted as Triskel-M1). For AdaBoost, boosting the bi-
nary classifiers individually yielded a better performance
than using AdaBoost-M1 (Freund & Shapire, 1997).

We used the Weka framework (Witten & Frank, 1999) to
conduct our experiments. We evaluated all algorithms us-
ing 10-fold cross-validation, with 10 randomised repeti-
tions for statistical significance testing, using a corrected
resampled t-test as implemented in the Weka experimenter.
Detailed results can be found in Tables 1 and 2.

AdaBoost-50 shows the best performance compared to
SMO and the other configurations of AdaBoost. Triskel-
W4 outperforms AdaBoost-50 with 3 significant wins out
of the 15 datasets used while being considerably faster
due to the smaller ensemble. Triskel-W2 achieves a per-
formance that is comparable to AdaBoost-10 (2 wins, 2
losses), but is significantly faster most of the time be-
cause of the smaller ensemble size. As expected, Triskel-
M1 is both the least accurate but also the fastest ensemble
method. Although the biased classifiers are only trained
in a one-vs-all mode, the ensemble can still significantly
outperform the base SMO in one-vs-one mode on the an-
neal.ORIG, hypothyroid and segment datasets. Because of
its one-vs-all nature of the biased classifiers, this setup of
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Triskel can be faster than one-vs-one plain SMO, especially
on large datasets (here on the audiology, hypothyroid and
soybean datasets), while not hurting accuracy.

Figure 2 illustrates the relation between training time and
accuracy for the algorithms on six typical datasets. The
data points on the Triskel line correspond to (from fastest
to slowest) Triskel-M1, -1, -W2 and -W4, while the data
points for AdaBoost show the setup for 3, 10 and 50 rounds.
Note that in most cases the line for Triskel is above the
AdaBoost line, indicating that Triskel offers a better trade-
off between accuracy and speed. Triskel achieves greater
accuracy in the same time, and the same accuracy can be
reached faster. Furthermore, note that the highest accu-
racy for Triskel is usually above the highest accuracy for
AdaBoost, indicating that, given enough time, Triskel can
typically outperform any setting of AdaBoost.

5. ROC Analysis

In this Section, we present a qualitative description of
Triskel using ROC analysis. ROC analysis has recently be-
come a popular technique for studying classification algo-
rithms (Flach & Wu, 2005).

Assume a binary classification problem. The ROC space
has the false positive rateFPr on its X-axis and the true
positive rateTPr on its Y-axis. A classifier (hypothesis)
for a given dataset can be mapped onto a point in the ROC
space. For example, the perfect classifier is mapped to
(0, 1), and the random hypothesis is mapped to(0.5, 0.5).
If classifierh̄ outputs the opposite of whath predicts, then
it is equivalent to mirroringh relative to the(0.5, 0.5) point
in the ROC space, sinceTPr(h̄) = 1 − TPr(h) and
FPr(h̄) = 1−FPr(h). By definition, for a given accuracy
A, TPr(h) = A + N/P [A + FPr(h)− 1], whereP is the
number of positives andN is the number of negatives in the
dataset. Therefore, a given accuracy value corresponds to a
set of different combinations ofTPr andFPr that form a
line in the ROC space. If a hypothesis is mapped below the
0.5 accuracy line, its performance on the dataset is worse
than random. The accuracy of such hypothesis can be im-
proved by simply reversing its decisions (see Figure 3(a)).

Consider now how biasing a classifier affects its position
in the ROC space. Leth be the hypothesis learned by the
unbiased base learner on the given dataset. Leth+ be a
biased classifier for class+1, i.e.h+ is less likely to predict
+1 and, thus, is expected to have a higher precision for+1.
Similarly, h− is a biased classifier for class−1.

We make the followinginclusion assumption: (T P(h+) ∪
FP(h+)) ⊆ (T P(h)∪FP(h)) ⊆ (T P(h−)∪FP(h−)),
whereT P() is the set of true positives, andFP() is the set
of false positives for the corresponding hypothesis. That is,
wheneverh+ predicts+1, h also predicts+1, and when-

everh predicts+1, h− also predicts+1. Under the inclu-
sion assumption, we obtain thatTPr(h+) ≤ TPr(h) and
FPr(h+) ≤ FPr(h). Similarly for class−1, we obtain
thatTPr(h−) ≥ TPr(h) andFPr(h−) ≥ FPr(h).

It is easy to see that the inclusion assumption always holds,
when h, h+, and h− classifiers are obtained by setting
different confidence thresholds for the same probabilistic
model (e.g. a Bayesian model). The assumption may not
hold when we bias an SVM by re-weighting instances.
Apart from moving the decision boundary, biasing can also
change the orientation (slope) of the hyperplane (i.e. the hy-
perplanes of biased classifiers may not be parallel). How-
ever, we can expect that the violating overlap would be in-
significant for a sufficiently strong bias.

Consider the set of the hard instances, i.e. the instances
where the biased classifiers disagree. If we look at the ROC
space for these instances, thenh+ is mapped there to the
(0, 0) point, andh− is mapped to(1, 1). Suppose now that
we stretch or shrink the X and Y axis of this ROC space
to position its(0, 0) and (1, 1) corners into theh+ and
h− points in the initial ROC space for the whole dataset
as shown in Figure 3(b). Essentially, the ROC space for
the hard instances (the arbiter’s dataset) becomesembed-
dedinto the ROC space for the whole dataset.

Prop. 1: If we map the performance of the arbiter classi-
fier on the hard instances to the corresponding point in the
embedded ROC (sub)space (taking into account scaling of
its X and Y axis), then the performance of a single-round
Triskel with this arbiter on the whole dataset will corre-
spond to the position of this point in the initial ROC space.

Proof. Let y be the Y coordinate of the arbiter classifier in
the initial ROC space. IfTPr(hA) is the true positive rate
of the arbiter on the hard instances, theny = TPr(h+) +
TPr(hA)(TPr(h−)−TPr(h+)). Under the inclusion as-
sumption, the number of positive instancesPA in the ar-
biter’s dataset can be computed asPA = |T P(h−)| −
|T P(h+)| = P (TPr(h−) − TPr(h+)). The true posi-
tives rate of the single-round Triskel ensemble is by defi-
nition equal toTPr(e) = (|T P(h+)| + |T P(hA)|)/P =
TPr(h+) + TPr(hA)PA/P = y. The analysis for the X
coordinate is analogous. 2

For example, if we pick the centre point in the embedded
ROC space, its position in the outer ROC space will corre-
spond to the performance of a single-round Triskel with the
given biased classifiersh+ andh− and a random arbiter.

Prop. 1 can be recursively applied to the embedded ROC
space. This way we can represent running Triskel with
multiple rounds and reason about the performance of a
Triskel ensemble. It is easy to see that for a given pair
of biased classifiers obtained at round 1, the best pos-
sible performance of Triskel on the training set (with
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Dataset SMO vs Triskel-M1 Ada-3 vs Triskel-1 Ada-10 vs Triskel-W2 Ada-50 vs Triskel-W4
anneal 97.46 97.90 99.02 97.85 99.13 99.07 98.99 99.39
anneal.ORIG 87.44 95.83 � 91.11 94.04 � 90.04 94.21 � 90.42 94.11 �
audiology 80.77 80.10 81.43 79.58 81.39 80.28 81.39 80.42
autos 71.34 70.27 74.95 71.31 76.35 76.73 75.92 76.59
balance-scale 87.57 87.63 87.73 87.78 89.09 88.05 89.09 91.65 �
Glass 57.36 56.94 60.66 61.95 62.23 63.40 62.33 63.41
hypothyroid 93.58 93.87 � 95.62 95.27 96.15 95.04 ∗ 96.35 95.91
lymphography 86.48 85.00 86.28 84.73 85.32 84.87 85.19 84.40
primary-tumor 47.09 47.44 43.93 45.23 42.96 45.05 42.72 42.93
segment 92.92 93.61 � 93.66 94.31 94.11 95.08 � 94.48 95.95 �
soybean 93.10 92.56 93.32 92.65 93.28 92.93 93.29 92.71
vehicle 74.08 74.15 75.30 75.40 77.53 77.39 79.21 79.48
vowel 70.61 70.60 89.91 83.71 ∗ 92.27 90.00 ∗ 94.08 93.80
waveform 86.48 86.49 86.50 86.43 86.45 86.44 86.44 86.36
zoo 96.05 95.08 96.05 95.15 96.05 96.05 96.05 96.05

Table 1. Accuracy comparisons between SMO, AdaBoost and different settings of Triskel on multi-class problems from the UCI reposi-
tory. � denotes a significant increase in accuracy of Triskel over the other algorithm at the 0.05-level according to a corrected resampled
t-test,∗ denotes a significant decrease in accuracy. Note that compared to AdaBoost-10 and AdaBoost-50 Triskel achieves equal or
better performance with a considerably smaller ensemble.

Dataset SMO vs Triskel-M1 Ada-3 vs Triskel-1 Ada-10 vs Triskel-W2 Ada-50 vs Triskel-W4
anneal 4.45 5.66 � 7.15 12.92 � 13.78 25.07 � 34.50 48.32 �
anneal.ORIG 4.17 5.46 � 10.79 11.64 � 38.52 23.87 ∗ 95.87 46.41 ∗
audiology 85.02 58.79 ∗ 120.83 538.19 � 172.62 1069.06 � 140.52 1065.85 �
autos 5.05 8.54 � 11.17 16.97 � 36.24 30.37 ∗ 130.76 56.23 ∗
balance-scale 0.99 2.36 � 3.22 3.34 � 12.27 5.45 ∗ 15.88 9.72 ∗
Glass 4.73 8.05 � 12.33 15.67 � 39.10 26.58 ∗ 106.23 46.96 ∗
hypothyroid 16.83 9.63 ∗ 38.24 12.84 ∗ 135.19 39.87 ∗ 289.24 70.09 ∗
lymphography 1.95 2.56 � 2.83 6.59 � 1.47 10.73 � 22.25 18.91 ∗
primary-tumor 68.11 75.35 � 145.22 280.4 � 449.42 542.17 � 1683.63 1204.90 ∗
segment 8.06 11.43 � 16.85 26.84 � 56.43 52.77 ∗ 132.11 116.10 ∗
soybean 61.49 37.30 ∗ 80.45 289.36 � 174.30 604.43 � 148.99 779.23 �
vehicle 1.87 4.80 � 7.28 6.90 ∗ 35.14 13.01 ∗ 90.06 25.63 ∗
vowel 21.12 30.98 � 44.11 62.61 � 171.23 128.49 ∗ 676.99 272.55 ∗
waveform 5.14 11.19 � 47.36 8.30 ∗ 217.95 29.34 ∗ 361.99 78.60 ∗
zoo 7.15 6.48 7.31 21.96 � 1.85 39.91 � 7.87 88.39 �

Table 2. Training time comparisons between SMO, AdaBoost and Triskel on multi-class problems from the UCI repository.� and∗
denote statistically significant differences as in Table 1. When comparing AdaBoost-10 and -50 to Triskel-W2 and -W4, Triskel usually
trains faster due to the smaller ensemble. Note that Triskel-M1 is sometimes faster than SMO.
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Figure 2. Accuracy and training time for SMO, Triskel-M1, Triskel-1, -W2, -W4, AdaBoost-3, -10 and -50 on the (from left to right and
top to bottom) “autos”, “balance-scale”, “glass”, “hypothyroid”, “segment” and “vehicle” datasets.
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any number of roundsK ≥ 1) corresponds to point
(FPr(h+

1 ),TPr(h−1 )). This suggests that the closer we
get FPr(h+

1 ) to 0 andTPr(h−1 ) to 1 the better, because
then we have a larger potential for improvement if we use
a very clever arbiter (e.g. an ensemble from many rounds
of sub-Triskeling). It may seem that the stronger the ini-
tial bias, the better. Unfortunately, as we increase the bias,
h+ eventually ends up in(0, 0) andh− ends up in(1, 1).
The arbiter is then left with the whole initial dataset, which
makes the biased classifiers on the first round useless.

By changing the bias strength for each of the classifiersh+

andh−, we can obtain a family of biased classifiers which
would formbias curvesin the ROC space. Consider this for
theh+ classifier first. If there is no bias, thenh+ is equiv-
alent toh (the unbiased classifier) and it would map to the
same point in the ROC space ash. As we increase the bias,
h+ will eventually start always predicting−1. This would
correspond to the(0, 0) point. Therefore, the bias curve for
h+ connects theh point with(0, 0). Similarly, theh− curve
connectsh with (1, 1) as demonstrated in Figure 3(b).

The shape of these bias curves can be used to predict
whether Triskel will improve the performance of the base
classifier on the training set. In particular, if there is a pair
of points on the bias curves such that the middle point of the
line connecting them is above the accuracy line of the base
classifier on this training set (classifierh in Figure 3(b)),
then a Triskel ensemble with these biased classifiers will
have a better accuracy than the base learner. To show this,
it is sufficient to point out that the above middle point cor-
responds to the performance of a Triskel ensemble with the
two selected biased classifiers and a random arbiter. Essen-
tially, if the middle point is above the accuracy line of the
base classifier, it means that the accuracy of the base clas-
sifier h on the hard instances is worse than random and,
hence, could be improved even by simply reversing its de-
cisions for those instances (see Figure 3(b)). Figure 3(c)
illustrates how the performance of the ensemble may im-
prove when Triskel is performed over multiple rounds.

Since in Triskel we train the arbiter specifically on the hard
instances, it is possible that we can improve the ensemble
performance on the training set even when the centre point
of the embedded ROC space is below the accuracy of the
base classifier. For example, if at least one of the biased
classifiersh+ or h− is above the accuracy line ofh (but the
middle point is below), then we can improve the accuracy
of the Triskel ensemble even if we use an arbiter that always
predicts+1 (if h+ is above the accuracy line) or−1 (if h−

is above the accuracy line). Our base learner should be at
least clever enough to always predict the majority class.

Reversing the base classifier (trained on the whole dataset)
for the hard instances is also relevant to training the arbiter
without removing the easy instances, but giving a lower
weight to them (i.e. soft covering,Whard > Weasy > 0).
In both cases we take into account all instances, but pay
particular attention to the difficult ones either by revers-
ing the base classifier for those instances or by assigning
a higher weight to the hard instances when training the ar-
biter. This may reduce the risk of overfitting on the hard
instances, and it does seem from our experiments that soft
covering works better thanWeasy = 0.

Another way to characterise a dataset suitable for Triskel is
to say that the bias curves on this dataset form a concav-
ity. The “deeper” the concavity, the bigger improvement is
possible. If the concavity reaches the(1, 0) point in the em-
bedded ROC space of the hard instances, it means that the
pattern of the hard instances is nearly opposite to the rest of
the dataset. This suggests that boosting will not be effective
on such dataset, since it will likely lead to cyclic redistribu-
tions of weights between easy and hard instances without
improving the ensemble performance. To give an empiri-
cal illustration, Figure 4 shows bias curves for a randomly
generated “layered cake” dataset (see Figure 1) using over-
sampling as the biasing method.

It is easy to see that if we pick the biased classifiers to
form the deepest concavity, then simply reversing the base



Ensembles of Biased Classifiers

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

TP
r

FPr

h+ curve
h- curve

Figure 4. Biasing classifiers for the “layered cake” dataset.

classifier on the hard instances gives us a significant im-
provement. Also, the performance of the base classifier
would be very close to the(1, 0) in the embedded ROC
space (i.e. boosting is likely to be ineffective here), and we
know that AdaBoost does not work for this dataset. An-
other interesting point here is that the optimal positions of
the biased classifiers on this dataset correspond to a quite
small bias (around0.1). This picture suggests that Triskel
with a strong bias would not work well on this dataset. In-
deed, running Triskel even with bias0.4 already gives no
improvement compared to the base classifier. This picture
also suggests that asymmetric bias can work better (due to
random asymmetries in the generated dataset). In particu-
lar, for this dataset the optimal bias forh+ is around0.11,
while for h− it is around0.085. Running Triskel with these
asymmetric biases gives0.803 accuracy on the training set,
while the maximum accuracy when running Triskel with a
symmetric bias is only0.703 for the bias value of0.09

6. Conclusion

We have presented a novel ensemble learning algorithm
called Triskel that makes use of biased classifiers to sepa-
rate “easy” and “hard” instances. In its iterative nature, it is
similar in style to Boosting methods, while the way Triskel
separates easy and hard instances is also related to cover-
ing algorithms. Empirical results suggest that, compared
to AdaBoost, Triskel offers a better trade-off between ac-
curacy and speed. Furthermore, the experiments show that
the maximum accuracy that can be achieved with Triskel is
higher than the accuracy of AdaBoost.

We have also presented an ROC analysis of Triskel, which
shows that Triskel’s iterative structure corresponds to a se-
quence of nested ROC spaces, where each embedded space
is defined by the previous iteration’s biased classifiers. This
analysis allows us to reason about the behaviour of Triskel
at a qualitative level. In particular, it predicts that Triskel
works best when there are concavities in the ROC curve;
this prediction agrees with our empirical results. We can
also see how the upper performance bound of the classifier

changes depending on the biased classifiers.

We are currently investigating many aspects of Triskel that
we could only sketch briefly in this paper. For example,
in this paper we have reported results with undersampling
as the only method of generating the biased classifiers. In
future work we would like to explore the space of possible
methods for generating biased classifiers, such as setting
the bias of the classifier directly by means of thresholding,
or using oversampling with artificially created instances as
used in the SMOTE algorithm (Chawla et al., 2002).
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