A Causal Approach to Hierarchical Decomposition of
Factored MDPs

Anders Jonsson
Andrew Barto

AJONSSON@CS.UMASS.EDU
BARTOQCS.UMASS.EDU

Autonomous Learning Lab, Dept. of Computer Science, Univ. of Massachusetts, Amherst MA 01003, USA

Abstract

We present Variable Influence Structure
Analysis, an algorithm that dynamically per-
forms hierarchical decomposition of factored
Markov decision processes. Our algorithm
determines causal relationships between
state variables and introduces temporally-
extended actions that cause the values of
state variables to change. Each temporally-
extended action corresponds to a subtask
that is significantly easier to solve than the
overall task. Results from experiments show
great promise in scaling to larger tasks.

1. Introduction

Learning and planning in tasks modeled as Markov de-
cision processes, or MDPs, becomes increasingly diffi-
cult as the size of the state set grows. Many existing
techniques do not scale well to larger tasks since the
complexity increases exponentially with the number of
dimensions describing a task (the “curse of dimension-
ality”). One way to alleviate the curse of dimension-
ality is to decompose a task into smaller pieces, solve
each piece individually, and combine the pieces into an
overall solution. We present Variable Influence Struc-
ture Analysis, or VISA, an algorithm that dynami-
cally performs hierarchical decomposition of factored
MDPs, i.e., MDPs described by several state variables.

VISA decomposes factored MDPs by introducing
temporally-extended actions, which are actions that
enable learning and planning on multiple levels of tem-
poral abstraction (Dietterich, 2000; Parr & Russell,
1998; Sutton, Precup & Singh, 1999). Benefits of
using temporally-extended actions include more effi-
cient exploration and reuse of knowledge in subsequent

Appearing in Proceedings of the 22™¢ International Confer-
ence on Machine Learning, Bonn, Germany, 2005. Copy-
right 2005 by the author(s)/owner(s).

tasks. Each temporally-extended action corresponds
to a stand-alone task that can be solved independently,
and there exists a principled theory of how to combine
temporally-extended actions into a global solution.

The theory of temporally-extended actions does not
specify how to select the stand-alone tasks. Several
researchers have developed algorithms that identify
temporally-extended actions from experience. One ap-
proach is to identify useful subgoals and introduce
temporally-extended actions that accomplish the sub-
goals (Digney, 1996; McGovern & Barto, 1998; Men-
ache, Mannor & Shimkin, 2002; Simsgek & Barto,
2004). Another approach is to perform learning in
several tasks and identify temporally-extended actions
that are useful across tasks (Pickett & Barto, 2002;
Thrun & Schwartz, 1995). Mannor et al. (2004) re-
cently proposed a clustering method that divides the
state space into regions and introduces temporally-
extended actions for moving between regions. Our ap-
proach most closely resembles that of Hengst (2002),
who orders state variables according to their frequency
of change and introduces one level of temporally-
extended actions for each state variable.

The VISA algorithm uses a compact model of fac-
tored MDPs introduced by Boutilier, Dearden & Gold-
szmidt (1995). When an action is executed, the result-
ing value of a state variable usually depends only on a
subset of the state variables. The model takes advan-
tage of this structure by introducing dynamic Bayes
networks, or DBNs (Dean & Kanazawa, 1989), approx-
imating the transition probabilities and expected re-
ward associated with actions. Because the DBN model
does not exhaustively enumerate all states, it allevi-
ates the curse of dimensionality. Several researchers
have developed efficient algorithms for solving factored
MDPs when the DBN model is given (Boutilier et al.,
1995; Feng, Hansen & Zilberstein, 2003; Guestrin,
Koller & Parr, 2001; Kearns & Koller, 1999).

The DBN model expresses a notion of causality be-

A Causal Approach to Hierarchical Decomposition of Factored MDPs

tween state variables conditional on the actions. As-
sume that there is a state variable Sy, representing my
location and a state variable Sj; representing whether
there is music playing. If my location is next to the
stereo and I press the power button, it will cause music
to play. If I am not next to the stereo, making a motion
to press the button will fail to play music. There is a
causal relationship between Sy, and Sj; conditional on
the action of pressing the power button. Now assume
that the state of music being played has no impact on
my location. Then the causal relationship between Sy,
and Sj; is one-way. With respect to S, it is possible
to ignore Sj; without changing the dynamics of the
task. There is an opportunity to decompose the task
into subtasks that include S but exclude Sj,.

The type of one-way causal relationships discussed
above is likely to be present in a number of realistic
tasks. For example, in robot navigation tasks in which
the robot has to perform additional tasks, success of
the additional tasks usually depends on location, but
location does not depend on the additional variables.
Our algorithm exploits the opportunity to decompose
tasks that exhibit one-way causal relationships.

2. Markov decision processes

A finite Markov decision process, or MDP, is a tuple
M = (S, A, U, P,R), where S is a finite set of states, A
is a finite set of actions, ¥ C S x A is a set of admissible
state-action pairs, P is a transition probability func-
tion, and R is an expected reward function. As a result
of executing an action a € A; ={d’ € A| (s,d') € ¥}
in state s € S, the process transitions to a state s’ € S
with probability P(s’ | s,a) and receives an expected
reward R(s,a). The objective of an MDP is to find a
stochastic policy 7 that maximizes the expected dis-
counted return R, = E{> =, v* ' R(sk,ar)}, where
v € (0,1] is a discount factor, by selecting action a € A
with probability 7(s,a) in each state s € S.

A factored MDP is described by a set of state vari-
ables {S;}iep, where D is a set of indices. The set
of states S = X;epVal(S;) is the cross-product of
the value sets Val(S;) of each state variable S;. A
state s € S assigns a value s; € Val(S;) to each state
variable S;. We use the coffee task (Boutilier et al.,
1995), in which a robot has to deliver coffee to its
user, to illustrate factored MDPs. The coffee task is
described by six binary variables: S;, the robot’s loca-
tion (office or coffee shop); Sy, whether the robot has
an umbrella; Sy, whether it is raining; Sy, whether the
robot is wet; S¢, whether the robot has coffee; and Sy,
whether the user has coffee. To distinguish between
variable values we use the notation Val(S;) = {i,i},

Figure 1. The DBN for action GO in the coffee task

where L = office and L = coffee shop. An example
state is s = (L, U, R,W,C, H). The robot has four ac-
tions: GO, causing its location to change and the robot
to get wet if it is raining and it does not have an um-
brella; BC (buy coffee) causing it to hold coffee if it
is in the coffee shop; GU (get umbrella) causing it to
hold an umbrella if it is in the office; and DC (deliver
coffee) causing the user to hold coffee if the robot has
coffee and is in the office. All actions have a chance of
failing. The robot gets a reward of 0.9 when the user

has coffee (H) plus a reward of 0.1 when it is dry (W).

For any D' C D, let Sp: = X;ep'Val(S;) be the joint
value set of the subset of state variables {S;};cp/, and
let fpr : S — Sps be the projection from S onto Sp.
We define a context cpr € Sp, D' C D, to be a partial
assignment of values to the state variables.

2.1. DBN model

The DBN model (Boutilier et al., 1995) of a factored
MDP contains one DBN per action. Figure 1 shows
the DBN for action GO in the coffee task. Nodes on the
left represent state variables at the current time step,
and nodes on the right represent state variables at the
next time step. There are also nodes corresponding
to expected reward. The value of a state variable S;
as a result of executing GO depends on the values of
state variables that have edges to S; in the DBN. A
dashed line indicates that a state variable is unaffected
by action GO. Figure 1 also illustrates the conditional
probability tree, or CPT, associated with state vari-
able Sy. We assume that there are no edges between
state variables at a same time step; in this case the
transition probabilites of the factored MDP are ap-
proximated as P(s' | s,a) =~ [[,cp Pi(s; | fp.(s),a),
where P; are the conditional probabilities associated
with state variable S;, and D; C D indicates the state
variables that have edges to S; in the DBN for a.

A Causal Approach to Hierarchical Decomposition of Factored MDPs

Figure 2. The SVIG of the coffee task

2.2. Options

We use the options framework (Sutton et al., 1999) to
represent temporally-extended actions. In MDP M,
an option is a tuple o = (I, 7, 3), where I C S is an
initiation set, 7 is a policy, and [is a termination con-
dition function. Option o can be executed in any state
s € I, repeatedly selects actions a € A according to m,
and terminates in state s’ € S with probability 5(s’).
An action a can be viewed as an option with initia-
tion set I = {s € S| (s,a) € ¥} whose policy always
selects @ and that terminates in all states with proba-
bility 1. An MDP M together with a set of options O
constitute a semi-Markov decision process, or SMDP.

An option o can be viewed as a stand-alone task given
by the option SMDP M, = (S,,0,,¥,, P,, R,), where
S, C S is the option state set, O, is the set of options
that o selects from, ¥, C S, x O, is the set of admis-
sible state-option pairs, determined by the initiation
sets of options in O,, and P, is a transition probabil-
ity function, determined by the transition probability
function P of the underlying MDP and the policies of
the options in O,. The expected reward function R,
associated with o can be selected to reflect the option’s
desired behavior. The option SMDP M, implicitly de-
fines option o’s policy 7 as the solution to M,.

3. The VISA algorithm

The VISA algorithm uses causal relationships between
state variables to decompose a factored MDP. The first
step of the algorithm is to construct a state variable
influence graph, or SVIG, indicating the causal rela-
tionships between state variables. The SVIG contains
one node per state variable plus one node correspond-
ing to reward. A directed edge between two state vari-
ables S; and S; (or between S; and the reward node
R) indicates that there is a causal relationship between
S; and S; (R) conditional on at least one action, i.e.,
that there is an edge between S; and S; (R) in the
DBN for that action. We remove reflexive edges and
label each edge with the associated actions. Figure 2
illustrates the SVIG of the coffee task.

S

Figure 3. HEX-Q’s state variable ordering in the coffee task

We are interested in determining one-way causal rela-
tionships: a state variable S; causes a state variable
S; to change, but S; does not cause S; to change. In
the SVIG, a causal relationship between S; and S; is
one-way if there is a directed path between S; and
S; but no directed path between S; and S;. We can
isolate one-way causal relationships by computing the
strongly connected components, or SCCs, of the SVIG.
We then compute the component graph of the SVIG,
i.e., the graph with one node per SCC. The component
graph is acyclic so all causal relationships are one-way.
In the coffee task, each node in the SVIG is its own
SCC, so the component graph is identical to the SVIG.

To introduce options we use a formalism similar to the
HEX-Q algorithm (Hengst, 2002). HEX-Q determines
an ordering on the state variables by randomly exe-
cuting actions and counting the frequency with which
the value of each state variable changes. The state
variable whose value changes the most frequently be-
comes the lowest variable in the ordering. For each
state variable S; in the ordering, the HEX-Q algorithm
identifies exit states (s;,a), pairs of a state variable
value s; € Val(S;) and an action a € A, that cause
the value of the next state variable in the ordering to
change. The HEX-Q algorithm introduces an option
for each exit state, and the options on one level of the
hierarchy become actions on the next level.

Even though the HEX-Q algorithm achieved some
early success, the frequency of change may not be
an accurate indicator of how state variables influence
each other. In addition, the ordering does not capture
the fact that the value of a state variable may depend
on multiple other state variables. Figure 3 illustrates
the state variable ordering that the HEX-Q algorithm
comes up with in the coffee task. There are several
differences between this ordering and the SVIG. The
ordering wrongly concludes that state variable Sy in-
fluences Sg, when it is really the other way around.
The ordering also fails to capture the fact that the
value of Sy depends on both Sy and Se.

3.1. Identifying options

The VISA algorithm uses the component graph of the
SVIG to represent variable relationships. For each
SCC with incoming edges, there exists a set of exits
{epr,a), i.e., pairs of a context cp, € Sp/, D' C D, and

A Causal Approach to Hierarchical Decomposition of Factored MDPs

Table 1. Exits identified in the coffee task

SCC CHANGE ExIT

Sc C—C {((L),BC)

Sc c—C {((I),nc)

Sk H—H ((L,C),DC)
Sy U—-U {((L),cu)
Sy W —W ((U,R),G0)

an action a € A, that cause the values of state variables
in the SCC to change. Here, D’ C D indicates a subset
of the state variables in SCCs that have edges to the
SCC being analyzed. VISA identifies exits by search-
ing in the CPTs of the DBN model, and introduces
an option o for each exit (cp/,a). A similar causal ap-
proach to task decomposition was recently proposed in
the context of deterministic planning (Helmert, 2004).

In the coffee task, two SCCs (S., and Sy) have no in-
coming edges, so VISA does not identify options for
them. The SCC Sy has incoming edges from Sy and
Sk. In the CPT in Figure 1, VISA identifies one leaf
(third from the left) for which the value of Sy changes
as a result of executing GO. The leaf expresses the fact
that if the robot is dry, it is raining, and the robot
does not have an umbrella, the robot becomes wet with
probability 0.8 if it executes GO. The exit correspond-
ing to this change is (U, R), G0), i.e., executing GO in a
state s whose projection fiygy(s) equals (U, R) causes
the value of Sy to change from W to W with non-zero
probability. Table 1 shows a complete list of exits iden-
tified by VISA in the coffee task. We label each option
with the change it causes; for example, W — W is the
option associated with the exit (U, R),G0).

3.2. Initiation set

Two factors influence the initiation set I of option
0. Option o should only be admissible in states from
which it is possible to reach the context cps. Option o
should also only be admissible in states for which its
associated exit causes the value of at least one state
variable in the corresponding SCC to change. For ex-
ample, option W — W should only be admissible in
states that assign U to Sy and R to Sg. The robot has
no action for getting rid of an umbrella, and it cannot
affect whether it is raining, so it can only get wet if
it does not have an umbrella and it is raining. In ad-
dition, option W — W should only be admissible in
states that assign W to Sy, since otherwise the option
cannot cause the value of Sy to change from W to W.

Existing techniques that identify temporally-extended

Sl
c
cl
c

true false

Figure 4. The transition graph and reachability tree of Sy

actions usually ignore the problem of determining ini-
tiation sets. In contrast, the VISA algorithm uses a
sophisticated method to construct the initiation set
I of an option o. For each SCC, VISA constructs a
transition graph that represents possible transitions
between contexts in the joint value set of its state vari-
ables. Each transition graph is in the form of a tree in
which possible transitions are represented as directed
edges between the leaves. Possible transitions are de-
termined using the CPTs of the DBN model. VISA
uses the transition graphs to construct a tree that clas-
sifies states on the basis of whether or not the context
cpr of the exit associated with option o is reachable.
Figure 4 illustrates the transition graph of the SCC Sy
in the coffee task as well as the corresponding reach-
ability tree indicating whether the context (U, R) of
the exit ((U, R),G0) is reachable (true) or not (false).

VISA also builds a tree that classifies states on the
basis of whether or not the associated exit changes the
value of at least one state variable in the correspond-
ing SCC. This tree can also be constructed from the
CPTs of the DBN model. In our example, states that
assign W to Sy map to a leaf labeled true, and states
that assign W to Sy map to a leaf labeled false, since
the exit ((U, R),G0) does not cause the value of Sy to
change if its current value is W. The initiation set I
of option o is implicitly defined by the two trees con-
structed by VISA. A state s € S is an element in [if
and only if s maps to a leaf labeled true in both trees.

3.3. Termination condition function

The termination condition function 3 is defined as
B(s) = 1 for each state s whose projection fp(s) onto
Spr equals cpr. [(s) is also 1 for states s ¢ I, i.e.,
when the process can no longer reach the context cp.
In all other cases, 3(s) = 0. In other words, option o
terminates as soon as the process reaches the context
cpr or as soon as it becomes impossible to reach cp.
We refer to options discovered by VISA as exit options
since they are slightly different than regular options.
If option o successfully terminates in the context c¢pr,
action a of its associated exit is always executed.

A Causal Approach to Hierarchical Decomposition of Factored MDPs

3.4. Policy

VISA cannot directly define the policy 7 of option o
since it does not know the best strategy for reaching
the context cps. Instead, VISA constructs an option
SMDP M, = (S,,0,,¥,, P,, R,) for option o that im-
plicitly defines its policy m. We let S, = S and define
O, as the set of options that affect state variables in
SCCs that have edges to the SCC being analyzed. For
example, the option set O, of the exit option W — W
only needs to include the exit option U — U, since
that is the only option that affects the SCCs Sy or Sy
that have edges to Sy. Note that primitive actions may
affect state variables for which there are no options; for
example, action GO affects state variable Sp.

If there are lower-level options that cause the process
to leave the initiation set of an option in O,, VISA
includes these options in O, as well. For example, the
exit option U — U causes the process to leave the
initiation set of the exit option W — W. If the robot
does not have an umbrella and it is raining, the exit
option W — W will no longer be admissible as a result
of executing the exit option U — U causing the robot
to hold an umbrella. In other words, an option whose
option set O, includes the exit option W — W should
include the exit option U — U as well.

We define the expected reward function R, as —1 ev-
erywhere except when option o terminates unsuccess-
fully, in which case we administer a large negative re-
ward. This ensures that the policy 7 of option o at-
tempts to reach the context cp/ as quickly as possible.
U, is determined by the initiation sets of the options
in O,. The VISA algorithm does not represent the
transition probability function P, explicitly. It is pos-
sible to construct a DBN model for each option similar
to the DBN model for the primitive actions. However,
there is currently no technique that enables us to do so
without enumerating all states. Since the whole point
of VISA is to alleviate the curse of dimensionality, we
want to avoid enumerating the states. Instead, we will
use reinforcement learning techniques, which do not
require explicit knowledge of the transition probabili-
ties, to learn the policy 7 of option o.

3.5. State abstraction

To achieve our goal of decomposing the original MDP
M into smaller tasks, the option SMDP M, should
be significantly easier to solve than M. This is where
causality really matters. Because of one-way causal
relationships, the option SMDP can ignore all state
variables that do not influence state variables in SCCs
that have edges to the SCC being analyzed. For ex-
ample, the option SMDP of the exit option W — W

Figure 5. The policy tree of the exit option W — W

can ignore state variables S¢, Sy and Sy, since neither
of these influence the state variables Sy and Sy that
have edges to Sy. Intuitively, the values of these state
variables do not matter for the purpose of reaching the
context cps of the associated exit. It is trivial to show
that this reduction preserves optimality of M,.

VISA reduces the complexity of the option SMDP even
further by ignoring all state variables that are not in
immediate parent SCCs of the SCC being analyzed.
For example, the option SMDP of exit option W — W
ignores state variable Sy, since that is not an immedi-
ate parent of Sy. If SCCs with edges to the SCC being
analyzed have no common ancestor SCCs in the com-
ponent graph, it is possible to show that this reduc-
tion preserves optimality of M, as well (we omit the
proof for lack of space). If there are common ancestor
SCCs in the component graph, the resulting solution
to the option SMDP will only be approximately opti-
mal. However, as the algorithm scales to increasingly
large tasks, we believe that the reduction in complex-
ity will be worth the loss of exact optimality.

Boutilier et al. (1995) introduced the use of policy trees
to represent stochastic policies. The benefit of using a
policy tree is that the number of leaves in the tree may
be smaller than the actual number of states. The VISA
algorithm uses a policy tree to represent the policy 7
of an exit option o. VISA constructs the policy tree by
merging the transition graphs of SCCs that have edges
to the SCC being analyzed. In other words, the policy
tree only distinguishes between state variables in SCCs
that have edges to the SCC being analyzed. Figure 5
shows the policy tree of the exit option W — W. VISA
reduces the number of effective states in the option
SMDP of the exit option W — W from 2 = 64 to 4.

3.6. Task option

The VISA algorithm also introduces an option, which
we call the task option, associated with the reward
node in the component graph of the SVIG. VISA uses
the same strategy to construct the task option as the
other options. The option SMDP of the task option

A Causal Approach to Hierarchical Decomposition of Factored MDPs

Task option

[ﬁHH [\TVLWHUHU]

Figure 6. The hierarchy of options in the coffee task

only considers SCCs that have edges to the reward
node. However, the expected reward function of the
task option SMDP is the same as the expected reward
function of the original MDP M. Solving the task op-
tion gives us a (possibly approximate) solution of the
original MDP which uses the other options discovered
by VISA. Figure 6 shows the hierarchy of options that
VISA comes up with in the coffee task.

3.7. Exit transformations

Sometimes it is possible to transform exits in order
to take further advantage of causality. Consider the
two exits ((L),DC) and ((L,C),DC) in the coffee task.
These exits are almost identical: their associated exit
options both terminate in states that assign L to St
and execute action DC following successful termination.
Recall that C — C' is the exit option associated with
the exit ((L),DC), causing the value of S¢ to change
from C to C. We can transform the exit ((L,C'),DC)
to ((C),C — C), i.e., reach a state that assigns C to S¢
and execute option C' — C following termination. The
benefit of this transformation is that the exit option
H — H associated with the exit ((L, C),DC) no longer
has to consider the value of Si, effectively removing
an edge in the component graph of the SVIG.

3.8. Limitations of the algorithm

VISA only decomposes a task if there are two or more
SCCs in the component graph of the SVIG, i.e., if there
is at least one instance of one-way causality. In addi-
tion, VISA works best when there are relatively few
exits that cause the values of state variables in an SCC
to change. If there are many context-action pairs that
cause changes, it is not particularly useful to introduce
an option for each of them. Instead, VISA merges two
SCCs if they are linked by too many exits. Since the
option SMDPs are stand-alone, the hierarchy discov-
ered by VISA enables recursive optimality at best, as
opposed to hierarchical optimality (Dietterich, 2000).

0.25

- —
0.2 T
el
s 045 —
S
g
(]
[=2}
[
S o01f - f
z 1
1
1-
0.05- E—Tre
SPI
i == sRTDP_value
- + SRTDP_reach
O' L L L L L L L L L
0 50 100 150 200 250 300 350 400 450 500
Time (ms)
Figure 7. Results in the coffee task
4. Results

We compared the VISA algorithm to two algorithms
that also use the DBN model: Structured Policy Itera-
tion, or SPI (Boutilier et al., 1995), and symbolic Real-
Time Dynamic Programming, or sSRTDP (Feng et al.,
2003). We performed experiments with each algorithm
in four tasks: the coffee task, the Taxi task (Diet-
terich, 2000), the Factory task (Hoey et al., 1999), and
a simplified version of the autonomous guided vehicle
(AGV) task of Ghavamzadeh & Mahadevan (2001).

Figure 7 shows the results in the coffee task. The graph
for each algorithm illustrates the average reward over
100 trials. The graph for VISA includes the time it
takes to decompose the factored MDP. We used SMDP
Q-learning to learn the option policies, which reduces
to regular Q-learning for policies that select between
primitive actions. sRTDP uses algebraic decision di-
agrams, or ADDs, to store conditional probabilities.
Prior to executing, sSRTDP computes complete action
ADDs; the graphs include the time it takes to do this.
sRTDP uses two heuristics, value and reach, to group
states into abstract states. We report results of both
heuristics. All algorithms were coded in Java, except
that the CUDD library (written in C) was used to ma-
nipulate ADDs through the Java Native Interface.

Figure 8 shows the results in the Taxi task. The graphs
illustrate the average reward over 100 trials. The rea-
son VISA outperforms the other algorithms is that
VISA decomposes the task into smaller, stand-alone
tasks that are easier to solve without ever enumerat-
ing the entire state space. VISA reduces the number
of state-action pairs from 3,000 to approximately 800.

A Causal Approach to Hierarchical Decomposition of Factored MDPs

0.5

Average reward
~

—VISA
SPI
== sRTDP_value
+ SRTDP_reach
N

-1 L L I I I I
0 0.5 1 15 2 25 3 35 4

10*
Time (ms) X

Figure 8. Results in the Taxi task

In the Factory task, a robot has to assemble a compo-
nent made of two objects. The task is described by 17
binary variables for a total of 130,000 states, and the
robot has 14 actions. Figure 9 shows the results in the
Factory task of the VISA algorithm and sRTDP using
the reach heuristic. The VISA algorithm decomposes
the task in 5 seconds and learning converges after 20
seconds. In comparison, it takes sSRTDP 80 seconds
to compute complete action ADDs. Each subsequent
iteration of the value heuristic takes 20-60 seconds,
which causes convergence to be very slow. The reach
heuristic performs better and is included in the figure.
SPI ran out of memory after running for several hours.

In the AGV task, an AGV agent has to transport
pieces between machines in a manufacturing workshop.
We simplified the task by reducing the number of ma-
chines to 2 and setting the processing time of machines
to 0. Figure 10 shows the result of the VISA algorithm
in the AGV task, averaged over 100 trials. In this
case, VISA reduces the number of state-action pairs
from 450,000 to approximately 16,000. VISA decom-
poses the task in roughly 6 seconds and learning con-
verges after 20 seconds. In comparison, SPI ran out of
memory after 3 hours. It takes sSRTDP 4 minutes to
compute complete action ADDs, and each subsequent
iteration takes 20-60 seconds. The shortest solution
path requires 89 actions, and sRTDP performs one it-
eration per action, so it takes SRTDP more than half
an hour to complete the task once, let alone converge.

5. Conclusion

We have presented VISA, an algorithm that dynami-
cally decomposes a factored MDP when a DBN model

15r B

Average reward

—VISA
SRTDP_reach
i N

0 2 4 6 8 10 12
x10*

Time (ms)

Figure 9. Results in the Factory task

of the MDP is given. The VISA algorithm determines
one-way causal relationships between state variables
and identifies exits that cause the value of state vari-
ables to change. For each exit, VISA uses sophisticated
tree manipulations to construct an associated exit op-
tion, i.e., an option that executes an additional action
following successful termination. Instead of learning a
policy for the original MDP, VISA constructs a solu-
tion by learning the policies of the exit options. Be-
cause of causality, the policies of the exit options are
significantly easier to learn than the policy of the orig-
inal MDP, reducing complexity.

We compared the VISA algorithm to two other algo-
rithms that also assume that a DBN model of the MDP
is given. In smaller tasks, the advantage of VISA algo-
rithm is not apparent, but as the size of a task grows,
the decomposition identified by VISA provides a sig-
nificant reduction in learning time.

It is not realistic to assume that a DBN model of a
factored MDP is always given prior to learning. An
important research topic is to devise algorithms for
learning the DBN model from experience. There exist
algorithms in the literature for learning DBNs from
experience. However, these algorithms usually fix the
values of a subset of the variables in order to deter-
mine variable correlations. Unless there is a genera-
tive model, it is not possible to fix the values of state
variables in an MDP. In other words, we believe that
algorithms for learning DBN models of factored MDPs
have to take into account the specific nature of MDPs.

We would also like to determine bounds on the quality
of the approximation when there are common ances-
tor SCCs in the component graph. In other words, we

A Causal Approach to Hierarchical Decomposition of Factored MDPs

x 10~

Average reward
IS

L L L L L
0 1 2 3 4 5 6

Time (ms)

Figure 10. Result of the VISA algorithm in the AGV task

would like to determine the tradeoff between the re-
duction in complexity and the loss of optimality. This
sort of analysis may help us decide when to reduce the
size of an option SMDP and when to maintain a larger
size that preserves a higher degree of optimality.

Finally, we are working on a method for construct-
ing a DBN model of each exit option, similar to the
DBN model of individual actions. We hope to be able
to construct DBN models for the options without ex-
haustively enumerating all states. If successful, it will
be possible to apply planning algorithms, such as pol-
icy iteration, to learn the policies of the options, in
addition to reinforcement learning.

Acknowledgements

The authors would like to thank Alicia “Pippin” Wolfe
and Mohammad Ghavamzadeh for useful comments on
this paper. This work was partially funded by NSF
grants ECS-0218125 and CCF-0432143.

References

Boutilier, C., Dearden, R., & Goldszmidt, M. (1995)
Exploiting structure in policy construction. IJCAI,
14: 1104-1113.

Dean, T., & Kanazawa, K. (1989) A model for reason-
ing about persistence and causation. Computational
Intelligence, 5(3): 142-150.

Dietterich, T. (2000). Hierarchical reinforcement
learning with the MAXQ value function decomposi-

tion. Journal of Artificial Intelligence Research, 13:
227-303.

Digney, B. (1996) Emergent hierarchical control struc-
tures: Learning reactive/hierarchical relationships
in reinforcement environments. From animals to an-
imats, 4: 363-372.

Feng, Z., Hansen, E., & Zilberstein, Z. (2003) Symbolic
generalization for on-line planning. UAI 19: 209-
216.

Ghavamzadeh, M., & Mahadevan, S. (2001) Con-
tinuous-time hierarchical reinforcement learning.

ICML, 18: 186-193.

Guestrin, C., Koller, D., & Parr, R. (2001) Max-norm
projections for factored MDPs. IJCAI 17: 673—680.

Helmert, M. (2004) A planning heuristic based on
causal graph analysis. ICAPS, 16: 161-170.

Hengst, B. (2002) Discovering hierarchy in reinforce-
ment learning with HEXQ. ICML, 19: 243-250.

Hoey, J., St-Aubin, R., Hu, A., & Boutilier, C. (1999)
SPUDD: Stochastic Planning using Decision Dia-
grams. UAI 15: 279-288.

Kearns, M., & Koller, D. (1999) Efficient reinforce-
ment learning in factored MDPs. [JCAI 16: 740—
747.

Mannor, S., Menache, 1., Hoze, A., & Klein, U. (2004)
Dynamic abstraction in reinforcement learning via

clustering. ICML, 21: 560-567.

McGovern, A., & Barto, A. (2001) Automatic discov-
ery of subgoals in reinforcement learning using di-
verse density. ICML, 18: 361-368.

Menache, I., Mannor, S., & Shimkin, N. (2002) Q-Cut
— Dynamic discovery of sub-goals in reinforcement
learning. ECML, 14: 295-306.

Parr, R., & Russell, S. (1998) Reinforcement learning
with hierarchies of machines. NIPS, 10: 1043-1049.

Pickett, M., & Barto, A. (2002) PolicyBlocks: An al-
gorithm for creating useful macro-actions in rein-
forcement learning. ICML, 19: 506-513.

Simsek, O., & Barto, A. (2004) Using relative novelty
to identify useful temporal abstractions in reinforce-
ment learning. ICML, 21: 751-758.

Sutton, R., Precup, D., & Singh, S. (1999) Between
MDPs and semi-MDPs: A framework for temporal
abstraction in reinforcement learning. Artificial In-
telligence, 112: 181-211.

Thrun, S., & Schwartz, A. (1995) Finding structure in
reinforcement learning. NIPS, 8: 385-392.

