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Abstract

In a data streaming setting, data points are
observed one by one. The concepts to be
learned from the data points may change in-
finitely often as the data is streaming. In
this paper, we extend the idea of testing ex-
changeability online (Vovk et al., 2003) to
a martingale framework to detect concept
changes in time-varying data streams. Two
martingale tests are developed to detect con-
cept changes using: (i) martingale values, a
direct consequence of the Doob’s Maximal In-
equality, and (ii) the martingale difference,
justified using the Hoeffding- Azuma Inequal-
ity. Under some assumptions, the second
test theoretically has a lower probability than
the first test of rejecting the null hypothe-
sis, “no concept change in the data stream”,
when it is in fact correct. Experiments show
that both martingale tests are effective in de-
tecting concept changes in time-varying data
streams simulated using two synthetic data
sets and three benchmark data sets.

1. Introduction

A challenge in mining data streams is the detection
of changes in the data-generating process. Recent re-
search includes profiling and visualizing changes in
data streams using velocity density estimation (Ag-
garwal, 2003), but reaches no conclusion on whether
a change takes place. Fan et al. (2004) proposed
change detection (active mining) based on error es-
timation of a model of the new data stream without
knowing the true class labels. Kifer et al. (2004) pro-
posed a change-detection method with statistical guar-
antees of the reliability of detected changes, however
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the method is impractical for high dimensional data
streams. Besides detecting changes, change-adaptive
methods for the so-called concept drift problem, based
on a sliding window (instance selection) (Klinkenberg
& Joachims, 2000; Widmer & Kubat, 1996), instance
weighting (Klinkenberg, 2004), and ensemble learning
(Chu et al., 2004; Kolter & Maloof, 2003; Wang et al.,
2003), are also suggested.

The problem of detecting changes in sequential data
was first studied by statisticians and mathematicians.
In the online setting, data are observed one by one
from a source. The disruption of “stochastic homo-
geneity” of the data might signal a change in the
data-generating process, which would require decision-
making to avoid possible losses. This problem is gen-
erally known as a “change-point detection”. Methods
of change detection first appeared in the Forties based
on Wald’s sequential analysis (Wald, 1947), and later,
Page introduced the cumulative sum method (Page,
1957). These methods are parametric and work only
for low-dimensional data streams.

An effective change-detecting algorithm requires that
(i) the mean (or median) delay time between a true
change point and its detection be minimal, (ii) the
number of miss detections be minimal, and (iii) data
streams be handled efficiently.

In this paper, we propose a martingale framework that
effectively and efficiently detects concept changes in
time-varying data streams. In this framework, when
a new data point is observed, hypothesis testing using
a martingale takes place to decide whether change oc-
curs. Two tests are shown to be effective using this
framework: testing exchangeability using (i) a martin-
gale value (Vovk et al., 2003) and (ii) the martingale
difference. The first test is a direct consequence of the
Doob’s Maximal Inequality. We provide detailed justi-
fication for the second test using the Hoeffding-Azuma
Inequality. Under some assumptions, this second test
has a much lower probability than the first test of re-
jecting the null hypothesis, “no concept change in the
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data stream”, when it is in fact correct. The efficiency
of the martingale tests depends on the speed of the
classifier used for the construction of the martingale.

Our martingale approach is an efficient, one-pass in-
cremental algorithm that (i) does not require a sliding
window on the data stream, (ii) does not require mon-
itoring the performance of the base classifier as data
points are streaming, and (iii) works well for high di-
mensional, multi-class data stream.

In Section 2, we review the concept of martingale and
exchangeability. In Section 3, we describe and justify
two tests using martingales. In Section 4, we examine
both tests in time-varying data streams simulated us-
ing two synthetic data sets and three benchmark data
sets.

2. Martingale and Exchangeability

Let {Z; 1 < i < oo} be a sequence of ran-
dom variables. A finite sequence of random vari-
ables Zy,---,Z, is exchangeable if the joint distribu-
tion p(Zy,- -+, Zy) is invariant under any permutation

of the indices of the random variables. A martingale
is a sequence of random variables {M; : 0 < i < oo}
such that M, is a measurable function of Zy,---,Z,
for all n = 0,1,--- (in particular, My is a constant
value) and the conditional expectation of M, given
My, - -, M, is equal to M,, i.e.

E(Mn+1|M17"'an) =M, (1)
Vovk et al. (2003) introduced the idea of testing ex-
changeability online using the martingale. After ob-
serving a new data point, a learner outputs a pos-
itive martingale value reflecting the strength of evi-
dence found against the null hypothesis of data ex-
changeability. Consider a set of labeled examples Z =
{71, zn1t = {(z1,91), -+, (Tn—1,Yn—1)} where z;
is an object and y; € {—1, 1}, its corresponding label,
fori =1,2,---,n — 1. Assuming that a new labeled
example, z,, is observed, testing exchangeability for
the sequence of examples z1, 29, - - -, 2z, consists of two
main steps (Vovk et al., 2003):

A. EXTRACT A P-VALUE p,, FOR THE SET Z U {z,}
FROM THE STRANGENESS MEASURE DEDUCED FROM
A CLASSIFIER

The randomized p-value of the set Z U {z,} is define
as

V(ZU{zn},0,) =

#Hira; >ant+0,#{i:a; =an}
n

(2)

where «; is the strangeness measure for z;, ¢ =
1,2,---,n and 6, is randomly chosen from [0, 1]. The
strangeness measure is a way of scoring how a data
point is different from the rest. Each data point z;
is assigned a strangeness value «; based on the clas-
sifier used (e.g. support vector machine (SVM), near-
est neighbor rule, and decision tree). In our work,
the SVM is used to compute the strangeness mea-
sure, which can be either the Lagrange multipliers or
the distances from the hyperplane for the examples in
ZU{zp}.

The p-values p1,ps,--- output by the randomized p-
value function V are distributed uniformly in [0, 1],
provided that the input examples 21, 25, - - - are gener-
ated by an exchangeable probability distribution in the
input space (Vovk et al., 2003). This property of out-
put p-values no longer holds when the exchangeability
condition is not satisfied (see Section 3).

B. CONSTRUCT THE RANDOMIZED POWER
MARTINGALE

A family of martingales, indexed by € € [0,1], and
referred to as the randomized power martingale, is de-
fined as

My =TT (i) (3)

i=1

where the p;s are the p-values output by the random-
ized p-value function V, with the initial martingale
M9 = 1. We note that MY = eps M .. Hence, it
is not necessary to stored the previous p-values. In our
experiments, we use € = 0.92, which is within the de-
sirable range where the martingale value is more sen-
sitive to a violation of the exchangeability condition
(Vovk et al., 2003).

When 6,, = 1, the p-value function V is deterministic,
the martingale constructed is also deterministic. We
use this deterministic martingale in our justification
for the second test in Section 3.3.

3. Testing for Change Detection

Intuitively, we assume that a sequence of data points
with a concept change consists of concatenating two
data segments, S7 and Ss, such that the concepts of
S1 and Sy are C7 and Cs respectively and C7 # Cs.
Switching a data point z; from S to a position in
S7 will make the data point stands out in S;. The
exchangeability condition is, therefore, violated. Ex-
changeability is a necessary condition for a conceptu-
ally stable data stream. The absence of exchangeabil-
ity would suggest concept changes.
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When a concept change occurs, the p-values out-
put from the randomized p-value function (2) become
skewed and the p-value distribution is no longer uni-
form. By the Kolmogorov-Smirnov Test (KS-Test) 1,
the p-values are shown not to be distributed uniformly
after the concept changes. The null hypothesis “the
p-values output by (2) are uniformly distributed” is
rejected at significance level a = 0.05, after sufficient
number of data points are observed (see the example
in Figure 1). The skewed p-value distribution plays
an important role in our martingale test for change
detection as small p-values inflate the martingale val-
ues. We note that an immediate detection of a true
change is practically impossible. Hence, a short de-
lay time between a change and its detection is highly
desirable.
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Figure 1. The 10-dimensional data points simulated using
the normally distributed clusters data generator (see Sec-
tion 4.1.2) are observed one by one from the 1st to the
2000th data point with concept change starting at the
1001¢h data point. The reader should not confuse the p-
values from the KS-Test and the p-values computed from

(2).

3.1. Martingale Framework for Detecting
Changes

In the martingale framework, when a new data point
is observed, hypothesis testing takes place to decide
whether a concept change occurs in the data stream.
The decision is based on whether the exchangeability
condition is violated, which, in turn, is based on the
martingale value.

Two hypothesis tests based on the martingale (3) are
proposed based on the Doob’s Maximal Inequality and

'Kifer et al. (2004) proposed using Kolmogorov-
Smirnov Test (KS-Test) for detecting changes using two
sliding windows and a discrepancy measure which was
tested only on 1D data stream.

the Hoeffding-Azuma Inequality respectively. Con-
sider the simple null hypothesis Hy : “no concept
change in the data stream” against the alternative H; :
“concept change occurs in the data stream”. The test
continues to operate as long as

Martingale Test 1 (MT1):
0< M <\ (4)

where ) is a positive number. One rejects the null
hypothesis when M. > \.

OR
Martingale Test 2 (MT2):

0< MO — M| <t (5)

where t is a positive number. One rejects the null
hypothesis when |M,(f) - M,Si)1| >t

3.2. Justification for Martingale Test 1 (MT1)

Assuming that {M} : 0 < k < oo} is a nonnegative
martingale, the Doob’s Maximal Inequality (Steele,
2001) states that for any A >0 and 0 <n < oo,

AP <I]§1§;{ My > )\> < E(M,) (6)

Hence, if E(M,) = E(M;) = 1, then
P (max M, > 2) < = (7)
) BN

This inequality means that it is unlikely for any M
to have a high value. One rejects the null hypothesis
when the martingale value is greater than A. But there
is a risk of announcing a change detection when there
is no change. The amount of risk one is willing to take
will determine what A\ value to use.

3.3. Justification for Martingale Test 2 (MT2)

Theorem 1 (Hoeffding-Azuma Inequality)

Let c1,--+,¢m be constants and let Yy, ---,Y,, be a
martingale difference sequence with |Yy| < ¢k, for
each k. Then for any t > 0,

P(iYk >t> < 2exp (—250?) (8)

k=1
To use this probability bound to justify our hypothesis
test, we need the martingale difference to be bounded,
ie. |Y;| =|M; — M;_1| < K such that M; and M;_,




A Martingale Framework for Concept Change Detection in Time-Varying Data Streams

are two arbitrary consecutive martingale values and
K € R*. This bounded difference condition states
that the process does not make big jumps. More-
over, it is unlikely that the process wanders far from
its initial point. Hence, before using (8) to construct
the probability upper bound to justify MT2, we need
to show that the difference between two consecutive
power martingale values is bounded for some fixed e.
As mentioned earlier in Section 2, we use the determin-
istic power martingale in our proof. We set 6,, = 1, for
n € ZT in the randomized p-value function (2). An
output p-values p,, is a multiple of % between % and
1.

The martingale difference is

n—1
dy = J] (ep") (eps = 1) 9)
i=1
Forpn=%,1§u§n7if

1
Pn < €Xp (loge) (10)

— €

we have d,, > 0; otherwise d,, < 0. The most negative
d,, occurs when p,, = 1 and the most positive d,, occurs
when p,, = % This most positive value is higher than
the most negative value and, therefore, p,, = % will be
used in the bounded difference condition.

When m = 1, the Hoeffding-Azuma Inequality (8) be-
comes

2
P(¥i] > 1) < 2exp (—) (11)
2c]
and hence, for any n,
P(M - M2, > 1)
t2
<2exp | — (12)

2(e ()7 1) (i)

Assuming that every testing step is a new testing step
based on a new martingale sequence, we set the previ-
ous martingale value M'? | = M{? =1 on the right-
hand side of the inequality (12). Hence, we have

P(MO — M | > t)

2
<2exp | — ! (13)

2(e (1) 1)

If we only consider M,(f) > MT(zi)l’ the upper bound is
less than the right-hand side of (13). Like MT1, one
selects t according to the risk one is willing to take.

However, the probability upper bound (13) for MT2
also depends on n, the number of data points used.
As n increases, the upper bound also increases. The
probability of rejecting the null hypothesis when it is
correct increases. To maintain a much better probabil-
ity bound for larger n, ¢t can be increased (see Figure
2) at the expense of a higher delay time (see Section
4.2).
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Figure 2. Comparison of the upper bound of the proba-
bility of the martingale difference for some ¢ values and
e = 0.92, and the fixed probability upper bound for the
martingale value when A = 20 on a data stream consisting
of 100000 data points. To have an upper bound for MT1
that matches the upper bound for a particular ¢ value (say,
3 —4) for a small n (< 5000), A has to be very large.

From Figure 2, one observes that if a sliding window is
not used for MT?2, the classifier used to extract the p-
value should dynamically remove old data points from
its memory when the upper bound exceeds a prede-
fined value. In our experiments, we use a “pseudo-
adaptive” approach for the window size . Our window
starts from the previous detected point and increases
in size until the next change point is detected, as long
as the probability upper bound does not exceed a fixed
value we specified for a particular chosen t. Otherwise,
we remove the earliest data point from the memory.
We note that in our experiments the interval between
two true change points is small (< 2,000) and the per-
formance of MT?2 is not affected by the upper bound
(13) as n increases.

4. Experiments

Experiments are performed to show that the two tests
are effective in detecting concept changes in time-
varying data streams simulated using two synthetic
data sets and three benchmark data sets. The five dif-
ferent simulated data streams are described in Section
4.1.
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We examine the performance of both tests based on
the retrieval performance indicators, recall and preci-
sion, and the delay time for change detections for var-
ious A and t values on two time-varying data streams
simulated using the two synthetic data sets. The re-
trieval performance indicators are defined in our con-
text as:

Number of Correct Detections

Precision
Number of Detections

Number of Correct Detections

Recall =
eca Number of True Changes

Precision is the probability that a detection is actually

correct, i.e. detecting a true change. Recall is the
probability that a change detection system recognizes
a true change.

The delay time for a detected change is the number
of time units from the true change point to the de-
tected change point, if any. We also show that both
martingale tests are feasible on high dimensional (i)
numerical, (ii) categorical, and (iii) multi-class data
streams.

In the experiments, a fast adiabatic incremental SVM
(Cauwenberghs & Poggio, 2000), using the Gaussian
kernel and C = 10, is used to deduce the strangeness
measure for the data points. A necessary condition
for both tests to work well is that the classifier must
have a reasonable classification accuracy. At a fixed e,
the performance of the two tests depend on the \ or t.
Experimental results are reported in Section 4.2.

4.1. Simulated Data Stream Descriptions

In this subsection, we describe how the five data
streams with concept changes are simulated by (i) us-
ing rotating hyperplane (Hulten et al., 2001) (Section
4.1.1), (ii) using the normally distributed clusters data
generator (NDC) (Musicant, 1998) (Section 4.1.2), (iii)
combining ringnorm and twonorm data sets (Breiman,
1996) (Section 4.1.3), (iv) modifying UCI nursery data
set (Blake & Merz, 1998) (Section 4.1.4), and (v) mod-
ifying the USPS handwritten digits data set (LeCun
et al., 1989) (Section 4.1.5).

4.1.1. SIMULATED DATA STREAM USING ROTATING
HYPERPLANE

A data stream is simulated by using a rotating hyper-
plane to generate a sequence of 100,000 data points
consisting of changes occurring at points (1,000x¢)+1,
fori =1,2,---,99. First we randomly generate 1,000
data points with each component’s values in the closed
interval [—1, 1]. These data points are labeled positive

and negative based on the following equation:

m

Z <c
Ww;xr; = > c

=1 -

where c is an arbitrary fixed constant, z; is the compo-
nent of a data point, x, and the fixed components, w;,
of a weight vector are randomly generated between -1
and 1. Similarly, the next 1,000 random data points
are labeled using (14) with a new randomly generated
fixed weight vector. This process continues until we
get a data stream consisting of 100 segments of 1,000
data points each. Noise is added by randomly switch-
ing the class labels of p% of the data points. In our
experiment, p = 5 and m = 10.

negative

positive (14)

4.1.2. SIMULATED DATA STREAM USING THE
NORMALLY DISTRIBUTED CLUSTERS DATA
GENERATOR (NDC)

Linearly non-separable binary-class data streams of
100,000 data points consisting of changes occurring at
points (1,000 x ¢) + 1, for ¢ = 1,2,---,99 is simu-
lated using the NDC in R'° with randomly generated
cluster means and variances. The values for each di-
mension are scaled to range in [—1,1]. The generating
process for the data stream is similar to that used for
the rotating hyperplane data stream described in Sec-
tion 4.1.1.

4.1.3. NUMERICAL HiGH DIMENSIONAL DATASETS:
RINGNORM AND TWONORM

We combined the ringnorm (RN) (two normal distri-
bution, one within the other) and twonorm (TN) (two
overlapping normal distribution) data sets to form
a new binary-class data stream of 20 numerical at-
tributes consisting of 14,800 data points. The 7,400
data points from the RN are partitioned into 8 subsets
with the first 7 subsets (RN;,i = 1,---,7) consisting
of 1,000 data points each and RNg consisting of 400
data points. Similarly, the 7,400 data points from TN
are also partitioned into 8 subsets with the first 7 sub-
sets (T'N;,i =1,---,7) consisting of 1,000 data points
each and the T'Ng consisting of 400 data points.

The new data stream is a sequence of data points
arranged as follows: {RNy;TNy;--- RN7; T N7; RNg;
TNg} with 15 changes at data points 1000: + 1 for
i=1,---,14, and 14,401.

4.1.4. CATEGORICAL HIGH DIMENSIONAL DATASET:
NURSERY BENCHMARK

We modified the nursery data set, which consists of
12,960 data points in 5 classes with 8 nominal at-
tributes, to form a new binary-class data stream.
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Segment Digit 1 Digit 2 Digit 3 | Total | Change
’ Point
1 597 (0) | 502 (1) | 731 (2) 1830 1831
2 597 (0) | 658 (3) | 652 (4) 1907 3738
3 503 (1) | 556 (5) | 664 (6) 1723 5461
4 645 (7) | 542 (8) | 644 (9) 1831 -

Table 1. Three-Digit Data Stream: TR (D): TR is the
number of data points and D is the true digit class of the
data points.

First, we combined three classes (not recommended,
recommended, and highly recommended) into a single
class consisting of 4,650 data points labeled as negative
examples. The set RN is formed by randomly selecting
4,000 out of the 4,650 data points. The “priority” class
contains 4,266 data points that are labeled as positive
examples. We randomly selected 4,000 out of the 4,266
data points to form the set PP. The “special prior-
ity” class, which contains 4,044 data points, is split
into two subsets consisting of 2,000 data points each,
a set (SPP) of positive examples, and a set (SPN)
of negative examples. The other 44 data points are
removed.

New subsets of data points are constructed as follows:

e Set A;: 500 negative examples from RN and 500
positive examples from PP.

e Set B;: 500 negative examples from S PN and 500
positive examples from PP.

e Set C;: 500 negative examples from RN and 500
positive examples from SPP.

The data stream S is constructed as follows:
{A1; B1; C1; Ag; By; Cy; As; B3; C3; Ay; By; Cy} con-
sisting of 12,000 examples with 11 change points.

4.1.5. MULTI-CLASS HIGH DIMENSIONAL DATA:
THREE-DIGIT DATA STREAM FROM USPS
HANDWRITTEN DIGITS DATA SET.

The USPS handwritten digits data set, which consists
of 10 classes of dimension 256 and includes 7,291 data
points, is modified to form a data stream as follows.
There are four different data segments. Each segment
draws from a fixed set of three different digits in a ran-
dom fashion. The three-digit sets change from one seg-
ment to the next. The composition of the data stream
and ground truth for the change points are summa-
rized in Table 1. We note that the change points do
not appear at fixed intervals. The one-against-the-rest
multi-class SVM is used to extract p-values.

For the three-digit data stream, three one-against-the-
rest SVM are used. Hence, three martingale values are

computed at each point to detect change (see Figure
7). When one of the martingale values is greater than
A (or t), change is detected.

4.2. Results

Figure 3 and 4 show the recall, precision, and delay
time of the two martingale tests on the data streams
simulated using the rotating hyperplane and NDC re-
spectively. As can be seen from Figure 3 and 4 (first
row), the recall is consistently greater than 0.95 on
both simulated data streams for various A and t val-
ues. Both tests recognize concept changes with high
probability.

As X or t increases, one observes that the precision
increases. As A increases from 4 to 100, the upper
bound (7) becomes tighter, decreasing from 0.25 to
0.01, for MT1. This corresponds to the precision in-
creasing from 0.82 to 1 (see Figure 3), decreasing the
false alarm rate. On the other hand, as ¢ increases
from 1.5 to 5, precision increases from 0.88 to 1. The
upper bound (13) for MT?2 is consistently small as long
as the data stream used for computing the martingale
is “short” (e.g. at n = 1,000, when ¢t = 1.5, the upper
bound is 0.0868 and when ¢ = 5, the upper bound is
1.44 x 1071%). This is a plausible explanation for MT2
having a higher precision than MT1. A similar trend
also appears in simulated data streams using the NDC
(see Figure 4). To this end, it seems that for high recall
and precision, a large A\ or ¢t should be used.

Figure 3 and 4 (second row) reveal, unsurprisingly,
that a higher precision (using higher A or ¢) comes
at the expense of a higher mean (or median) delay
time for both tests. The mean (or median) delay time
for the two tests do not differ significantly. With a
box-plot on the delay time, one can observe that the
delay time distribution skews toward large values (i.e.
small values are packed tightly together and large val-
ues stretch out and cover a wider range), independent
of the A or ¢ value. The delay time is very likely to be
less than the mean delay time.

In real applications, A or ¢ must be chosen to minimize
losses (or cost) due to delay time, missed detections,
and false alarms.

Figure 5, 6, and 7 show the feasibility of MT1 and MT2
on high dimensional (i) numerical (combining ring-
norm and twonorm data sets), (ii) categorical (modi-
fied UCI nursery data set), and (iii) multi-class (mod-
ified USPS handwritten digit data set) data streams,
respectively. From the figures, one observes that for
MT?2, when changes are detected, there are more vari-
ations in the martingale values. To this end, one sees
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Figure 3. Simulated data streams using the rotating hy-
perplane. Left Column: MT1 (with A™! scaled by a factor
of 100 for easier visualization of the probability); Right
Column: MT2. First Row: Precision and Recall; Middle
Row: Mean and Median Delay time for various A and ¢
values.

that a change is detected by either of the tests when
the martingale value deviates from its initial value,
My =1.

5. Conclusion

In this paper, we describe a martingale framework
for detecting concept changes in time-varying data
streams based on the violation of exchangeability con-
dition. Two tests using martingales to detect changes
are used to demonstrate this framework. One test us-
ing the martingale value (MT1) for change detection
is easily justified using the Doob’s Maximal Inequal-
ity. The other test, based on the martingale differ-
ence (MT?2), is justified using the Hoeffding-Azuma
Inequality. Under some assumptions, MT2 theoreti-
cally has a much lower probability than MT1 of re-
jecting the null hypothesis “no concept change in the
data stream” when it is in fact correct. Our experi-
ments show that both martingale tests detect concept
changes with high probability. Precision increases with
the increase of A or t values, but at the expense of
a higher mean (or median) delay time. Experiments
also show the effectiveness of the two tests for concept
change detection on high-dimensional (i) numerical,
(ii) categorical, and (iii) multi-class data streams.
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Figure 4. Simulated data streams using the NDC data gen-
erator. Left Column: MT1; Right Column: MT2. (Expla-
nation: See Caption for Figure 3.)
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