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Abstract

We investigate the empirical applicability of
several bounds (a number of which are new)
on the true error rate of learned classifiers
which hold whenever the examples are chosen
independently at random from a fixed distri-
bution.

The collection of tricks we use includes:

1. A technique using unlabeled data for
a tight derandomization of randomized
bounds.

2. A tight form of the progressive valida-
tion bound.

3. The exact form of the test set bound.

The bounds are implemented in the
semibound package and are freely available.

1. Introduction

When we learn a classifier c, it is very natural to won-
der “How often will c be wrong in the future?” This
question cannot be answered in general, because any
source of future examples might know c and either
choose c(x) = y or not. However, this question can be
answered when assumptions are made about the data.

A basic principle of system design is that if a system
has few components then it can break in fewer ways.
For this problem, components are assumptions which
may or may not be true on any individual problem.
Learning theory shows us that using only the assump-
tion that data is drawn IID, we can construct confi-
dence intervals on the error rate of learned classifiers.
Thus, we make only the IID assumption.
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There are several common techniques for attempting
to predict the future error rate of a classifier. For
example, sometimes people compute the standard de-
viation of the error rate on a test set. This is sta-
tistically questionable because 0/1 errors are inher-
ently not drawn from a normal distribution. This leads
to odd or misleading results like reporting “accuracy
0.9 ± 0.3” and “1.00 ± 0.0” (the last is especially dif-
ficult because it’s a form of overconfidence). Another
approach is to use k-fold cross-validation on a dataset
and then use similar methods to transform the cross-
validation estimate into an estimate or heuristic confi-
dence interval of the error of the final classifier learned
from all examples. This, again, is statistically ques-
tionable because the runs of cross validation are not
independent, the error rates are not Gaussian, and
nothing in general guarantees that the error rate of
the final classifier learned from all data is close to the
error rates of the classifiers learned in cross-validation.

In this paper, we test several different styles of error
bounds that lead to confidence intervals which hold
based only on the IID assumption. The baseline ver-
sion of this approach is to simply use a test set and
compute a Binomial confidence interval. This tech-
nique is sometimes unsatisfactory because it “wastes
examples” which might be critical to successful learn-
ing, so we test other approaches, including:

1. Transforming cross-validation and bagging based
error estimates into error bounds for randomized
classifiers.

2. Using unlabeled data to get tight training set
bounds (Kääriäinen, 2005) based on derandom-
ization of bounds for randomized classifiers, in-
cluding, e.g., the bounds in 1 and the PAC-
Bayesian margin bound.

3. Using progressive validation (Blum et al., 1999)
over a test set to improve performance so that a
portion of the test set can be used for training and
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validation.

4. Combinations of the above.

All of the bounds are stated with respect to a classi-
fication problem defined by a probability measure D
over a space X × Y , where X is some arbitrary fea-
ture space and Y a set of labels. The IID assumption
we make means that we assume that all examples are
drawn independently at random from D (for labeled
examples) or its marginal DX (for unlabeled exam-
ples). With this notation, the error rate e(c,D) of a
classifier c is e(c,D) = Pr(x,y)∼D(c(x) 6= y).

The organization of the paper is straightforward. We
describe the techniques that we apply, the settings that
they apply in, and then test them with a wide array
of experiments.

2. Test Set Bound

When a classifier c is trained on some training set and
then tested on an independent test set S sampled from
D, the distribution of the test set error

ê(c, S) =
1

|S|

∑

(x,y)∈S

I(c(x) 6= y)

is Binomial with parameters e(c,D) and |S|. The fol-
lowing inverse binomial tail defines and lets us com-
pute an exact 1 − δ confidence interval for e(c,D).

Definition 1 (Langford, 2005) The inverse binomial
tail Bin (p̂,m, δ) is the q for which

dp̂me
∑

i=0

(

m

i

)

qi(1 − q)m−i = δ.

The interpretation of the definition is that getting an
error rate of p̂ or smaller from a binomial distribution
with bias larger than Bin (p̂,m, δ) has probability less
than δ. Therefore, the true error rate p has to be below
Bin (p̂,m, δ) with confidence 1 − δ. Besides stating
this formally, the next lemma is a robust baseline and
a frequently used building block in the bounds that
follow.

Lemma 1 (Test Set Bound) For all D, c

Pr
S∼Dm

(

Bin (ê(c, S),m, δ) ≥ e(c,D)
)

≥ 1 − δ.

3. Semi-Supervised Bounds

There is some tension between what we can prove and
what we want to prove. For example, the (empirically)

tightest learning theory bounds for many applications
tend to be for randomized classifiers (see (Langford
& Shawe-Taylor, 2002) for one example). However, a
randomized classifier is inconvenient and counterintu-
itive for many practical purposes.

The safe derandomization technique we discuss here
relieves this tension using a spare unlabeled dataset
U drawn from Dm

X with m examples. This makes the
bounds semi-supervised.

Randomized classifiers are metaclassifiers defined by
a distribution on a set of deterministic classifiers. A
randomized classifier is used by drawing an indepen-
dent sample from this distribution of classifiers each
time a classification is given. Standard deterministic
classifiers are the special case in which the distribu-
tion concentrates on a single classifier. Analogous to
deterministic classifiers, the generalization error of a
randomized classifier f is its probability of making an
error, that is e(f,D) = Pr(x,y)∼D,c∼f (c(x) 6= y) =
Ec∼fe(c,D).

The basic idea behind safe derandomization is to use
the disagreement probability d(f, g) = d(f, g,D) =
Pr(x,y)∼D(f(x) 6= g(x)) as a metric in the space of
randomized classifiers. This quantity can be estimated
in a semi-supervised setting by

d̂(f, g, U) =
1

|U |

∑

x∈U

I(f(x) 6= g(x))

which can be computed by simply classifying the ex-
amples in U by f and g and counting the number of
times they disagree. Note that d̂(f, g, U) depends both
on the randomness in f and g and the randomness in-
troduced by the choice of U from Dm

X . If neither f nor

g depend on U , the distribution of d̂(f, g, U) is bino-

mial with parameters m and d(f, g) since d̂(f, g, U) is
simply the proportion of times f and g disagree on the
unlabeled sample. Thus, the same confidence intervals
used for test sets in Section 2 can be reused here.

All of the semi-supervised bounds (there are several)
use the next theorem as a starting point. Here, f is
typically a randomized classifier for which we have a
generalization bound, while cfinal is the final determin-
istic classifier learned based on all the labeled data.

Theorem 1 (Semisupervised Derandomization)
(Kääriäinen, 2005) Let f be a randomized classifier
and cfinal the final deterministic classifier, both
learned based on S ∼ Dn. Suppose we have a gen-
eralization error bound α = α(S, δ) for f satisfying
PrS∼Dn(e(f,D) ≤ α(S, δ/2)) ≥ 1 − δ/2. Then with
probability at least 1 − δ over the draw of S ∼ Dn,
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U ∼ Dm
X , and the randomness in f , we have

e(cfinal, D) ≤ α(S, δ/2) + Bin
(

d̂(f, cfinal, U),m, δ/2
)

.

Next we present a resampling-related bound using the
above theorem. The resampling methods are based on
the following technique for obtaining f and α:

1. Generate k subsamples (multisets) of the labeled
sample S. Denote these by S1, . . . , Sk and their
complements in S by S′

1, . . . , S
′
k. The only re-

quirement is that the choice of which examples to
include in the subsamples has to be independent
of the contents of S.

2. For each Si, apply the learning algorithm to get
a classifier ci.

3. Test each ci on S′
i. By Lemma 1, with probability

1 − δ/(2k) we have

e(ci, D) ≤ Bin (ê(ci, S
′
i), |S

′
i|, δ/k) .

4. Let the randomized classifier f be the classifier
obtained by uniform randomization over the set
{ci | 1 ≤ i ≤ k}. The union bound (Pr(∪Ai) ≤
∑

Pr(Ai)) tells us that all the approximations
in step 3 hold simultaneously with probability at
least 1 − δ/2, which implies

e(f,D) = Ec∼fe(c,D) =
1

k

k
∑

i=1

e(ci, D)

≤
1

k

k
∑

i=1

Bin (ê(ci, S
′
i), |S

′
i|, δ/(2k))

with the same probability. This gives us α =
1
k

∑k
i=1 Bin (ê(ci, S

′
i), |S

′
i|, δ/(2k)).

After this, the learning algorithm is applied once more
to the whole labeled sample S to get the final deter-
ministic classifier cfinal. Then the α obtained from step
4 above and the final hypothesis cfinal are plugged into
Theorem 1, which gives the following bound for cfinal.

Theorem 2 For all D, f , and cfinal as above, with
probability at least 1 − δ over the choice of S ∼ Dn,
U ∼ Dm

X , and the randomness in f , we have

e(cfinal, D) ≤
1

k

k
∑

i=1

Bin (ê(ci, S
′
i), |S

′
i|, δ/(2k))

+Bin
(

d̂(f, cfinal, U),m, δ/2
)

.

The only variation in the resampling based bounds is
the way the samples Si are chosen in step 1. We next
list a few possibilities.

Cross-Validation In k-fold cross-validation, the la-
beled data is split into k equisized folds S ′

i (for nota-
tional simplicity, we assume k divides n). The subsam-
ple generation process is then defined by Si = ∪j 6=iS

′
j .

This plugged into Theorem 2 gives the cross-validation
bound. The special case k = n is the leave-one-out
bound, which is of no use as Bin (0, 1, δ/(2n)) = 1− δ

2n .

Bagging Bagging is a bootstrapping method intro-
duced by Leo Breiman (Breiman, 1996a). In it each
of the k subsamples Si is generated by choosing ran-
domly with replacement n examples from S. For each
i, about a 1 − 1/e ' .63 fraction of the examples are
represented in Si, while a .37 fraction remain for test-
ing purposes in S′

i. Applying Theorem 2 to this re-
sampling scheme gives the bagging bound.

Bagging was originally introduced as an aggregation
method that enhances classification accuracy by re-
placing cfinal with the voting classifier cvote(x) =
arg max{P (f(x) = y) | y ∈ Y } (ties are broken ar-
bitrarily). The bagging bound holds also with the
substitution cfinal → cvote, thus giving a generaliza-
tion error bound for the aggregated hypothesis cvote.
Breiman has introduced out-of-bag estimates (differ-
ent from the estimate behind α in step 4 above) of the
generalization performance of cvote (Breiman, 1996b),
but the generalization error bounds for cfinal and cvote

given by Theorem 2 are new.

Semi-Supervised Test Set Bound The special
case k = 1 corresponds to transforming a test set
bound for a (deterministic) classifier learned based on
some fraction S1 of the data into a semi-supervised
training set bound for the classifier cfinal.

This bound with the choice |S ′
1| = n/k should be com-

pared with the semisupervised cross-validation bound
above. Except for the difference in the confidence pa-
rameter (which should have only minor relevance for
large n/k), the first term of the above bound and the
sum in the cross-validation bound have the same ex-
pectation.

Other Variants Besides the above, one can think of
bagging with different bootstrap sample sizes, bagging
where a fraction c < 1 of data is sampled into each
Si without replacement, weighting the classifiers non-
uniformly,. . . For each of these subsampling strategies
Theorem 2 creates a generalization error bound.

4. Online Bounds

Online bounds for generalization error work in a set-
ting where the learner is given the labeled examples
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one by one. After seeing i labeled examples, 0 ≤ i < n,
the learner outputs a classifier ci that is used in pre-
dicting the label of the example number i+1. It is then
given the correct label, and the process of prediction
and correction repeats. It is also possible to start the
online process after first seeing a batch of training ex-
amples that is used in learning c0 and the subsequent
classifiers.

This way, the learner produces a sequence of classifiers
c0, . . . , cn−1 whose performance is often measured by
the cumulative error

êA,S =

n
∑

i=1

I(ci−1(Xi) 6= Yi)

where ci−1 = A((x, y)i−1) is the classifier learned on
the first i − 1 samples. The cumulative error is then
used in providing a generalization error bound for the
randomized classifier obtained by uniform randomiza-
tion over the classifiers {ci | 0 ≤ i < n}. The general-
ization error is ēA,S,D (the notation tracks the depen-
dencies).

This approach has been analyzed for classification er-
ror (Blum et al., 1999; Cesa-Bianchi et al., 2001) yield-
ing a bound that was recently tightened (Cesa-Bianchi
& Gentile, 2004) (for some values, the constants are
worse). A simple application of Theorem 1 trans-
forms these into semi-supervised bounds for cfinal = cn.
However, neither of these results is maximally tight.
A tighter bound can be constructed by thinking of the
learning algorithm and the learning distribution as an
adversary which can pick any probability of error given
any history of past error/not error events in a round
by round fashion. The goal of the adversary is to max-
imize the probability of achieving some deviation be-
tween the expected and the observed number of errors,
where deviation simply means the first minus the sec-
ond. This optimal strategy is defined recursively.

Let gn(x) be an upper bound for the maximum prob-
ability that an adversarial algorithm/distribution pair
can achieve a deviation of size at least x in n rounds.
The recurrence obeys the following property:

gn(x) = max
p

pgn−1(x + 1 − p) + (1 − p)gn−1(x − p)

with the base case g0(x) = I(x ≤ 0).

Calculating this recurrence, we get the plots in Fig-
ure 1 for values of g at each deviation x. The optimal
choice of p can be difficult to calculate analytically as
shown by the plot on the bottom. In particular, note
the nonmonotonic behavior.

This can still be improved by noting that the above
recurrence does not take into account the number of
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Figure 1. Top: maximum probability of a deviation x given
1, 2, 3, or 4 rounds of progressive validation. Bottom:
Optimal choice of the adversary achieving these deviations.

errors observed as the test set bound (Lemma 1) sug-
gests. We can state another recurrence based on both
n and the number of errors êA,S .

gn,e(x) = max
p

pgn−1,e−1(x+1−p)+(1−p)gn−1,e(x−p)

The base case is g0,e(x) = I(x ≤ 0).

Solving this recurrence results in a bound which is
somewhat worse than the Binomial confidence inter-
val, but significantly better than other approaches as
shown in Figure 2.

Many learning algorithms are designed for the online
setting, and this approach is the most natural in com-
bination with them. However, every batch mode learn-
ing algorithm can be used to define an online learning
algorithm by the following simple strategy: Feed the
batch algorithm the labeled examples seen so far, and
use the classifier output by the algorithm to classify
the next example before its label is revealed. Then,
add the newly seen labeled example to the set of la-
beled examples, and continue till all n examples have
been processed. A potential problem is that unless the
batch learning algorithm is incremental in the sense it
can efficiently update its hypothesis when a new ex-
ample is seen, the learning algorithm has to be run n
times. For large n this may take ages. To circumvent
the time complexity, we can be lazy and update the
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Figure 2. A comparison of bounds on the deviation be-
tween the observed and the true error rates with δ = 0.1
and as the number of examples increases. “Square Root
Chernoff” is the Chernoff approximation. Binomial Tail
uses 1 with either 0 or 1/2 errors. The line “any error pro-
gressive” is the result of the first recursion which does not
take the number of errors into account. All other lines use
the second recursion which takes the errors into account.

hypothesis only every 0.1n samples (for example).

This strategy can be taken into account to tighten
the bound calculation. Let k be the number in the
batch for each update and m = n/k be the number of
batches. The new recurrence equations are:

gm,k,e(x) = maxp

∑

i≤min(e,k)

(

k

i

)

(1−p)k−ipigm−1,k,e−i(x+i(1−p)−p(k−i))

with base case g0,k,e(x) = I(x ≤ 0).

Computing the results of these recurrences is computa-
tionally intensive. We use an anytime approach which
discretizes x at successive scales and carefully main-
tains the upper bound property. When this proves too
intensive (as it does for very large datasets), we fall
back on the looser analytic expressions above.

Theorem 3 (Tight Progressive Validation) For all D,
n = m∗k, and all learning algorithms, with probability
1 − δ over the draw of S ∼ Dn, we have:

ēA,S,D ≤ êA,S + max{x : gm,k,êA,S
(x) ≥ δ}

Proof. We start using induction to prove that for all
A, x, k,m, d:

Pr
S∼Dn

(ēA,S,D ≥ êA,S + x and êA,S ≤ d) ≤ gm,k,d(x)

The proof is done for any fixed A, x, k, d and induc-
tively over m. The base case is m = 0 when no devia-
tion above 0 can be achieved and A can do nothing.

For the inductive step, we have the following:

Pr
S′∼Dn+m

(ēA,S′,D ≥ êA,S′ + x and êA,S ≤ d)

=
∑

i≤min(d,k)

(

k

i

)

(1 − p)k−ipi

Pr
S∼Dn

(ēA,S,D ≥ êA,S + x + i(1 − p) − p(k − i)

and êA,S ≤ d − i)

where p is the probability of failure of the first classifier
chosen by A (which depends on 0 examples). Using the
inductive assumption, we have for all A:

≤
∑

i≤min(d,k)

(

k

i

)

(1−p)k−ipigm,k,e−i(x+i(1−p)−p(k−i))

≤ gm+1,k,d(x)

Now, note that we can set gm,k,d(x) = δ and solve for
x to get:

Pr
S∼Dn

(ēA,S,D ≥ êA,S + max{x : gm,k,d(x) ≥ δ}

and êA,S ≤ d) ≤ δ

To complete the proof note that for any deviation
max{x : gm,k,d(x) ≥ δ}, if êA,S ∈ {0, . . . , d − 1} that
also achieves deviation max{x : gm,k,d(x) ≥ δ}. Sim-
ilarly, for any êA,S ∈ {d + 1, . . . ,m} the deviation is
smaller than max{x : gm,k,d(x) ≥ δ}. 2

5. PAC-Bayesian Bounds

The PAC-Bayesian theorems (McAllester, 2003a) are
a relatively recent method of providing generalization
error bounds for randomized classifiers. The idea is
to control the generalization performance by the KL-
divergence between a “prior” and a “posterior” on a
set of classifiers. The “prior” may encode beliefs about
which classifiers perform well, while the “posterior”
describes the randomized classifier we learn.

5.1. A PAC-Bayesian Margin Bound

We work with unbiased linear classifiers. This rep-
resentation is employed by many important learn-
ing algorithms, including, e.g., the (unbiased) sup-
port vector machines and boosting. We assume that
X = {x ∈ R

d | ‖x‖ = 1} for some d ∈ N and
that Y = {−1,+1}. A linear classifier is represented
by a weight vector w ∈ X, which defines a classifier
fw : X → Y by fw(x) = sign(w · x).

The “prior” used in the PAC-Bayesian margin
bounds (Langford & Shawe-Taylor, 2002; Langford,
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2005; McAllester, 2003b) is a unit-variance isotropic
Gaussian on R

d. The “posterior” Q(w, µ), where
‖w‖ = 1 and µ > 0, is the normal distribution N(µ, 1)
in the direction of w and standard normal in every or-
thogonal direction. Thus, Q(w, µ) is the prior shifted
by µw.

Theorem 4 (PAC-Bayesian margin bound) For all
D, with probability at least 1 − δ/2 over the choice
of the labeled data and the randomness in Q(w, µ), we
have for all w ∈ R

d, ‖w‖ = 1, µ ∈ [0,∞) that

KL (ê(Q(w, µ), S)||e(Q(w, µ), D)) ≤

µ2

2 + ln m+1
δ/2

m
.

To derandomize the above, let us choose w to be the
normalized weight vector learned by the learning al-
gorithm, and let α be the smallest upper bound for
e(Q(w, µ), D) that can be obtained from the above by
the optimal choice µ∗ for µ. Note that greedily picking
µ∗ for µ may not be the best choice for the derandom-
ized bound, but we still get the following.

Theorem 5 With probability at least 1 − δ over the
choice of S ∼ Dn, U ∼ Dm

X , and the randomness in
Q(w, µ), we have

e(fw, D) ≤ α + Bin
(

d̂(Q(w, µ∗), fw, U),m, δ/2
)

.

For details on how the bound of Theorem 4 can be eval-
uated and how µ∗ can be found efficiently, the reader is
referred to (Langford, 2005). The remaining difficulty
in evaluating the bound of Theorem 5 is computing
d̂(Q(w, µ∗), fw, U) which can be done with techniques
similar to those presented in (Langford, 2005).

6. Empirical Results

In this section we summarize results of experiments
obtained by semibound (available at http://hunch.

net/semibound), a package of scripts that makes com-
puting these bounds easy. The package currently
supports libsvm, C4.5, svmlight (Joachims, 1999),
and the classification algorithms in Weka, but can
easily be extended to work with other learning al-
gorithms as well. As datasets we used benchmark
datasets from the UCI repository (Blake & Merz, 1998)
(for C4.5) and from the libsvm tools page (Chang &
Lin, 2005) (for libsvm and svmlight). The problem
mnist0 is the “0 versus rest” version of mnist, and
mnist0-10000 is a 10000 example subsample of it. Un-
labeled data was obtained by forgetting the labels of
10% of the original labeled data set. This “unlabeled”
data was also used in computing empirical error rates
for the classifiers.

The results of the experiments are summarized in Ta-
bles 1 and 2. In Table 1, we report the observed error
rates (on the “unlabeled” data set) and error bounds
for the randomized classifiers, whereas Table 2 sum-
marizes the corresponding semi-supervised bounds for
cfinal. All numbers in the tables are averages over ten
runs of semibound, where the randomization of the
split of the data to labeled and unlabeled parts as well
as the randomization inside the bounds was done anew
each time. In all bounds we chose δ = 0.01.

The columns correspond to bounds presented in the
text with the prefix R- indicating a randomized1 and
S- a semi-supervised bound. In the bounds Test and
Prog we used a 90%/10% train/test split and in CV
and Bag we chose k = 10. In Prog, the hypothe-
sis was updated only 10 times during the validation
phase to keep the computation time in control. For
the same reason, the bound in the table is the min-
imum2 of the analytic approximation and the upper
bound to the solution of the recurrence obtained in
one hour of computation. The PAC-Bayesian margin
bound and algorithm are applicable to unbiased lin-
ear classifiers only, which explains the NAs in the P-B
columns. With the exception of Prog, evaluating the
bounds is relatively fast when compared to the time
spent in the learning algorithm.

After committing ourselves to the above parameter
combinations we experimented with others to see how
stable the bounds are with respect to the parameters,
e.g., the k in the bagging and cross-validation bounds.
The randomized bounds perform best when k is small,
because the slack introduced through the inverse bi-
nomial tail increases with k. In the semi-supervised
bounds this increase is compensated by the decrease
of d(f, cfinal) with k, so the optimal value of the bound
is attained with k around 5 or 10.

From Table 1 we see that R-Bag seems to produce
the best bounds (even better than the baseline test
set bound R-Test), whereas the randomized classifier
related to the bound is seldom the one with best er-
ror rate. In bagging about 37% of the labeled data
remains for testing purposes, so the test set bound
on which the bagging bound built is close to the true
error. However, the larger test set means less data
for training, which shows up in increased error rates
on the unlabeled data. In summary, R-Test and R-
Prog appear to provide the best error rates, whereas

1The exception is R-Test which is the standard test set
bound for a deterministic classifier.

2It is not, normally, valid to take the minimum of two
bounds in this manner without increasing the value of δ.
It is valid here because the recursion dominates the other
bounds.
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Table 1. Results on experiments with bounds for randomized classifiers on various (algorithm, data set) combinations.
Each cell contains a “error rate”/“bound” combination.

Dataset/Alg R-Test R-Prog R-Bag R-CV R-P-B

australian/svmlight 13.04/31.12 13.91/33.18 13.77/23.29 15.36/32.30 21.88/42.15
breast-cancer/svmlight 1.45/11.55 2.17/10.49 1.88/8.60 2.17/16.29 8.12/25.61
census-income/c4.5 4.61/4.93 4.60/5.92 4.82/5.03 4.59/5.01 NA/NA
covtype/c4.5 5.69/5.91 5.61/6.52 6.93/7.04 5.69/6.00 NA/NA
crx/c4.5 10.14/25.40 11.45/29.34 11.45/24.83 10.72/33.48 NA/NA
diabetes/svmlight 19.22/36.90 19.74/43.04 20.65/33.63 21.30/42.71 27.27/42.04
dna/c4.5 7.46/12.61 7.08/13.16 8.56/11.29 7.30/13.70 NA/NA
dna/libsvm 5.45/7.98 5.27/8.65 5.02/6.86 4.76/8.78 NA/NA
fourclass/svmlight 19.54/28.75 18.51/32.37 15.40/22.98 19.77/32.23 25.17/41.67
german.numer/svmlight 30.90/42.27 30.60/42.39 33.90/38.20 31.80/47.19 47.90/53.87
heart/svmlight 20.37/50.10 21.85/52.54 23.33/36.56 20.37/52.91 42.59/52.69
hypo/c4.5 0.74/1.70 0.63/1.79 0.98/1.46 0.63/3.03 NA/NA
letter/c4.5 12.50/14.29 11.76/13.22 14.57/16.02 12.37/14.87 NA/NA
letter/libsvm 2.33/3.04 2.20/3.93 2.91/3.66 2.21/3.48 NA/NA
mnist/libsvm 1.72/2.09 1.70/4.34 1.99/2.28 1.73/2.29 NA/NA
mnist0/svmlight 0.29/0.46 0.29/0.83 0.29/0.43 0.29/0.57 0.74/2.52
mnist0-10000/svmlight 0.57/1.21 0.58/1.16 0.60/1.02 0.62/1.75 1.62/5.75
monk1/c4.5 0.00/8.80 0.36/10.88 2.32/7.50 1.61/18.01 NA/NA
monk2/c4.5 40.66/58.49 41.31/59.74 41.64/49.81 41.64/58.17 NA/NA
monk3/c4.5 1.79/8.80 1.79/10.88 1.79/5.82 1.79/15.00 NA/NA
satimage/c4.5 13.20/16.50 13.82/18.50 15.19/17.68 14.13/18.72 NA/NA
satimage/libsvm 7.64/12.16 7.55/13.17 8.82/10.80 7.81/11.88 NA/NA
segment/c4.5 1.04/10.92 1.13/9.23 2.25/7.65 1.00/10.63 NA/NA
segment/libsvm 3.90/6.86 3.72/8.06 3.59/5.60 3.42/8.21 NA/NA
shuttle/c4.5 0.04/0.14 0.04/0.17 0.06/0.12 0.05/0.21 NA/NA
shuttle/libsvm 0.05/0.24 0.05/0.31 0.07/0.20 0.05/0.29 NA/NA
soybean/c4.5 6.67/15.75 6.67/18.83 9.57/18.94 8.70/26.44 NA/NA
usps/libsvm 1.84/3.17 1.75/3.42 1.99/3.32 1.71/4.03 NA/NA
vote/c4.5 4.55/22.99 4.55/30.40 2.05/13.95 2.95/25.49 NA/NA

R-Bag provides the best bounds. Still, it is hard to
draw any definitive conclusions of the relative perfor-
mance of the methods, with the exception of R-P-B
being clearly worst.

The case of R-Bag is an example of a more general
trade-off: For good prediction performance, we would
like to use all data in training, while the easiest way
to get good bounds is to leave a part of the data aside
for testing. In case prediction accuracy is the most
important thing, one can use unlabeled data to trans-
form the bounds for randomized classifiers in Table 1
to bounds for cfinal. The results of this transformation
are presented in Table 2, in which the column Error
is the error rate of cfinal. The cost of the transfor-
mation is roughly the distance d(f, cfinal) between f
and cfinal, which varies significantly from problem to
problem. The results are impressive as compared to
traditional training set bounds for cfinal, but still not
as good as that of the randomized bounds. Here S-
Test appears to win, but the relative order of the
other bounds is again not clear.

7. Discussion

What these experiments illustrate is that there is a
natural trade-off between the goal of good prediction
and the goal of good confidence about prediction abil-
ity. We can state and use bounds which operate over
the range of this tradeoff, but no bound appears to
dominate for both goals simultaneously.

The good news is that some of these nonstandard
tradeoff points are entirely viable for common prac-
tice. Walking over the tradeoff, we get the following
prescription for common practice:

1. Prediction ability marginally important, confi-
dence very important: Use the a large test set
bound or the randomized bagging bound.

2. Prediction ability somewhat important, confi-
dence very important: Use some other random-
ized bound, e.g., the test set bound or the Pro-
gressive Validation bound.

3. Prediction ability very important, confidence
somewhat important, unlabeled data available:
use the semisupervised versions of these bounds.

If randomness in a classifier presents problems, then
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Table 2. Results on experiments with semi-supervised bounds for cfinal on various (algorithm, data set) combinations.

Dataset/Alg Error S-Test S-Prog S-Bag S-CV S-P-B

australian/svmlight 15.51 45.16 46.15 38.64 43.27 73.52
breast-cancer/svmlight 2.17 21.58 19.03 17.91 25.37 46.03
census-income/c4.5 4.60 5.80 6.70 7.12 5.84 NA
covtype/c4.5 5.45 11.98 11.81 14.87 11.91 NA
crx/c4.5 11.59 36.93 38.48 47.03 47.38 NA
diabetes/svmlight 21.04 49.43 54.21 50.52 54.49 71.03
dna/c4.5 6.58 20.55 19.26 22.07 22.26 NA
dna/libsvm 4.64 11.60 12.41 11.19 12.41 NA
fourclass/svmlight 18.39 38.33 40.39 41.67 43.46 77.05
german.numer/svmlight 30.90 55.65 52.97 62.18 59.42 113.74
heart/svmlight 20.74 78.75 75.02 65.68 77.85 113.20
hypo/c4.5 0.58 3.64 3.57 3.55 4.87 NA
letter/c4.5 11.88 26.81 23.26 34.47 27.03 NA
letter/libsvm 2.02 4.44 5.05 6.55 4.76 NA
mnist/libsvm 1.65 2.84 5.05 3.68 3.03 NA
mnist0/svmlight 0.28 0.62 0.97 0.63 0.70 3.43
mnist0-10000/svmlight 0.61 1.97 1.88 1.78 2.58 8.42
monk1/c4.5 0.00 19.08 22.15 22.24 30.36 NA
monk2/c4.5 45.08 82.44 81.21 100.83 82.10 NA
monk3/c4.5 1.79 19.08 21.45 15.50 25.27 NA
satimage/c4.5 13.98 32.31 32.99 37.95 35.73 NA
satimage/libsvm 7.66 16.71 17.01 18.26 15.98 NA
segment/c4.5 0.65 16.18 14.47 14.85 16.02 NA
segment/libsvm 3.46 11.28 11.91 12.14 12.88 NA
shuttle/c4.5 0.05 0.29 0.30 0.31 0.35 NA
shuttle/libsvm 0.04 0.36 0.44 0.38 0.42 NA
soybean/c4.5 10.58 32.29 34.98 41.82 43.70 NA
usps/libsvm 1.70 4.38 4.41 5.27 5.22 NA
vote/c4.5 2.27 40.54 48.30 32.26 40.59 NA

the test set bound (in case confidence is more im-
portant than accuracy) or the semi-supervised bounds
(when tightness of the bound is less important than
the accuracy of the final hypotheisis) should be pre-
ferred.
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