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Abstract  

How to assign appropriate weights to terms is 
one of the critical issues in information retrieval. 
Many term weighting schemes are unsupervised. 
They are either based on the empirical 
observation in information retrieval, or based on 
generative approaches for language modeling. 
As a result, the existing term weighting schemes 
are usually insufficient in distinguishing 
informative words from the uninformative ones, 
which is crucial to the performance of 
information retrieval. In this paper, we present 
supervised term weighting schemes that 
automatically learn term weights based on the 
correlation between word frequency and 
category information of documents. Empirical 
studies with the ImageCLEF dataset have 
indicated that the proposed methods perform 
substantially better than the state-of-the-art 
approaches for term weighting and other 
alternatives that exploit category information for 
information retrieval. 

1.  Introduction 

Previous studies of information retrieval (Croft and 
Harper, 1979; Robertson et al., 1981; Salton and Buckley, 
1988; Fuhr, 1992; Robertson et al., 1996; Singhal et al., 
1996; Ponte, 1998; Miller et al., 1999; Robertson et al., 
2000; Zhai and Lafferty, 2001) have shown that 
appropriate term weights are crucial to the performance of 
information retrieval systems. Sophisticated term 
weighting schemas, such as the Okapi formula, usually 
result in substantially better performance than the simple 
method that treats every term occurrence equally. In 
general, the current state-of-art term weighting methods 
can be divided into two categories: 
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1) The TF.IDF based term weighting methods 
(Robertson et al., 1981; Salton and Buckley, 1988; 
Robertson et al., 1996; Singhal et al., 1996). Most 
methods under this family are based on intuition and 
empirical observation. For example, the inverse 
document frequency (i.e., idf) weight is based on the 
intuition that words appearing infrequently in a 
collection tend to be more informative than the words 
that appear frequently across many documents. 
However, very often, this intuition is violated. For 
instance, typos tend to appear rarely across a 
collection but they are uninformative to the content 
of documents.  

2) The language modeling approaches (Ponte, 1998; 
Ponte and Croft, 1998; Miller et al., 1999; Lafferty 
and Zhai, 2001; Zhai and Lafferty, 2001; Jin et al., 
2002; Zhai and Lafferty, 2002). These approaches 
assume that documents are generated by simple 
statistical language models, which are estimated by 
the maximum likelihood estimation (MLE) combined 
with smoothing techniques. However, due to the 
generative nature of language modeling approaches, 
they usually lack of discriminative power in 
distinguishing informative words from uninformative 
ones. In fact, their limited discriminative power 
comes from the smoothing technique, not from the 
generative model itself. 

The essential difficulty with determining term weights is 
the lack of supervision. Usually, term weights are only 
determined by term frequency across documents, which 
may not reflect the informativeness of terms. Some 
additional information (e.g., category information) 
associated with documents, on the other hand, can serve 
as “guidance” in determining which terms are more 
informative than the others. In fact, we can find such meta 
information along with documents in many collections 
(e.g., library collections). How to effectively utilize such 
information to improve term weighting becomes an 
important question. In this paper, we present two novel 
approaches that automatically learn term weights by 
incorporating the category information of documents. We 
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assume that the semantic meaning of a document can be 
represented, at least partially, by the set of categories that 
it belongs to. Thus, by measuring the similarity in 
category labels assigned to two documents, we will be 
able to tell content wise how similar they are. To 
distinguish important terms from common terms, we will 
search for term weights so that the term-based document 
similarities are consistent with the similarities that are 
computed from the category information of documents. 
Unlike inverse document frequency and language 
modeling approaches, where term weights are determined 
in an unsupervised manner, our approaches learn term 
weights under the guidance of category information. 
Notice that our work is different from text categorization 
problems, in which term weights are learned to determine 
if a document belongs to a specific category. In particular, 
term weights learned in text categorization are category 
dependent. A different category can result in a completely 
set of term weights. In contrast, term weights in 
information retrieval is independent from target categories 
and should reflect the overall informativeness of words to 
the content of documents. 

The rest of this paper is organized as follows: Section 2 
discusses the related work; Section 3 describes the 
proposed algorithm; Empirical studies are presented in 
Section 4; Section 5 concludes this paper with the future 
work. 

2.  Related Work 

In the following subsections, we briefly review the two 
types of approaches for term weighting, namely the tf.idf 
based approaches and the language model based 
approaches, separately. 

2.1  TF.IDF Based Term Weighting Methods 

Most term weighting schemes within this family contain 
three factors: the term frequency factor (i.e., tf), the 
inverse document frequency factor (i.e., idf), and the term 
normalization factor (i.e., norm). The final term weight is 
the product of these three factors. Numerous term 
weighting schemas have been developed within the 
TF.IDF family (Robertson et al., 1981; Salton and 
Buckley, 1988; Robertson et al., 1996; Singhal et al., 
1996). Among them, the Okapi formula (Robertson et al., 
1996) is one of the most popular term weighting methods. 
It defines the similarity between a document d and a given 
query q as follows: 

 

where f(t,q) and f(t,d) are the term frequency for word ‘t’ 
in query q and document d. N is the total number of 
documents in the collection, N(t) is the number of 
documents in the collection that have word ‘t’. Both k and 
b are parameters. 

The most noticeable feature of the Okapi term weighting 

schema is ( )( , ) ( , ) 1
_

doclen dkf t d f t d k b b
avg doclen

⎧ ⎫⎛ ⎞⎪ ⎪+ − +⎨ ⎬⎜ ⎟
⎪ ⎪⎝ ⎠⎩ ⎭

. 

It is based on the intuition that the first occurrence of a 
query word in a document is usually more important than 
other occurrences in determining the relevance of a 
document to a given query. Furthermore, the Okapi 
formula employs the pivoted normalization factor 

( )1
_

doclen db b
avg doclen

− + , which has been shown effective 

for information retrieval (Robertson et al., 1996; Singhal 
et al., 1996). The two parameters (k, d) in the Okapi 
formula are determined empirically. In our experiment, 
we set them to be 2 and 0.75, which are the typical values 
used in previous studies (Robertson et al., 1996). 

2.2  Language Model based Term Weighting Methods 

Recently, language modeling approaches have shown 
promising performance in information retrieval (Ponte, 
1998; Ponte and Croft, 1998; Miller et al., 1999; Lafferty 
and Zhai, 2001; Zhai and Lafferty, 2001; Jin et al., 2002; 
Zhai and Lafferty, 2002). To determine the relevance of a 
document d to a given query q, the language modeling 
approaches estimate the conditional probability ( | )p q d , 
which is the likelihood of generating query q given the 
content of document d. By assuming that each query word 
is generated independently, this likelihood is simply 
computed as: ( | ) ( | )w qp q d p w d∈∝ ∏  where ( | )p w d is 

the unigram probability for document d.  

The key to language modeling approaches is how to 
estimate the unigram probabilities { ( | )}p w d  for a 
document d. A simple approach that estimates unigram 
probabilities based on word occurrence will suffer 
severely from the sparse data problem. In particular, it 
assigns zero probability to any words that do not appear in 
a document. Thus, a smoothing technique is usually used 
in estimating language models. Smoothing techniques are 
critical to information retrieval in that they equip 
language modeling approaches with the discriminative 
power in distinguishing informative words from 
uninformative words. Take the Jelinek-Mercer (JM) 
smoothing as an example. Let { ( | )}p w c  be the unigram 
probabilities estimated from a collection of documents. 
Using the JM smoothing, ( | )p w d  is estimated as: 

 ( , )( | ) ( | ) 1
( | )

f w dp w d p w c
d p w c

α α
⎛ ⎞

= − +⎜ ⎟⎜ ⎟
⎝ ⎠

 

( , )

( , ) 0.5( , ) log
( )( )( , ) 1

_
t q

sim d q

kf t d Nf t q
N tdoclen df t d k b b

avg doclen
∈

⎛ ⎞+= ⎜ ⎟⎛ ⎞ ⎝ ⎠+ − +⎜ ⎟
⎝ ⎠

∑
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Since the ratio ( , )
( | )

f w d
d p w c

 for a common word is 

significantly smaller than an uncommon word, the JM 
smoothing is able to distinguish common words from 
uncommon words. Note that if without using the 
smoothing technique, which corresponds to 1α = , a 
simple language modeling approach will assign large 
probabilities to common words and therefore it is unable 
to differentiate important words from common words. 

3.  Discriminative Approaches for Automatic Term 
Weighting 

In this section, we will discuss how to automatically learn 
appropriate term weights using the category labels of 
documents through a discriminative analysis. The basic 
idea is to find term weights such that the term-based 
document similarity is consistent with the similarity 
computed based on category labels of documents.  
Let { } 1

N
i iT d ==  be the collection of documents where N is 

the total number of documents. Each document id  is 
represented by both a term vector ,1 ,2 ,{ , ,..., }i i i i nw w w w= , 
and a category vector ,1 ,2 ,{ , ,..., }i i i i mc c c c= . ,i jw  is the 

term frequency for the j-th word in the i-th document. ,i jc  
is a binary variable, which is 1 when the i-th document 
belongs to the j-th category and zero otherwise. n is the 
size of vocabulary, and m is the number of different 
categories. Let { } 1

n
i iμ μ ==  be the term weights, and 

{ } 1
m

i iη η ==  be the weights for categories. Let 

( ), ';cS d d η  and ( ), ';wS d d μ  be the category-based and 
term-based similarities between documents d and d’, 
respectively. They are defined as weighted dot products: 

( )
( )

, ,1

, ,1

, ;

, ;

m
c i j k i k j kk

n
w i j k i k j kk

S d d c c

S d d w w

η η

μ μ
=

=

=

=

∑

∑
  

Since our goal is to find appropriate weights η  and μ  
such that two similarity measurements are consistent, it 
can be formulated as the following optimization problem: 

{ } ( ) ( )( )* *

, '
, arg min , '; , , ';c w

d d T
l S d d S d d

η μ
η μ η μ

≠ ∈
= ∑ (1)

where ( , )l ⋅ ⋅  measures the difference between the two 
similarity measurements. Note that, in the above 
discussion, we introduce weights for both words and 
categories. This is important because some categories are 
more general than the others. Two documents are more 
likely to have similar content when they match in rare 
categories than in common categories.  

3.1  A Regression Approach 

One choice for loss function ( , )c wl S S  is the Euclidean 

distance, i.e., ( )2( , )c w c wl S S S S= − . Thus, the objective 
function in (1) is expressed as: 

( )2
, , , ,, 1 1 1

N m n
reg k i k j k k i k j ki j k k

T T
F

F c c w wη μ= = == −

= −

∑ ∑ ∑

CηC WμW
(2) 

Where 1 2( , ,..., )T
Nc c c=C , 1 2( , ,..., )T

Nw w w=W , 
( )diag η=η  and ( )diag μ=μ . Eq. (2) can be further 

simplified into the following quadratic form: 

( )
T

T T c
reg

w
F

η
η μ

μ
⎛ ⎞⎛ ⎞−= ⎜ ⎟⎜ ⎟⎜ ⎟− ⎝ ⎠⎝ ⎠

Q P
P Q

 (3) 

where [ ] ( )2

,
T

w i ji j ξ ξ=Q , [ ] ( )2

,
T

c i ji j ζ ζ=Q , and 

[ ] ( )2

,
T
i ji j ξ ζ=P . Here, jξ  is the j-th column in matrix 

W, and jζ  is the j-th column in matrix C. Apparently, the 

trivial solution to (3) is 0η μ= = . To remove the trivial 
solution, we consider a constraint on the L2 norm of 
weights, i.e., 

2 2 2 2
2 2

1 1
1

m n

i i
i i

η μ η μ
= =

+ = + =∑ ∑  (4) 

Then, the optimal solution to (4) is the minimum 

eigenvector for matrix 
T

c

w

⎛ ⎞−
⎜ ⎟⎜ ⎟−⎝ ⎠

Q P
P Q

.  Given that this 

solution contains both negative and positive weights, it 
could be undesirable since a negative weight indicates 
that the corresponding word or category serves as 
negative evidence in determining document similarity, 
which contradicts our intuition. Thus, we further 
introduce positive constraints on weights, i.e.,  

[ ] [ ]0,  1... ,  0,  1...i ii m j nη μ≥ ∀ ∈ ≥ ∀ ∈  (5a) 

To further simplify computation, we replace L2 norm in  
(4) with L1 norm, i.e., 

1 1 1m m
i ii iη μ= =+ ≥∑ ∑  (5b) 

Now, given the quadratic objective in (3) and the linear 
constraints in (5a) and (5b), a standard quadratic 
programming technique (Gill et al., 1981) can be applied 
to acquire the solution. 
Implementation Issues. One computational problem with 
the regression approach is that it requires computing the 
full matrix wQ , whose size is n n× . When the number of 
words (i.e., n) is large (e.g., 20,000 in our case), 
computing the full matrix wQ  will be infeasible. In our 
experiment, we realize the regression approach by 
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iteratively sampling the word space. In particular, for each 
iteration, a small number of words are sampled out (e.g.., 
2000 in our experiment) and only the weights for the 
selected words are updated during the iteration. Let sμ  
and uμ  be the weights for selected words and unselected 
words, respectively. Rewrite matrix P and Qw into the 
form: 

 [ ], ,
s us
w w

u s w su u
w w

⎡ ⎤
= = ⎢ ⎥

⎢ ⎥⎣ ⎦

Q Q
P P P Q

Q Q
 

where index ‘u’ and ‘s’ represent parts of matrices related 
to selected words and unselected words, respectively. 
Using the above notations, regF  is rewritten as: 

( )
( )2

T
c sT T

reg s s
ss w

T T us T u
u u u w s u w u

F
η

η μ
μ

μ η μ μ μ μ

⎛ ⎞− ⎛ ⎞
⎜ ⎟= ⎜ ⎟⎜ ⎟− ⎝ ⎠⎝ ⎠

− + +

Q P

P Q

P Q Q

 (6) 

Since the last part of regF  is irrelevant to sμ  and η , it is 

ignored during the computation. Given that s
wQ  and us

wQ  
are of small size, quadratic programming techniques can 
be efficiently applied to (6). 

3.2  A Probabilistic Approach 

Another choice for ( , )c wl S S  is to first convert the 
similarities based on terms and categories into 
probabilities and then compare the two probabilities. A 
logit function is used to convert a similarity score into a 
probability. We define ,

c
i jp  and ,

w
i jp , i.e., the 

probabilities for two documents to be similar based on 
their category and term information, as 

( ) ( )( )
( ) ( )( )

,
0

,
0

1

1 exp , ;

1

1 exp , ;

c
i j

c i j

w
i j

w i j

p
S d d

p
S d d

η
η η

μ
μ μ

=
+ − +

=
+ − +

 (7) 

where 0η  and 0μ  are bias terms. Then, we define 

( , )c wl S S  as the cross entropy between ,
c
i jp  and ,

w
i jp : 

( ) ( )( )
( ) ( ) ( ) ( ), , , ,

, ; , , ;

log (1 ) log(1 )

c i j w i j

c w c w
i j i j i j i j

l S d d S d d

p p p p

η μ

η μ η μ= − − − −
(8)

The above expression is minimized when the two sets of 
probabilities ,

c
i jp  and ,

w
i jp  are of similar values and they 

are close to either 1 or 0. In other words, ( , )c wl S S  is 
minimized when the two similarity measurements are 
consistent and confident in predicting if two documents 
are similar. Note that we did not use the KL divergence 

for ( , )c wl S S . This is because a KL divergence based 
objective function can result in a trivial solution, in which 
case all weights and bias are assigned to be zeros. In 
contrast, the trivial solution will not be optimal solution to 
(8). 

Using the definition in (7), now the objective function is 
written as: 

( ) ( ) ( ) ( )( ), , , ,

, , 0 , , 0

, , 0 , , 0

log (1 ) log(1 )

1 1log
1 exp 1 exp

1 1log
1 exp 1 exp

N
c w c w

prob i j i j i j i j
i j

k i k j k k i k j kN k k

i j

k i k j k k i k j k
k k

F p p p p

c c w w

c c w w

η μ η μ

η η μ μ

η η μ μ

≠

≠

= + − −

⎧ ⎫
⎪ ⎪⎛ ⎞ ⎛ ⎞⎪ ⎪+ − + + − +⎜ ⎟ ⎜ ⎟⎪ ⎪⎪ ⎝ ⎠ ⎝ ⎠ ⎪= ⎨ ⎬
⎪ ⎪+
⎪ ⎪⎛ ⎞ ⎛ ⎞

+ − + −⎪ ⎪⎜ ⎟ ⎜ ⎟
⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎭

∑

∑ ∑
∑

∑ ∑

 

Similar to the consideration in the regression approach, 
we constrain all the weights to be non-negative, i.e., 

, 0i jη μ ≥ . Furthermore, similar to the logistic regression 
model used for text categorization (Zhang and Oles, 
2001), a Laplacian prior is introduced into the objective 
function to prevent weights from being too large. Thus, 
the final optimization problem for the probabilistic 
approach becomes: 

{ }
0 0

* * * *
0 0 1 1

, , ,

0 0

, , , arg max

subject to , 0 and , 0

prob w cF
η μ η μ

η μ η μ α μ α η

η μ η μ

= − −

≥ ≥
(9) 

Finding the optimal solution to the above expression is 
not easy. One essential difficulty is in evaluating the 
objective function in (9), which requires computing ,

c
i jp  

and ,
w
i jp  for any two documents. Given a large number of 

documents (e.g., 40,000 in our experiment), the pair wise 
computation can be too expensive. Similar to the 
regression approach, we will apply an iterative procedure 
to the optimization. In each iteration, only a small number 
of terms are selected and only the weights associated with 
the selected terms are updated during the iteration. 
However, in the regression approach, the objective 
function is quadratic, and therefore weights for selected 
terms and for unselected terms can be easily separated in 
the objective function. In contrast, the objective function 
in (9) is rather complicated compared to the one in (3) and 
it is not so easy to separate weights for selected terms 
from weights for unselected ones. To this end, we use the 
bound optimization algorithm (Salakhutdinov and 
Roweis, 2003). The main idea is that, although it is 
difficult to separate weights in the original function, it 
may be easy to do so for a simple function that lower 
bounds the original function. Furthermore, since we need 
to find weights for both categories and terms, the bound 
algorithm will be applied twice in each iteration: one for 
finding the optimal term weights given fixed category 
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weights, and the other one for finding the optimal weights 
for category given fixed term weights. In the following, 
we will discuss the steps for optimizing term weights and 
category weights, separately. 

Learn category weights η  with fixed term weights μ . 
Let { , }η μ  be the weights of the previous iteration, and 

'η η δ= +  be the new category weights for the current 

iteration. Probabilities , ( ')c
u vp η  and , ,( ) 1 ( )c c

i j i jp pη η= −  
can be upper bounded by the following expression: 

, , , , , , 0( ') ( ) ( ) ( ) exp 1c c c c
i j i j i j i j i j k k

k
p p p p c cη η η η δ δ

⎧ ⎫⎛ ⎞⎪ ⎪≤ + − −⎨ ⎬⎜ ⎟
⎪ ⎪⎝ ⎠⎩ ⎭

∑  

, , , , , , 0( ') ( ) ( ) ( ) exp 1c c c c
i j i j i j i j i j k k

k
p p p p c cη η η η δ δ

⎧ ⎫⎛ ⎞⎪ ⎪≤ + − + −⎨ ⎬⎜ ⎟
⎪ ⎪⎝ ⎠⎩ ⎭

∑

Now, the objective function in (9) can be lower bounded 
as: 

( )
( )

1 1

1 1

, , , , , 0

, , , , , 0

', '

,

( ) ( ) log ( ) exp 1

( ) ( ) log ( ) exp 1

prob w c

prob w c

c c w
i j i j i j i k j k k

i j k

c c w
i j i j i j i k j k k

i j k

F

F

p p p c c

p p p c c

η μ α μ α η

η μ α μ α η

η η μ δ δ

η η μ δ δ

≠

≠

− − ≥

− −

⎧ ⎫⎛ ⎞⎪ ⎪+ − −⎨ ⎬⎜ ⎟
⎪ ⎪⎝ ⎠⎩ ⎭
⎧ ⎫⎛ ⎞⎪ ⎪+ − + −⎨ ⎬⎜ ⎟
⎪ ⎪⎝ ⎠⎩ ⎭

∑ ∑

∑ ∑

 

(10) 

Using the Jensen inequality, the exponential term in the 
above expression can be upper bounded as: 

( ), , 0

, , 0

, ,

exp 1

1e j c i k i k c

i k j k k
k

L c c L
i k i kkk

c c c

c c

I c ce
L L L

δ δ

δ δ⎛ ⎞− −⎜ ⎟
⎝ ⎠

+
≤ + −

∑

∑∑
 

where 02max | | 1c i
i

L c= + , and ( )I ⋅  is an indicator that 

outputs one for positive value and zero otherwise. Then, 
the upper bound in (10) can be further relaxed as: 

( )
( ){ }

( ) ( )
, ,

, ,

1 1

1 1

, ,
, , , ,

,
, ,

,

', '

,

1
( ) ( ) log ( ) log ( )

log ( ) e
( ) ( )

log ( ) e

k c i k j k

k c i k j k

dis w w c

dis w w c

i k j kkc c w w
i j i j i j i j

i j c

L c cw
i jc c

i j i j L c cwi j i j

c

F

F

I c c
p p p p

L

p
p p

p

L

δ

δ

η μ α α μ α η

η μ α α μ α η

η η μ μ

μ
η η

μ

≠

−≠

− − − ≥

− − −

+
− +

⎛ ⎞
⎜ ⎟
⎜ ⎟+⎝ ⎠+

+

∑
∑

∑

0

0

,
, ,

,
0

1

log ( )
( ) ( )

log ( )

c

c

c k
k

L w
i jc c

i j i j L w
i j

i j c

e p
p p

e p

L

δ

δ

α δ

μ
η η

μ
αδ

−

≠

−

⎛ ⎞
⎜ ⎟
⎜ ⎟+⎝ ⎠+ −

∑

∑

 

Notice that in the above expression, the interaction 
between weights for different categories is removed. 
Thus, each category weight can be updated 
independently. In fact, there is an analytical solution to 
the optimal weight change δ  that maximizes the above 
lower bounds. To avoid computing ,

c
i jp  for all document 

pairs, in each iteration, only a subset of categories are 
selected in each iteration and their weights are updated. 
As a result, only the probabilities ,

c
i jp  for the documents 

that belong to the selected categories are needed to be 
computed. 

Learn term weights μ  with fixed category weights η . 

Let 'μ μ δ= +  be the new category weights for the 

current iteration. First, ,log ( ')w
i jp μ  can be lower bounded 

using the Jensen inequality: 

( ) ( ) ( ) ( )

, , 0

, , ,
, ,

e

log ' log
1

k w i k j k w
L w w L

k

w ww w w
i j i j i j

i k j kk

w

e
L L

p p p
I w w

L

δ δ

μ μ μ

−⎡ ⎤
⎢ ⎥+
⎢ ⎥

≥ − ⎢ ⎥
+⎢ ⎥

−⎢ ⎥
⎢ ⎥⎣ ⎦

∑

∑

where 02max | | 1c i
i

L w= + . By substituting the above 

expression for ,log ( ')w
u vp μ , we have a lower bound for 

the objective function in (9): 
( )

( )
( ) ( ) ( )( )

( )

( )

, ,

, ,

1 1

1 1

, ,
, , , ,

, ,

, ,

, ' '

,

1
( ) ( )

e( )

e( )

k w i k j k

k w i k j k

prob w w c

prob w w c

i k j kk c w c w
i j i j i j i j

i j w

L w w
c w

k i j i j
i j w

L w wk c w
i j i j

i j w

F

F

I w w
p p p p

L

p p
L

p p
L

δ

δ

η μ α α μ α η

η μ α α μ α η

η μ η μ

βδ η μ

η μ

≠

−

≠

≠
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Again, in the above expression for the low bound, the 
correlation among weights for different term is removed, 
and thus each term weight can be updated independently. 
To avoid estimating ,

w
i jp  for all document pairs, in each 

iteration, we can select a subset of term weights for 
updating.   

4.  Experiment 

In this experiment, we examine the effectiveness of the 
proposed approaches that automatically learn term 
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weighting by incorporating category information of 
documents. In particular, we will address the following 
research questions:  
1) Will category information be effective in improving 

the retrieval performance over the existing term 
weighting approaches? We compare the proposed 
algorithms to the two state-of-the-art methods that do 
not use category information.  

2) How effective are our approaches in utilizing 
category information for information retrieval 
compared to other approaches? We compare the 
proposed algorithms to other information retrieval 
methods that also exploit category information. 

4.1  Experiment Design 

We use the document collection from ImageCLEF 
(http://ir.shef.ac.uk/imageclef/). It consists of 28,133 
documents and each document provides content 
description for a historical picture. All the documents in 
the collection are categorized into totally 933 different 
categories. Each document can be assigned to multiple 
categories and the average number of categories assigned 
to a document is about 4.5. In order to tune the parameters 
in the proposed method, five queries from ImageCLEF 
2003 together with  their relevance judgments are used as 
training data. 25 queries from ImageCLEF 2004 are used 
in our evaluation. Typical information retrieval metrics 
are employed in this empirical study, including average 
precision across 11 recall points and precision for top 
retrieved documents. 

In order to see the effectiveness of the proposed 
algorithms in utilizing the category information, we 
compare it to two baseline models for comparison: 
1) Inverse category frequency for term importance. For 

each word ‘w’, we compute its inverse category 
frequency (i.e., icf) value, i.e., 

( ) log log ( )cicf w m m w= − , where ( )cm w  is the 
number of categories that contain word ‘w’.  This 
factor is then used to replace the idf factor in the 
Okapi formula. This approach is based on the 
assumption that a word tends to be less informative 

when it appears across a large number of categories. 
We hypothesize that the category frequency could be 
a better indicator for term importance than the 
document frequency. Consider an extreme case when 
a document is repeated thousands of times in a 
collection. A document frequency based approach 
would assign low weights to any words in the 
document while a category frequency based approach 
will not. 

2) Category-based query expansion. A typical query 
expansion approach expands original queries with the 
terms that frequently appear in the top retrieved 
documents. With the category information of 
documents, we can expand original queries with the 
common categories for the top retrieved documents. 
With the expanded queries, documents are required 
to match not only the query words but also the 
expanded categories. Let the expanded query denoted 
by 1 1{ ( , ),..., ( , ); ( , ),..., ( , )}n mq f w q f w q f c q f c q=  
where ( | )if w q  and ( | )if c q  is term frequency and 
category frequency for the expanded query q. Then, 
the likelihood ( | )p q d  is computed as: 
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where β  is the smoothing parameter. ( | )ip c d  is 
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, where 

( , )if c d  is one when document d belongs to the 
category ci and zero otherwise. γ  is another 
smoothing parameter. Both parameters are tuned 
using the training queries. 

4.2  Experiment (I): The Effectiveness of Category 
Information on Term Weighting 

 Using Category Information No Category Information 
 Regression Probabilistic ICF CQE Okapi LM 
Avg. Prec.  0.45 0.48 0.38 0.42 0.41 0.41 
Prec@       
5 doc 0.55 0.56 0.40 0.50 0.47 0.50 
10 doc 0.48 0.51 0.40 0.48 0.45 0.48 
20 doc 0.46 0.46 0.39 0.42 0.39 0.38 
100 doc 0.21 0.21 0.19 0.19 0.20 0.20 
Table 1: Retrieval results for a regression approach (Sec. 3.1), a probabilistic approach (Sec. 3.2), a inverse 
category frequency (ICF), a category-based query expansion (CQE), the Okapi method, and a language model 
(LM). 
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The retrieval performance of both the regression approach 
and the probabilistic approach is summarized in Table 1. 
We also included the performance of both the Okapi 
method and the language modeling approach in Table1. 
The precision-recall curves for these four methods are 
plotted in Figure 3. 

First, both the regression approach and the probabilistic 
approach, which utilizes category information, 
outperform the Okapi method and the language modeling 
approach, which do not utilize the category information. 
This is further confirmed by the precision-recall curves in 
Figure 3. Furthermore, the precision result shown in Table 
1 indicates that the largest gain of the proposed 
algorithms is achieved for the top ranked documents. 
When only five documents are retrieved for each query, 
the two proposed algorithms are able to achieve precision 
around 0.56, while the precision for the Okapi method 
and the language modeling approach is no more than 
50%. The advantage disappears when 100 documents are 
retrieved for each query. Finally, comparing the two 
proposed algorithms, we see that the probabilistic 
approach performs slightly better than the regression 
approach in all evaluation metrics.  

Third, to further examine the difference between the 
proposed probabilistic approach and the state-of-the-art 
term weighting methods, we computed average precision 
of individual queries for the probabilistic approach and 
the language modeling approach. The results are shown in 
Figure 2. We see that the probabilistic approach 
outperforms the language modeling approach 
substantially over 16 out of 25 queries. Only for 5 queries, 
the language modeling approach achieves better accuracy 
than the probabilistic approach.  

Based on the above observation, we conclude that 
category information is effective for determining term 
weights for information retrieval. 

4.3  Experiment (II): Effectiveness in Exploiting 
Category Information for IR 

In order to see how effective the proposed algorithms are 
in utilizing category information, we compare the 
proposed algorithms to two baseline models that also 
exploit category information for information retrieval. 
The two baselines are: the inverse category frequency 
approach (ICF) and the category-based query expansion 
(CQE). The retrieval results of these two baseline models 
are included in Table 1. The precision-recall curves of the 
two baseline models are shown in Figure 3 and their 
average precision for individual queries are shown in 
Figure 4. 

First, according to Table 1, the inverse category frequency 
approach performs slightly worse than the language 
modeling approach. A detailed examination of precision 
recall curves indicate that, compared to the language 
modeling approach, the disadvantage of the inverse 
category frequency approach is mainly at the low recall 
points. This is further confirmed by the results of 
precision for top ranked documents in Table 1. The poor 
performance of ICF can be attributed to the fact that the 
ICF method treats each category equally when it 
computes the ‘importance’ of terms. Second, the 
category-based query expansion performs slightly better 
than the language modeling approach. However, the 
overall improvement is rather marginal. Furthermore, the 
CQE method does not acquire any noticeable 
improvement for the top ranked documents, which is 
usually more important than the document ranked at 
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Figure 2: Average precision of individual queries for a language model, the inverse category frequency, and 
category-based query expansion, and the proposed probabilistic approach (titled as ‘discriminative’). 
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bottom. Based on the above observation, we conclude that 
although category information can be useful for 
information retrieval, how to incorporate the category 
information into the framework of information retrieval is 
also critical.  

5.  Conclusion and Future Work 

In this paper, we present novel algorithms for automatic 
term weighting that exploit document category 
information. These algorithms learn term weights based 
on the correlation between term frequency and category 
information of documents. Two strategies have been 
examined: a regression approach and a probabilistic 
approach. Another important contribution of this paper is 
that we propose a bounding algorithm for efficiently 
learning both category weights and term weights. As a 
future work, we plan to introduce nonlinearity into the 
current work by replacing the dot product in the similarity 
function with a predefined kernel function. We also plan 
to apply the current framework to learn weights for image 
features through a collection of annotated images.  
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Figure 3: Precisions for 11 recall points for 
different term weightings. 


