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Abstract

The use of Bayesian networks for classifi-
cation problems has received significant re-
cent attention. Although computationally
efficient, the standard maximum likelihood
learning method tends to be suboptimal due
to the mismatch between its optimization cri-
teria (data likelihood) and the actual goal
for classification (label prediction). Recent
approaches to optimizing the classification
performance during parameter or structure
learning show promise, but lack the favor-
able computational properties of maximum
likelihood learning. In this paper we present
the Boosted Augmented Naive Bayes (BAN)
classifier. We show that a combination of dis-
criminative data-weighting with generative
training of intermediate models can yield a
computationally efficient method for discrim-
inative parameter learning and structure se-
lection.

1. Introduction

A Bayesian network is an annotated directed graph
that encodes the probabilistic relationships among
variables of interest. Its modularity and intuitive
graphical representation make it an attractive model
for real world problems. A Bayesian network classi-
fier (Friedman et al., 1997) computes the posterior of
class given an instance of the attributes and predicts
the class with the highest posterior probability.
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As a special case of Bayesian networks, the naive Bayes
classifier has received significant amount of attention
for its simplicity and surprisingly good performance.
However, the standard maximum likelihood param-
eter learning for naive Bayes classifiers tends to be
suboptimal (Friedman et al., 1997). It optimizes the
joint likelihood, rather than the conditional likelihood,
a score more closely related to the classification task.
The ELR algorithm (Greiner & Zhou, 2002) discrim-
inatively trains the parameters of Bayesian network
using gradient descent and line search. Although ELR
algorithm tends to outperform its generative counter-
parts, it is computationally demanding and not prac-
tical in the presence of a large attribute space.

Under the correct model structure, the parameters
that maximize the likelihood also maximize the con-
ditional likelihood. For this reason, structure learn-
ing can potentially be used to improve the classifi-
cation accuracy. However, learning an unrestricted
Bayesian network fails to outperform naive Bayes on
a large sample of benchmark data (Friedman et al.,
1997) due to the generative structure evaluation func-
tion. Instead, Friedman et al. proposed Tree Aug-
mented Naive Bayes (TAN), a structure learning algo-
rithm that learns a maximum spanning tree from the
attributes, but retains naive Bayes model as a part of
its structure to bias towards the estimation of condi-
tional distribution. BNC-2P (Grossman & Domingos,
2004), on the other hand, is a heuristic structure learn-
ing method with a discriminative scoring function. Al-
though the structures in TAN and BNC-2P are se-
lected discriminatively, the parameters are trained via
ML training for computational efficiency.

Grossman et al. (Grossman & Domingos, 2004) also
explored the idea of combining parameter optimiza-
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tion with structure optimization. However, their ex-
periments showed that, at least in small to medium
sample size cases, combined optimization did not sig-
nificantly improve the classification accuracy to justify
the additional computational cost of gradient descent
parameter learning.

In this work we propose the Boosted Augmented Naive
Bayes classifier, and demonstrate that it is possible
to efficiently combine discriminative structure learn-
ing with parameter learning to improve the classifica-
tion accuracy. By constructing an ensemble Bayesian
network classifier that greedily maximizes the con-
ditional likelihood, discriminative parameter learning
takes time linear in the number of attributes. Com-
bined with an efficient TAN-like structure search al-
gorithm to discriminatively select additional edges to
naive Bayes, BAN outperforms naive Bayes, TAN,
BNC-MDL, BNC-2P on a large suite of benchmark
datasets. We also demonstrate that BAN is less expen-
sive computationally than many alternative methods
with competitive classification performance.

2. Bayesian Network Classifier

A Bayesian network B is a directed acyclic graph
that encodes a joint probability distribution over a
set of random variables X = {X;, Xo,..., Xy} Tt
is defined by the pair B = {G,0}. G is the struc-
ture of the Bayesian network. 6 is the vector of
parameters that quantifies the probabilistic model.
B represents a joint distribution Pg(X), factored
over the structure of the network where Pp(X) =

N N
'H1 Pp(Xi|Pa(X;)) = 'H1 Ox,|Pa(x,)- We set 0, pa(z))
i= i=
equal to Pp(x;|Pa(z;)) for each possible value of X
and Pa(X;)!. For notational simplicity, we define
a one-to-one relationship between the parameter 6
and the entries in the local Conditional Probability
Table. Given a set of ii.d. training data D =
{zt, 2%, 23,... 2™}, the goal of learning a Bayesian
network B is to find a {G,0} that accurately mod-
els the distribution of the data. The selection of 6 is
known as parameter learning and the selection of G is
known as structure learning.

The goal of a Bayesian network classifier is to correctly

!We use capital letters to represent random variable(s)
and lowercase letters to represent their corresponding in-
stantiations. Subscripts are used as variable indices and
superscripts are used to index the training data. Pa(X;)
represents the parent node of X; and Pa’(X;) is the jth
instantiation of Pa(X;) in the training data. In this pa-
per, we assume all of the variables are discrete and fully
observed in the training data.

predict the label for class variable X, € X given a
vector of attributes X, = X\ X.. A Bayesian network
classifier represents a model of the joint distribution
P(X,.,X,) and converts it to conditional distribution
P(X.|X,). Class label predictions can be obtained by
applying an estimator such as MAP to the conditional
distribution.

3. Parameter Learning

The Maximum Likelihood (ML) method is one of the
most commonly used parameter learning techniques.
It chooses the parameter values that maximize the Log
Likelihood (LL) score, a measure of how well the model
represents the data. Given a set of training data D
with M samples and a Bayesian Network structure G
with N nodes, the LL score is decomposed as:

M M N
LLG(0|D) = > log Py(D*) =Y ) "log Ot Pa(ay-
i=1 i=1 j=1
(1)

LLs(0]D) is maximized by simply setting each param-
eter 0, pa(a;) tO 13D(:17j|Pa(xj)), the empirical distri-
bution of the data D. For this reason, ML parameter
learning is computationally efficient and very fast in
practice.

However, the goal of a classifier is to accurately pre-
dict the label given the attributes, a function that
is directly tied to the estimation of the conditional
likelihood. Instead of maximizing the LL score, we
would prefer to maximize the Conditional Log Like-
lihood (CLL) score. As pointed out in (Friedman
et al., 1997), the LL score factors as LLg(0|D) =

M
CLLG(0|D) + 3 log Py(x)), where
i=1

M
CLLG(0|D) = > logPy(x/|z)) (2)
i=1
= M Z P (2e15) log Py(x.]a5) (3)
xq € Xg
T € Xe

Equation 3 is maximized when Py(z.|2,) = Po(2|2s).
However, for generative model such as Bayesian net-
work, Py(x.|z,) can not be expressed as a function of
model parameters in log linear form, thus it does not
have closed a form solution. A direct optimization ap-
proach requires computationally expensive numerical
techniques. For example, the ELR method of (Greiner
& Zhou, 2002) uses gradient descent and line search
to directly maximize the CLL score. However, this
approach is unattractive in the presence of a large fea-
ture space, especially when used in conjunction with
structure learning.
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Table 1. Boosted Parameter learning algorithm.

1. Given a base structure G and the training data D, where M is the number of training cases. D =
{xta) x22? . aMaMy and 2. € {-1,1}.
2. Initialize training data weights with w; =1/M,i=1,2,....M
3. Repeat for k=1,2,...
e Given G, 0 is learned through ML parameter learning on the weighted data Dj.
e Compute the weighted error, erry = E,, [].mc;ﬁfek (z))> Br = 0.51log 1e:;1:k
e Update weights w; = w; exp{—LBrx fg. ()} and normalize.
4. Ensemble output: sign >, Bifg, (za)
4. Boosted Parameter Learning classifier via the following loss function.
4.1. Ensemble Model 0 forz<0

Instead of maximizing the CLL score for a single
Bayesian network model, we are going to take the en-
semble approach and maximize the classification per-
formance of the ensemble Bayesian network classifier.

Given the class xz. and the attributes z,, an en-
semble model has the general form: F, (2,) =
Z,[f:l B [, (%), where fi 4. (7,) is the classifier con-
fidence on selecting label =z, given z,, and [y is
its corresponding weight. In the case where z, €
{—1,1}, frz () is typically defined as the following:
Sz (@) = e fr(2a), where f(z,) is the output of each
classifier given xz,. The conditional probability distri-
bution given the additive model F' can be expressed
as:

exp{Fs, (7a) }

PF($C|$a) = . (4)
ng,eXC eXP{FmC/ (7a)}

In binary classification, Equation 4 is then updated as:

expi . F'(z,

Pl Dl F (5a)}
exp{F'(za)} + exp{—F(za)}
1

T T+exp{—2zF(z)} 5)

Similar to Equation 3, the negative CLL score for the
ensemble Bayesian network classifier can be defined as:

—CLLp(F|D) = ZlogPF D) (6)

=1

~ 1
= M Pp(x.x,)1 7
;{ D($$) o8 PF(xc‘xa )
meXe

4.2. Exponential Loss Function as an upper
bound on the negative CLL score

As an alternative to the CLL score, we are proposing
to minimize the classification error for binary ensemble

M .
Lossp = E (- %)), 0(z) = {
i=1

1 otherwise

(8)
Lossp is simply the number of incorrectly predicted
class labels in the training data. An upper bound on
Equation 8 is given by the following exponential loss
function (Friedman et al., 2000):

M

ELFy = Zexp{—fo(a:j)} 9)

i=1

Solving for z.F'(x,) in Equation 5 and combining with
Equation 9, we have

1 — Pp(zf|z?)
ELFr = exp { log ———<-2~ 10
Z PG ) 7

M
= e 1T
~ 1
= M Pp(zexy)y | =—— — 111
; o(eeta)\| priagay 10V
xc € Xe

Equation 11 simply leads to a loss function that uses
the square root of the inverse conditional distribution
of the true training sequence, which can be readily
proven as an upper bound for negative CLL score in
Equation 7.

4.3. Boosted Parameter Learning

An ensemble Bayesian network classifier takes the form
Fp,3 where 6 is a collection of parameters in the
Bayesian network model and (§ is the vector of hy-
pothesis weights. We want to minimize ELFg g of the
ensemble Bayesian network classifier as an alternative
way to maximize the CLL score. We used Discrete
AdaBoost algorithm, which is proven to greedily and
approximately minimize the exponential loss function
in Equation 9 (Friedman et al., 2000).
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At each iteration of boosting, the weighted data
uniquely determines the parameters for each Bayesian
network classifier 85, and hypothesis weights G via effi-
cient ML parameter learning. The algorithm is shown
in Table 1.

There is no guarantee that AdaBoost will find the
global minimum of the ELF. In spite of these issues,
boosted classifiers tend to produce excellent results in
practice. Boosted Naive Bayes (BNB) has been pre-
vious shown to improve the classification accuracy of
naive Bayes (Elkan, 1997) (Ridgeway et al., 1998). In
the next section, we demonstrate that BNB outper-
forms naive Bayes and TAN on a large set of bench-
mark data.

4.4. Computational Complexity of BNB

Given a naive Bayesian network with N attributes and
training data with M samples, the ML training com-
plexity is O(N M), optimal when every attribute is ob-
served and used for classification. Parameter boosting
on naive Bayes takes O(NMT) where T is the number
of iterations of boosting. In our experiments, boost-
ing seems to give a good performance with a constant
number (10-30) of iterations regardless of the number
of attributes. Therefore, the training complexity for
BNB is essentially O(NM). This is consistent with the
finding of Elkan (Elkan, 1997). In comparison to the
ELR algorithm which uses gradient descent to maxi-
mize CLL score, BNB is efficient to train and simple
to implement.

4.5. Experiments

We evaluated the performance of BNB on 23 datasets
from the UCI repository (Blake & Merz, 1998) and
two artificial data sets, Corral and Mofn, designed by
John and Kohavi. The code is written on top of the
BNT toolkit by Kevin Murphy. For binary classifica-
tion, we used Discrete AdaBoost for parameter boost-
ing, for multi-class problem, we used AdaBoost.MH.
Table 3 in Page 7 lists the average testing error for
BNB and other Bayesian network classifiers including
our novel algorithm BAN, which is introduced in Sec-
tion 5. Figure 1(a) to 1(d) presents the average testing
errors and their corresponding one-standard-deviation
bars for competing Bayesian network classifiers. In
Figure 1, points above the line y = x correspond to
data sets for which BNB outperforms the competing
algorithm. The average testing error is shown in the
caption. We applied pairwise t-test on the 25 pairs
of average testing errors for competing algorithms to
obtain confidence scores.

Figure 1(a) and 1(b) show that BNB has lower average

. e

015, 015t +
01 % 0.1,

L~

0 0.1 02 03 0.4 05 0 0.1 0.2 03 0.4 05
BNB BNB

(a) BNB vs NB (b) BNB vs TAN

(c) BNB vs BNC-2P (d) BNB vs ELR-NB
Figure 1. Scatter plots for experiments on 25 sets of UCI
and artificial benchmark data. The average testing er-
ror for each methods are: BNB (0.151), NB (0.173), TAN
(0.184), BNC-2P (0.164), ELR-NB(0.161)

testing error than NB (p < 0.02) and TAN (p < 0.02).
Also, we find BNB to slightly outperform the BNC-2P
discriminative structure learning algorithm on average
testing error (p < 0.04).

We also compared BNB to ELR-NB, a naive Bayes
trained using ELR algorithm. The performance scores
for ELR-NB were taken from the auxiliary material
published online with (Greiner & Zhou, 2002). From
the graph, it is reasonable to conclude that BNB is
comparable with ELR-NB on this set of benchmark
data. However, BNB has computational complexity
asymptotically equivalent to naive Bayes, making it
an efficient and simple alternative to ELR-NB.

Given the excellent performance of BNB, it is natu-
ral to ask whether it could be combined with struc-
ture learning to further improve the classification per-
formance. In the next section, we introduce BAN, a
novel and efficient discriminative structure learning al-
gorithm.

5. Boosted Augmented Naive Bayes

Though the training complexity of parameter boost-
ing is within a constant factor of ML learning, com-
bining parameter boosting with exhaustive structure
search is still impractical. FEven with constrained
search space, hill-climbing (Heckerman, 1999) search
and K-2 (Cooper & Herskovits, 1992) algorithm could
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Table 2. Boosted Augmented Naive Bayes.

1. Given the training data D with N attributes, construct a TAN structure, Gran-.
2. Initially set Ggan = naive Bayes, CLLpest = — inf.

3. Fork=1to N -1

e Parameter boosting using Gpan as base structure.

e Evaluate the CLL score for the current Ggan, terminate if the new CLL score is less than CLLypes;.

e clse, update CLLps;. Remove the edge {X,, Xaj} containing the largest conditional mutual information
I,(Xa;; Xa,|Xc) from Gran and add it to Gpan-.
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Figure 2. Test error on simulated experiment. We varied the number of nodes in the chain-structure Bayesian network and
their parameter values to generate different distributions (25 sets). Each point in the graph represents the classification
accuracy for one particular model distribution. BNB and BAN outperforms NB in 19 out of the 25 simulated datasets.
In the remaining 6 datasets, the suboptimal posterior estimation by naive Bayes did not result in label prediction error.

still search through a high order polynomial number
of structures. On the other hand, Tree Augmented
Bayesian Network (TAN) (Friedman et al., 1997), an
extension of work by (Chow & Liu, 1968), supports ef-
ficient learning by limiting the number of parents per
attribute to two. TAN augments a standard NB clas-
sifier by adding up to N — 1 additional edges between
attributes. The additional edges are constructed from
a maximal weighted spanning tree with attributes as
vertices. The weights are defined as the conditional
mutual information between two attributes X, , Xo;
given the class node X.. TAN learning algorithm con-
structs the optimal tree-augmented network Br that
maximizes LL(Br|D). However, the TAN model adds
a fixed number of edges regardless of the distribution
of the training data. If we can find a simpler model to
describe the underlying conditional distribution, then
there is usually less chance of over-fitting.

Our BAN learning algorithm extends the TAN ap-
proach using parameter boosting. Starting from a
naive Bayes, at iteration k, BAN greedily augments
the naive Bayes with k£ edges with the highest con-
ditional mutual information from TAN. We call the
resulting structure BAN*. We then maximize the
CLL score of ensemble BANY* classifier with param-
eter boosting. BAN terminates when the added edge

does not improve the CLL score. Since TAN contains
N —1 augmenting edges, BAN in worst case evaluates
N — 1 structures. However, BAN usually terminates
after adding 0 to 5 edges into naive Bayes. Therefore,
BAN learning algorithm is very efficient.

The algorithm is shown in Table 2. The calculation
of CLL score at each iteration can be also done on
hold-out set when the number of training samples is
sufficient. The step 1 in BAN algorithm has computa-
tional complexity of O(N2?M), where N is the num-
ber of attributes and M is the amount of training
data (Friedman et al., 1997). Since we only add a
maximum of N — 1 edges into the network, step 2-4
has worst case complexity of O(N2M). Thus BAN has
O(N?M) complexity.

BAN learning algorithm searches and evaluates only a
small number of structures, much less than competing
algorithms like BNC-2P and BNC-MDL. As a result,
the base Bayesian network structure constructed from
BAN contains fewer edges than other competing struc-
ture learning algorithms.
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Figure 3. Scatter plots for experiments on 25 benchmark UCI and artificial datasets.

6. Experiments
6.1. Experiment on simulated data

We show that when the structure is incorrect, BNB
and BAN algorithm can significantly outperform their
generative counterparts. We generated a collection
of data from binary chain-structured Bayesian net-
work where Pa(X;) = {X;_1}. The class node X;
is the root of the chain. We varied the number of at-
tributes and conditional probability tables to generate
datasets with different posterior distribution. Since
the attributes are highly correlated, naive Bayes can
sometimes give a suboptimal classification boundary.

We present the average testing error with its one-
standard-deviation bar in Figure 2. Figure 2(a)
and 2(b) show that BNB and BAN outperforms NB
with (p < 0.005). We want to point out that in 6 out
of the 25 datasets, the suboptimal posterior estimation
by naive Bayes did not result in label prediction error.
In those datasets, NB, BNB and BAN have similar
testing error.

As shown in Figure 2(c), the average testing error for
BNB is only slightly higher than that of BAN. This
is largely because BNB achieved optimal Bayes error
in 20 out of the 25 datasets due to the simplicity of
our true model. BAN has comparable testing accu-
racy with BNB in those 20 datasets and has lower
average testing error (difference of 2%) than BNB in

the remaining 5 datasets. In those datasets, BAN se-
lected edges that corresponds to the true model struc-
ture (between adjacent attributes). Next section will
show that in real-world datasets, where attributes of-
ten have complex and strong dependence relationship,
BAN outperforms BNB by exploring the structures in
the problem domain.

Figure 2(d) shows the decrease in negative CLL score
and testing error in each iteration of parameter boost-
ing. In this dataset, BNB achieves the optimal Bayes
error after 8 iterations but the negative CLL score con-
tinues to decrease.

6.2. Experiments on UCI datasets

We used the same UCI datasets and evaluation pro-
cedures as in Section 4.5 to compare the accuracy of
BAN with competing algorithms. We did our own ex-
periments on BAN, BNB, BNC-2P and TAN, and used
the performance results for BNC-MDL, ELR, C4.5 and
HGC from (Grossman & Domingos, 2004) (Greiner &
Zhou, 2002). HGC (Heckerman, 1999) is a genera-
tively trained unrestricted Bayesian network. ELR-
NB and ELR-TAN are Bayesian network learned us-
ing the ELR algorithm. The scatter plots are shown
in Figure 3 and the average testing error is shown in
Table 3.

Figure 3(a) and 3(b) show that the average testing er-
ror for BAN algorithm is significantly lower than naive
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Table 3. Testing error for 25 UCI datasets

Name BAN BNB TAN NB BNC;pr BNCuypr ELRyg ELRrany C4.5 HGC
australian 1812 1609  .1855  .1368 1768 .1405 .1488 1723 1510 .1445
breast .0513  .0549 .0312  .0200 .0330 .0518 .0339 .0351 .0610  .0245
chess .0253  .0640 .0753 .1180 .0428 .0450 .0600 .0375 .0050  .0469
cleve 1758 0 1995 2095 1825 .2095 .2563 .1660 .0375 2060 .2129
corral .0000 .0538 .0468 .1412 .0314 .0000 1273 .0771 .0150  .0000
crx 1684  .1408  .1669  .1347 .1684 1397 .1505 .1603 1390 .1308
diabetes 2438 2675 .2903  .2974 .2553 .2569 .2419 .2384 2590  .2569
flare 1698 1848 1679 1707 1726 1776 .1803 .1780 1730 1776
german 2510 .2580  .2980  .3000 .2910 2977 .2456 .2409 2710 .2748
glass 3175 3221 3456 .3268 .3535 .6884 4220 .5018 4070 .6884
glasss2 2023 2083 .2269  .2087 .2269 4701 .1938 .2249 2390 4701
heart 1556 .1593 1371 1741 .1667 4635 .1550 1847 2180  .1484
hepatitis 1125 1250 .1750  .1500 1250 1877 1294 .1302 1750 1877
iris .0533  .0533 .0800 .0667 .0733 .0563 .0485 .0763 .0400  .0427
letter 1433 2076 .1511  .2520 1712 .3530 .3068 1752 1220 .3092
lymphography | .2078  .2097  .3453 .1452 2775 2794 .1470 1784 2160 .3624
mofn-3-7-10 .0000  .0000  .0830 .1357 .0908 1328 1367 .0000 1600 .1328
pima 2427 2394 2916  .2737 .2606 .2569 .2505 .2384 2590 .2569
satimage 1543 1712 1374 1920 1795 .2220 .1730 .1420 1770 2710
segment .0415  .0510 .1364 .0740 .0500 .1364 .0701 .0571 .0820  .1130
shuttle-small .0113  .0052 .0108 .0142 .0102 .0186 .0083 .0052 .0060  .1349
soybean-large .0758  .0704  .3451 .0885 .0746 3373 .0920 .0663 .0890  .6466
vehicle 3276 3246 .3154 4573 .3452 .4478 .3453 2727 3170 .5077
vote .0552  .0552  .0851 .0966 .0621 .0420 .0370 .0487 .0530  .0463
waveform 1630  .1785  .2566  .1795 .2516 .3281 1772 .2534 3490  .4345
Average 1412 1506 1837 1734 .1640 2314 1613 .1554 1676 .2409

Bayes (p < 0.01) and TAN (p < 0.01). BAN also out-
performs BNC-2P (p < 0.005) in Figure 3(d). We did
not have access to variance data for BNC-MDL, HGC
and C4.5. As shown in Figure 3(c) 3(g) and Table 3,
BAN has comparable classification accuracy as ELR-
NB and ELR-TAN.

As shown in Figure 3(e), the average testing errors
for BAN and BNB are 0.141 and 0.151 respectively.
This difference is significant with confidence p < 0.029.
BAN has lower average testing error (difference of 0.5%
- 5%) than BNB in 16 out of the 25 datasets. BNB
is better in 6 (difference of 0.5% - 2%) and they tie
in 3. Since BAN generalizes BNB, in several datasets
(MOFN, IRIS), the structure chosen by BAN is very
similar to BNB (with 0 and 1 augmented edges). BAN
is more beneficial in datasets where the conditional
dependencies among attributes are strong and complex
(CORRAL). This is an interesting result since it shows
that combining discriminative structure learning with
parameter optimization seems to improve classification
accuracy.

7. Discussion and Related Work

The above experiments demonstrated that boosted pa-
rameter optimization in conjunction with greedy struc-
ture optimization can improve the classification perfor-
mance. It is interesting to note that unlike the experi-

mental results in combining ELR with structure learn-
ing (Grossman & Domingos, 2004), we find significant
benefit in combining parameter boosting with struc-
ture learning. We would like to investigate the exact
explanation for the benefit in our future research.

We attribute the success of our approach to the fol-
lowing reasons. First, BAN takes advantage of Ad-
aBoost’s resistance to over-fitting (Schapire & Singer,
1998) and the variance reduction and bias reduction
property of the ensemble classifiers (Webb & Zheng,
2004). Also, as a result of the parameter boosting,
the base Bayesian network classifier constructed by
BAN is simpler than BNC-2P and TAN. In our ex-
periments, BAN adds 0 to 5 edges to the naive Bayes
while BNC-2P typically adds 4 to 16 edges. If both
Bayesian networks model the underlying conditional
distribution equally well, a simpler structure is usually
preferred over a more densely connected one. We be-
lieve that the primary advantage of boosted parameter
learning is its simplicity and computational efficiency,
coupled with its good performance in practice. Its use
of weighted maximum likelihood parameter learning
uniquely determines the parameters of the Bayesian
network, providing an efficient mechanism for discrim-
inative training.

Elkan (Elkan, 1997) demonstrated the excellent clas-
sification performance of boosted Naive Bayes and its
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efficient training mechanism. We build on this work
by extending the use of boosting to structure learn-
ing. We also include a more thorough comparison
between BNB and competing methods. Greiner and
Zhou (Greiner & Zhou, 2002) proposed ELR algorithm
to directly maximize the CLL score of Bayesian net-
work via gradient descent and line search. Therefore
ELR-NB is essentially a logistic regression model. Ng
and Jordan (Ng & Jordan, 2002) compared the clas-
sification performance of naive Bayes and logistic re-
gression and demonstrated that naive Bayes usually
performs better in very small sample data. However
for the size of dataset typically collected from real
world problems, their results and those of (Grossman
& Domingos, 2004) all support our observation that
discriminative training methods are preferred. (Webb
et al., 2005) uses ensemble techniques (AODE model)
to discriminatively improve naive Bayes by averaging
a class of 1-dependence models. BAN differs from
AODE work by using a fixed structure for each classi-
fier and uses AdaBoost to train the ensemble.

8. Conclusion and Future work

This paper showed that an effective Bayesian network
classifier can be constructed by parameter boosting
coupled with discriminative structure learning. We
demonstrated that the resulting classifier BAN is easy
to implement, efficient to train and in our experiments
outperforms naive Bayes, TAN, HGC, BNC-2P and
BNC-MDL. In future work, we plan to apply BAN
to a wider range of classification problems, investigate
further the reasons behind BAN’s excellent classifica-
tion performance and extend this work to other gen-
erative models, including Dynamic Bayesian network
and Markov models.
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