
Online Learning over Graphs

Mark Herbster m.herbster@cs.ucl.ac.uk

Massimiliano Pontil m.pontil@cs.ucl.ac.uk

Lisa Wainer l.wainer@cs.ucl.ac.uk

Department of Computer Science, University College London, Malet Place, London WC1E 6BT, UK

Abstract

We apply classic online learning techniques
similar to the perceptron algorithm to the
problem of learning a function defined on a
graph. The benefit of our approach includes
simple algorithms and performance guaran-
tees that we naturally interpret in terms of
structural properties of the graph, such as the
algebraic connectivity or the diameter of the
graph. We also discuss how these methods
can be modified to allow active learning on a
graph. We present preliminary experiments
with encouraging results.

1. Introduction

We consider online learning over a graph. In our on-
line learning model an adversary presents a sequence
of (pattern, label) pairs over a series of trials. In each
trial the learner is first presented with a pattern or
object, the learner then predicts the label and finally
receives the true label either making a mistake or not.
The goal is to minimize the number of mistakes (cu-
mulative error) on the sequence. Here, the “patterns”
are identified as the vertices of a graph G which may
be either provided by nature or may have been de-
rived through some similarity metric on the objects
(Belkin & Niyogi, 2004; Zhu et al., 2003a). For ex-
ample, G could be a social network of people and we
may wish to predict peoples’ preferences for products;
protein families can be associated with a graph struc-
ture and we may wish to predict interactive proper-
ties of individual proteins. In these applications, the
data (labeled vertices) do not need to be i.i.d. as typ-
ically assumed in statistical learning. Further benefits
of our approach include simple training algorithms and
performance guarantees that we naturally interpret in

Appearing in Proceedings of the 22 nd International Confer-
ence on Machine Learning, Bonn, Germany, 2005. Copy-
right 2005 by the author(s)/owner(s).

terms of structural properties of the graph.

Learning a function defined on a graph G from a set
of labeled vertices has recently received considerable
attention in machine learning. This set-up is often re-
ferred to as semi-supervised learning on a graph. It has
been studied and motivated from different perspectives
in (Belkin & Niyogi, 2004; Kondor & Lafferty, 2002;
Zhu et al., 2003a; Smola & Kondor, 2003; Belkin et al.,
2004). A common theme of these papers is that they
represent functions defined on the graph by a Hilbert
space associated with the graph Laplacian. We review
these ideas in Section 2. We then present a family
of online learning algorithms in an abstract Hilbert
space in Section 3. We apply these algorithms to the
graph setting in Section 4, and interpret their bounds
in terms of the structural properties of the graph. In
Section 5 we turn our attention to the problem of on-
line active learning on a graph and present an algo-
rithm for this purpose. Finally, in Section 6 we report
about preliminary experiments with our methods.

2. Hilbert Space of Functions on a Graph

Let G = (V, E) be an undirected graph with vertex
set V = {1, . . . , n}, edge set E(G) ≡ E ⊆ {(i, j) :
i < j}i,j∈V and n × n adjacency matrix A = (Aij :
i, j ∈ V) such that Aij = Aji = 1 if (i, j) ∈ E and zero
otherwise1. The graph Laplacian L is the n×n matrix
defined as L := D − A, where D = diag(d1, . . . , dn)
and di is the degree of vertex i.

Let R(G) be the linear space of real-valued functions
defined on the graph, i.e., an n−dimensional vec-
tor space whose elements are the real vectors g =
(g1, . . . , gn)>, where “>” denotes transposition. On
R(G) we introduce the semi-inner product

〈f ,g〉 := f>Lg.

The function 〈·, ·〉 is well defined since L is symmet-

1The ideas we discuss below naturally extend to
weighted graphs as well.

Online Learning over Graphs

ric and positive semidefinite. Moreover, the function
‖g‖ :=

√
〈g,g〉, g ∈ R(G) is a semi-norm since

‖g‖ = 0 if g is a constant vector. This fact can be
easily verified by noting that

‖g‖2 =
∑

(i,j)∈E(G)

(gi − gj)
2 . (1)

The semi-norm ‖·‖ is a measure of smoothness (“com-
plexity”). Thus if ‖g‖ is small then g varies slowly on
the graph; i.e., if (i, j) ∈ E then gi ≈ gj .

Recall that G has r connected components if and only
if L has r eigenvectors with zero eigenvalues. Those
eigenvectors are piece-wise constant on the connected
components of the graph. In particular, G is connected
if and only if the constant vector is the only eigenvector
of L with zero eigenvalue. See, e.g., (Chung, 1997).
Let {λi, ui}n

i=1 be a system of eigen-values/vectors of
L where λ1 = · · · = λr = 0 and 0 < λr+1 ≤ · · · ≤ λn

and define the linear subspace H(G) of R(G) which
is orthogonal to the eigenvectors with zero eigenvalue,
that is,

H(G) := {g : g>
ui = 0, i = 1, . . . , r}. (2)

Clearly, the restriction of the semi-norm ‖ · ‖ on H(G)
is a norm. What is the reproducing kernel of H(G)?
According to, e.g., (Wahba, 1990) this is an n × n

symmetric matrix K such that, for every g ∈ H(G)
and i ∈ V the reproducing kernel property

gi = 〈Ki,g〉 (3)

holds, where Ki is the i-th column of K. We claim
that K = L+ =

∑n

i=r+1 λ−1

i uiu
>

i , where “+” denotes
pseudoinverse. Indeed, K is symmetric and a direct
computation gives LL+ = I −

∑r
i=1 uiu

>

i . Conse-
quently, if g ∈ H(G) then LL+g = g which implies
that gi = eiL

+Lg = KiLg = 〈Ki,g〉, where ei is the
i−th coordinate vector.

Within this framework, we wish to learn online a clas-
sification function g ∈ H(G) on the basis of a set
of labeled vertices. Without loss of generality we as-
sume that the first ` ≤ n vertices are labeled and let
y1, ..., y` ∈ {−1, 1} be the corresponding labels. Our
ideas elaborate on previous batch algorithms for learn-
ing a function on a graph. In particular, in (Belkin &
Niyogi, 2004) the function g is computed as the mini-
mizer of a regularized least-square error while in (Zhu
et al., 2003a) g is (essentially) obtained as the minimal
norm interpolant in H(G) to the labeled vertices, i.e.,
the unique solution to the problem

min
g∈H(G)

{‖g‖ : gi = yi, i = 1, . . . , `} . (4)

These methods compute g by solving a squared linear
system of n and n − ` equations respectively. On the
contrary, in this paper we use the representer theorem,
see, e.g. (Wahba, 1990), to express g as

gi =
∑̀

j=1

Kijcj .

This approach is more advantageous if the kernel K

can be computed off-line. Indeed, the computation of
the parameter vector c = (c1, . . . , c`) involves solving
a linear system of ` equations and, typically, ` � n. In
particular, the solution of (4) is obtained as c = K̃+y

where K̃ = (Kij)
`
i,j=1.

3. Projection Algorithms

Let H be a Hilbert space with inner product 〈·, ·〉 and
norm ‖·‖ :=

√
〈·, ·〉, e.g., the above Hilbert space H(G)

of functions on a graph G.

We consider the following well-known online learn-
ing model. Learning proceeds in trials t = 1, 2, . . ., `.
The algorithm maintains a parameter vector (hypoth-
esis), denoted by wt ∈ H. In each trial the algo-
rithm receives a pattern xt ∈ H. It then produces
some action or prediction denoted by ŷt, a function of
xt and wt. Finally, the algorithm receives a label yt

and incurs a loss L(yt, ŷt) measuring the discrepancy
between yt and ŷt. For simplicity, we only consider
binary classification, i.e., the labels are in {−1, 1},
ŷt = sign(〈wt,xt〉) and we measure discrepancy by
counting mistakes. We provide a bound on the cumu-
lative mistakes in terms of any member of the realizable
set of predictors, i.e., the set of vectors u that separate
the data with a given minimum margin.

Our main algorithm is similar to the well-known
mistake-driven perceptron algorithm; but it is de-
signed to have provable bounds even with an aggressive
updating strategy (see below). The algorithm was di-
rectly inspired by (Herbster, 2001) which is broadly
generalized in (Shalev-Shwartz et al., 2004).

The key tool which we use to repeatedly construct up-
dates in the algorithms below is projection.

Definition 3.1. The projection of a point w ∈ H onto
a closed convex nonempty set N ⊆ H is defined by

P (N ; w) := argmin
u∈N

‖u− w‖. (5)

The following version of the Pythagorean Theorem is
well-known and provides the main tool we use to study
Algorithm 2 below.

Online Learning over Graphs

Input: A sequence of closed convex sets {Ut}
`
t=1 ⊂ H

Initialization: w1 ∈ H
for t = 1, . . . , ` do

Update: wt+1 = P (Ut; wt)

end

Algorithm 1: Prototypical projection algorithm.

Theorem 3.1. If N is a closed convex subset of H
then, for every u ∈ N and w ∈ H, we have that

‖u− w‖2 ≥ ‖u − P (N ; w)‖2
+ ‖P (N ; w) − w)‖2

.

In particular, if N is an affine set the equality holds.

In the next lemma we summarize some further facts
about projections. We first introduce some nota-
tion. We let D = {(xi, yi)}`

i=1 ⊆ X × {−1, 1} be
an example set; and let Dt denote the first t exam-
ples of D. For every U ⊆ {1, . . . , `} we define the
sets hs(U) :=

⋂
i∈U{u ∈ H : yi〈u, xi〉 ≥ 1} and

af(U) :=
⋂

i∈U{u ∈ H : 〈u, xi〉 = yi}. Finally, a
classifier u is said unit-separating for examples D if
u ∈ hs({1, . . . , `}).

Lemma 3.1. If (x, y) ∈ H×{−1, 1} and w ∈ H then

P ({u : 〈u, x〉 = y}; w) = w +
(y − 〈w, x〉)

‖x‖2 x

P ({u :y〈u, x〉≥ 1}; w)= w +
y max(0, 1− y〈w, x〉)

‖x‖2 x.

Von Neumann first proved that a sequence of projec-
tions between two closed convex subsets converge to
a point in their intersection. Since then this idea has
been broadly applied within the optimization commu-
nity and it is known as the method of alternating pro-
jections, see (Bauschke & Borwein, 1996) for a review.

The following lemma shows the convergence of the
prototypical projection algorithm (Algorithm 1).

Lemma 3.2. Let {U1, . . . ,U`} ⊆ H be a sequence of
convex sets and w1 a start vector for Algorithm 1.
Then for every u ∈

⋂`

t=1Ut, we have that

∑̀

t=1

‖wt − wt+1‖
2 ≤ ‖u − w1‖

2 − ‖u− w`+1‖
2
. (6)

Proof. On any trial t = 1, . . . , ` the Theorem 3.1 im-
plies, for all u ∈ Ut, that ‖wt+1 − wt‖

2 ≤ ‖u− wt‖
2−

‖u − wt+1‖
2
. The result follows by summing this in-

equality over all trials.

We use the prototypical projection algorithm to pro-
duce our main algorithm (see Algorithm 2 below) by
associating the feasible set sequence {U1, . . . ,U`} with

Input: D` = (x1, y1), . . . , (x`, y`) ∈ H × {−1, +1}.

Initialization: w1 ∈ H ; cyclic= 〈TRUE|FALSE〉;
aggressive = 〈TRUE|FALSE〉

for t = 1, . . . , ` do
Predict: receive xt

ŷt = sign(〈wt,xt〉)

Update: receive yt

if ŷt 6= yt then M = M ∪ {t}
Ut = strategy(M, wt,Dt)
if cyclic then

wt1 = wt; i = 1
1 if 〈wti

, xt〉yt≤0 or aggressive then
wti+1

= P (hs({t}); wti
); i = i + 1

while ∃τi ∈ Ut : 〈wti
, xτi

〉yτi
< 0 do

2 wti+1
= P (hs({τi}); wti

); i = i + 1

end
wt+1 = wti

else
if 〈wt, xt〉yt≤0 or aggressive then

3 wt+1 = P (af(Ut); wt)

end

end

Algorithm 2: Online projections

the example sequence {(x1, y1), . . . , (x`, y`)}. Each
feasible set Ut consists of those hypothesis vectors
which are “compatible” with a subset of the past ex-
amples.

The algorithm is parameterized by a strategy func-
tion, two boolean variables, cyclic and aggressive,
and a start vector w1. The strategy function on trial
t determines the index set Ut. This in turn determines
the feasible set (noncyclic) Ut or a sequence (cyclic) of
feasible sets {Ut1 ,Ut2 , . . .}. We assume that the exam-
ple t is included in the set Ut for every t. Such a strat-
egy is called corrective. Typical strategies include the
simple perceptron-like strategy (Ut = {t}), minimum
norm interpolation (Ut = {1, . . . , t}) when noncyclic,
or when cyclic this is analogous to a perceptron where
on each trial we cycle through past examples which
are currently “predicting incorrectly.” The noncyclic
strategy projects the current hypothesis wt to a sin-
gle affine set Ut determined by the example indices in
Ut whereas the cyclic one projects on a sequence of
halfspaces determined by the example indices in Ut.
The boolean aggressive controls whether an update
is made on every trial (aggressive) or only on those
trials when a mistake occurs (non-aggressive). In the
active learning setting, we will reap a benefit from the
aggressive versions of the algorithm.

The following theorem bounds the number of mistakes
as proportional to the squared norm (“complexity”) of
the predictor u. In an adversarial setting a mistake
may be forced on every trial. However, if one addi-
tionally assumes that the predictor has small squared

Online Learning over Graphs

norm, the total mistakes are hence strictly bounded.
Recall that the p-power mean of a set of nonnegative
numbers {ai}n

i=1 is defined as

µ(p; {ai}
n
i=1) =

(
1

n

∑
ai

p

) 1
p

(7)

if p ∈ IR and appropriately in the limit when p ∈
{−∞, 0,∞}. In particular, µ(∞; {ai}) = max{ai}.

Theorem 3.2. If {(xi, yi)}`
i=1 ⊆ H × {−1, 1} is a

sequence of examples, w1 ∈ H a start vector and M

the set of trials in which Algorithm 2 predicted incor-
rectly, then the cumulative number of mistakes |M | of
the algorithm is bounded by

|M | ≤ ‖u − w1‖
2
B (8)

for all u ∈ hs({1, . . . , `}) with cyclic updating and for
all u ∈ af({1, . . . , `}) with noncyclic updating, where

B = µ(−1; {‖xi‖
2}i∈M). (9)

Proof. The algorithm projects onto a sequence of con-
vex sets determined by each index set Ut. In the non-
cyclic case, on each trial t there is a projection to a
single affine set Ut = af(Ut), while in the cyclic case
on each trial there is potentially a sequence of projec-
tions to halfspaces {hs({τ1}), hs({τ2}), . . .} where each
τi ∈ Ut. We now argue in detail the noncyclic case and
sketch the proof for the cyclic case.

By Lemma 3.2 we have, for all u ∈ af({1, . . . , `}), that

∑̀

t=1

‖wt − wt+1‖
2 ≤ ‖u − w1‖

2 − ‖u− w`+1‖
2
. (10)

If a mistake has occurred at trial t we have that

1≤|〈wt,xt〉−yt|≤|〈wt−wt+1,xt〉|≤‖wt−wt+1‖‖xt‖

where the first two inequalities follow from the fact
that there has been a mistake and that the strategy

function is corrective, i.e., yt = 〈wt+1,xt〉, and the
final inequality follows by the Cauchy-Schwarz in-
equality. Consequently we have, for all t ∈ M ,
that ‖xt‖

−1 ≤ ‖wt − wt+1‖, which implies that∑
t∈M ‖xt‖

−2 ≤
∑`

t=1‖wt − wt+1‖
2
. Combining the

last inequality with inequality (10) we have that

|M | ≤
(
‖u− w1‖

2 − ‖u − w`+1‖
2
)
µ(−1; {‖xi‖

2}i∈M)

which after dropping the term ‖u − w`+1‖
2

gives (8)
with B as in (9).

The argument for the cyclic case follows the above
argument except that the left hand side of the analo-
gous inequality to (10) contains sub-terms due to re-
peatedly cycling through the past examples (line 2 in

Algorithm 2); these terms may all be lower-bounded
by zero except the term corresponding to the first pro-
jection (line 1 in Algorithm 2).

The previous bound requires that the data is realiz-
able, i.e., separable for the cyclic case and that an ex-
act interpolation of the labels exists in the noncyclic
case. This requirement is not particularly onerous for
the graph learning problem. Given a connected n-
vertex graph, the corresponding Hilbert space H(G) in
(2) is n − 1 dimensional. Hence, if the data sequence
does not contain any duplicate patterns and is of
length less than n it is always realizable. Furthermore,
the bound for the cyclic case is always better than the
bound for the noncyclic case since af(U) ⊂ hs(U) for
every U ⊆ {1, . . . , `}.

Recall that for every r, s ∈ IR ∪ {−∞,∞} with r ≤ s,
the power mean inequality is

µ(r; {ai}) ≤ µ(s; {ai}). (11)

Using this inequality we can further bound the
constant B in (9) as B ≤ µ(1; {‖xi‖2}i∈M) ≤

max1≤t≤` ‖xt‖
2. Note that for this choice of B, the

bound (8) is equivalent to the margin bound proved for
the perceptron. Theorem 3.2 refines the upper bound
on B to the harmonic mean of the squared norm of
the misclassified patterns. The refinement of B to the
arithmetic mean was previously given in (Gentile &
Warmuth, 1998).

4. Application to the Graph Setting

The analysis in Section 3 provides an algorithm and
a general mistake bound in an abstract Hilbert space
H. We apply these results to graphs by setting H =
H(G). We proceed to discuss the implementation and
then to discuss our bounds in terms of the structural
properties of the graph.

In order to run our online algorithm in the space H(G)
we proceed as follows. We first compute the kernel
K = L+. This requires O(n3) computations but has
the advantage that multiple problems may be run with
the same graph kernel. Then, to run Algorithm 2 we
simply replace pattern xt by Kt, identify wt by gt

and use the reproducing kernel property to compute
〈gt,Kt〉 at each iteration. This version of the projec-
tion algorithm is similar to the “kernel perceptron,”
see (Freund & Schapire, 1999). The computational
complexity of the algorithm depends on the function
strategy and the choice of the parameters cyclic and
aggressive. For example, when noncyclic, aggres-
sive and Ut = {1, . . . , t} (minimal norm interpolation)
it requires O(t2) computations on trial t. However,
when cyclic, nonaggressive and Ut = {t} it requires

Online Learning over Graphs

O(m) computations on each trial where m is the cur-
rent number of mistakes, see (Herbster et al., 2005) for
details.

For general Hilbert spaces in Theorem 3.2 the num-
ber of mistakes of the algorithm is upper bounded by
the product of two terms: first, the squared norm of
the predictor; and second, the harmonic mean of the
squared norms of the misclassfied patterns. The next
two theorems provide a bound for these terms vis-à-vis
graph properties. Specifically, the number of mistakes
on a partitioned graph is bounded by the product of
three quantities (splitting the first term above in two):
first, the number of intra-partition edges; second, a
measure of the balance of the partition (Theorem 4.1);
third, a natural constant of proportionality which de-
pends on the diameter of the graph and the second
smallest eigenvalue of the graph Laplacian, the alge-
braic connectivity of the graph (Theorem 4.2).

A label partition (g+,g−) of a graph G assigns labels
to each vertex of the graph; hence g+ = {i : gi = 1}
and g− = {i : gi = −1}. The squared norm of a
unit-separating classifier is bounded in the following
theorem by the optimal partitioning of the graph as
constrained by the labelled data.

Theorem 4.1. If G is a connected graph with a label
partition (g+,g−), n+ = |g+| > 0, n− = |g−| > 0 and
∂(g+,g−) is the number of edges between positive and
negative vertices, then there exists a unit-separating
classifier u (∀i : uigi ≥ 1) with a norm bounded as

‖u‖2 ≤ ∂(g+,g−)

(
n

min(n+, n−)

)2

.

Moreover, if n+ ≥ n−, we have, for the same classi-

fier, that λ2n
n+

n− ≤ ‖u‖2 ≤ λnnn+

n− .

The first bound follows from counting the intra-
partition edges while enforcing the constraint∑n

i=1 ui = 0, see (Herbster et al., 2005) for details.

If p ∈ V we define the eccentricity of vertex p, ρp, to be
the distance on the graph between p and the furthest
vertex on the graph to p, that is,

ρp = max
q∈V

min |P (p, q)| ≤ DG

where the minimum is taken with respect to all paths
P (p, q) from p to q and DG is the diameter of the
graph, DG = maxp ρp.

Recall, by the reproducing kernel property (equa-
tion (3)), that the squared norm of the pattern of
graph vertex p is Kpp.

Theorem 4.2. For connected graph G with Laplacian
kernel K and eccentricity function ρ we have that

Kpp ≤ min(
1

λ2
, ρp), p ∈ V. (12)

Proof. From the Rayleigh-Ritz characterization of
eigenvalues we have, for every g ∈ H that

g>Lg ≥ λ2g
>g. (13)

If g = Kp we have Kpp = g
T Lg ≥ λ2g

T
g ≥ λ2K

2
pp,

where the equality follows from equation (3) with i =
p, the left inequality by (13) and the right inequality by
the observation that gp = Kpp. By dividing through
we have that Kpp ≤ 1

λ2
for arbitrary p.

We now show that Kpp ≤ ρp. We choose g = Kp and
note that, since g ∈ H if gp = Kpp > 0 then there
exists q 6= p such that gq < 0. Indeed, the constant
vector has zero eigenvalue and, so, by the definition
of H(G) we have that

∑n
i=1 gi = 0. Moreover, since

p has eccentricity ρp there exists a path P ⊆ G from
vertex p to q such that |E(P)| ≤ ρp. Hence, we have
that

∑
(i,j)∈E(P) |gi − gj | > gp. Using equation (11)

with a(i,j) = |gi − gj |, s = 2 and r = 1 we obtain that

∑

(i,j)∈E(P)

(gi − gj)
2 ≥

(∑
(i,j)∈E(P) |gi − gj |

)2

|E(P)|

≥

(∑
(i,j)∈E(P) |gi − gj |

)2

ρp

≥
g2

p

ρp

.

Observe that K>

p LKp =
∑

(i,j)∈E(G)(Kpi − Kpj)
2

by (1) and using (3) we have that

gp =
∑

(i,j)∈E(G)

(gi − gj)
2 ≥

∑

(i,j)∈E(P)

(gi − gj)
2 ≥

g2
p

ρp

from which, using gp = Kpp, the result follows.

We remark that either 1
λ2

or the diameter may prove
tighter as the bound of a given graph. For example,
the ring graph with m vertices has a diameter of dm

2 e
while 1

λ2
= Θ(m2), but the m-dimensional binary hy-

percube has a diameter of m but 1
λ2

= 2. We note
that (Belkin et al., 2004) has studied the problem of
bounding the generalization error of the least square
regularized solution in H(G). Their result also involves
λ2 and the diameter of the graph.

4.1. Complexity of Cyclic Updating

It is interesting to analyze the computational com-
plexity of Algorithm 2 with cyclic strategies. This
complexity is bounded by the number of updates (ex-
ecutions of lines 1 and 2) to the hypothesis vector. In
Section 6 for our experiments we use a cyclic strat-
egy called C-proj whose strategy set on trial t is
Ut = {1, . . . , t}, i.e., the algorithms cycles through
the current prefix of the dataset until there are no
more mistakes. This strategy is flawed for IRn in so

Online Learning over Graphs

far as it is well-known that there exists datasets that
require an exponential number of updates in the size of
the dataset for the perceptron algorithm to converge;
these arguments easily extend to our algorithm. How-
ever, the intrinsic geometry of the graph Laplacian as-
sures polynomial convergence in the size of the dataset
when there is at least one positive and negative label.
Indeed, by Theorem 3.2 there exists a unit-separating
hyperplane and, so, in inequality (8) we may bound B

by the diameter DG of the graph to obtain a bound on
the number of mistakes. Simple bounds on the number
of edges between the positive and negative labels (see
Theorem 3.4) lead to a bound of O(n3DG) and when
the number of positive and negative labels is balanced
of O(n2DG). The diameter DG is itself bounded by
n− 1. Finally a closer analysis of our algorithm would
reveal that the mistake bound also bounds the number
of updates for non-aggressive strategies.

5. Active Learning

In this section, we present an active online learning
method which builds on our analysis in Section 3. We
are given a pool of unlabeled patterns {x1, . . . , x`};
the true outcomes (labels) {y1, . . . , y`} corresponding
to the patterns are unknown and may be chosen ad-
versarially by “nature”. The learner has an initial seg-
ment of s “free” trials. On each trial the learner may
choose a pattern to query from the pool; nature re-
turns a corresponding label; then the learner may ask
the next query. After an initial segment of s trials
then the standard online learning protocol is followed
for `−s trials. The goal is to minimize the cumulative
error on all future non-actively chosen examples.

In the theorem below we slightly generalize the active
learning model, i.e., we assume that the set of active
trials is any subset A of {1, . . . , `} with s elements; this
matches the model above when A := {1, . . . , s}.

Theorem 5.1. Given a sequence of examples
(x1, y1), . . . , (x`, y`) ∈ H × {−1, 1} and a start vec-
tor w1 ∈ H, let M be the set of trials in which Algo-
rithm 2 predicted incorrectly, A the set of active trials
and define the progress ZA on the set A as

ZA :=

{∑
t∈A ‖wt − wt+1‖

2
noncyclic∑

t∈A

∑kt

i=1 ‖wti
− wti+1

‖2
cyclic

where kt is number of executions of line 2 of the algo-
rithm at trial t. Then, the number of mistakes of the
algorithm during trials {1, . . . , `}\A is bounded as

|M\A| ≤ (‖u − w1‖
2−ZA)µ(−1; {‖xi‖

2}i∈M\A) (14)

for all u ∈ hs({1, . . . , `}) with cyclic updating and for
all u ∈ af({1, . . . , `}) with noncyclic updating.

This theorem modestly refines Theorem 3.2 and mo-
tivates our technique for selecting unlabeled examples
in active learning. See (Herbster et al., 2005) for a
proof.

Equation (14) says that the greater the progress ZA

during the s active trials the fewer mistakes on the re-
maining trials for a fixed complexity ‖u − w1‖. This
is justification for using an aggressive algorithm for
online active learning as opposed to an unadorned
perceptron. When Algorithm 2 is aggressive in al-
most every trial we are guaranteed to make progress
(progress is not made at trial t if and only if there are
no “margin” errors from examples in Ut.) Thus, a sen-
sible strategy for example selection during the active
phase is to maximize the progress. For this purpose,
we propose a greedy technique which independently
chooses at each trial a point xp such that

p = argmax
i∈I

min
y∈{−1,1}

‖w − P ({u : 〈u, xi〉y ≥ 1}; w)‖2

where w and I are the weight vector and the index set
at that trial respectively. This is exactly the maxmin
progress on trial t when cyclic and Ut = {t}. In ev-
ery other case it is a lower bound on the progress. We
note that this greedy method is similar to a criteria
proposed in (Tong & Koller, 2000) in the context of
SVM. Other related works include (Campbell et al.,
2000; Warmuth et al., 2003) and references therein.
We were also inspired by the work in (Zhu et al.,
2003b) which considers active learning on a graph from
a probabilistic batch perspective.

Note that the minimum in the above equation equals
(min(|〈w, xi〉|, 1)− 1)2‖xi‖

−2. In particular, when we
apply this equation to a graph G we replace xi by
Ki, w by g ∈ H(G) and choose I = V at every trial.
Hence, at each trial we select that vertex p which max-
imizes over i ∈ V ,

(min(|gi|, 1) − 1)2

Kii

. (15)

The quantity (15) suggests that vertices with small
Kii are of particular importance. Note that Kii is up-
per bounded by ρi, the minimal path distance to the
furthest vertex on the graph. Thus, assuming that
Kii scales with ρi those vertices with small Kii are
more central to the graph at a first approximation and,
hence, more informative. On the contrary, the numer-
ator in (15) is small if a vertex i is close to a labeled
vertex since in this case |gi| ≈ 1. Hence, our active
learning model will query a vertex which optimizes the
trade-off between the vertex being as central as possi-
ble to the graph and being as far as possible to already
labeled vertices. The experiments in the next section
confirm this observation. This is also nicely illustrated

Online Learning over Graphs

.
Method Strategy Aggressive Cyclic Selection
1-proj {t} false false random
C-proj {1, . . . , t} false true random
MNI-ag {1, . . . , t} true false random
Act-st {t} true2 false active 1
Act-mu {t} true2 false active 2

Table 1. Different learning methods.

1
2

3

45 6

7

8

9
10

11

12

13

14

15

16

17

18

19

20

21

22 23

24

25

26

27 28

29

30

31
32

33

34

35
36

Figure 1. Hier. Random Graph Gk−out(6; 2) components
grey-scaled Kpp : K30,30 = .21 (min), K15,15 = .94 (max)

in Figure 1 where even if vertex 15 is maximally un-
certain i.e., a margin of g15 = 0 then criteria (15) will
still select vertex 30 preferentially whenever the mar-
gin |g30| ≤ 0.51.

6. Experiments

In this section we present some preliminary experi-
ments with the aim of comparing different instances
of the algorithm proposed in this paper. We com-
pare five instances of our algorithm: 1-proj, C-proj,
MNI-ag (which is similar to the method in (Zhu et al.,
2003a)), Act-st and Act-mu. The first three methods
receive data at random while the last two select data
actively. Table 1 summarizes the methods’ parame-
ters. The last two methods are identical to 1-proj,
except for the way they acquire data: 1-proj receives
data randomly; Act-st selects the first t vertices ac-
cording to criterion (15); Act-mu selects the first t ver-
tices based on the minimum margin (arg mini = |gi|),
see (Tong & Koller, 2000). We initialize the start vec-
tor w1 = 0 for each of the five instances.

We compare the above methods on a digit recognition
task and on an artificially generated hierarchical ran-
dom graph. In the first case we consider the problem

2In order to compare to 1-proj this algorithm is only
aggressive when actively selecting points.

of distinguishing the “even” digits from the “odd” dig-
its. The dataset was obtained from the USPS dataset
by drawing 100 examples at random from each digit
thereby forming a dataset of size 1000. Each digitized
image corresponds to a vertex in the graph which we
built using 3-NN with the Euclidean distance.

The random graph dataset simulates a noisy multi-
cluster concept. It consists of a q–cluster hierarchical
random graph where each cluster or sub-graph is a
Gk−out(q; k) random graph with q vertices. To gener-
ate this sub-graph, for each vertex i we independently
sample k of the q − 1 edges departing from i at ran-
dom without replacement. We then set Aij = Aji = 1
if the edge (i, j) has been sampled at least once in the
above process; thus, the resulting graph has at most kq

edges and each vertex has degree at least k. We con-
vert this to a two-level hierarchical model as follows.
We generate q independent Gk−out(q; k) graphs where
each of the q graphs is treated as a meta-vertex in a
Gk−out(q; k) graph. We then generate the meta-edges
to connect the meta-vertices and realize the resultant
meta-edge with a “real” edge by choosing at random a
“real” vertex in each meta-vertex. Figure 1 shows an
example of a hierarchical Gk−out(6; 2) graphs. In our
experiments we created hierarchical random graphs
with q = 26 and k = 2. Such a hierarchical graph is
labeled by a noisy diffusion process where we initially
label 13 randomly chosen vertices as positive and 13
as negative (one vertex per each cluster in the graph),
see (Herbster et al., 2005) for more information.

We compare each of the above algorithms on the
digit graph (Figure 2 top) and the hierarchical graph
(Figure 2 bottom). For this purpose we use the fu-
ture cumulative error to measure performance, that
is, Cfe(t) = |M ∩ {t + 1, . . . , `}|. This is as op-
posed to plotting the past cumulative error, Cpe(t) =
|M ∩ {1, . . . , t}|. This is a natural metric for compar-
ing the methods. Indeed, with active learning the first
t vertices are actively selected and we wish to mea-
sure the performance on the remaining ` − t vertices
which are now received at random. This performance
is exactly Cfe(t). We also note that for the three non-
active methods (1-perc, C-proj and MNI-ag) Cfe(t)
is the mirror image of Cpe(t). Each plot represents a
single random graph whose construction was described
above. The lines plotted are averaged over 20 random
permutations of the data sequence3.

In the digit graph C-proj and MNI-ag perform compa-

3This is literally true with non-active point selection.
Each “run” with active selection actually consists of ` sub-
runs on each of the ` possible prefix-suffix combinations
where each suffix is independently randomized.

Online Learning over Graphs

0 200 400 600 800 1000
0

20

40

60

80

100

120

Trials

Fu
tu

re
 C

um
ul

at
iv

e
E

rr
or

1−proj
C−proj
MNI−ag
Act−st
Act−mu

0 100 200 300 400 500 600 700
0

20

40

60

80

100

120

140

160

180

Trials

Fu
tu

re
 C

um
ul

at
iv

e
E

rr
or

1−proj
C−proj
MNI−ag
Act−st
Act−mu

Figure 2. Even vs. Odd (top) and Hierarchical Random
Graph experiments.

rably while 1-proj appears to be weaker. Both active
learning methods improved the performance signifi-
cantly. On the digits graph this effect is dramatically
demonstrated by comparing the 1-proj and Act-st

future cumulative error from trial 5. These are the
same method except that Act-st has previously se-
lected 5 points actively via (15) and updated them ag-
gressively while 1-proj has received them at random,
however they lead to future cumulative errors (i.e., the
“suffix” for both is a random permutation of the 995
remaining vertices) of 104.4 and 66.9 respectively.

In the random graph experiment, MNI-ag and C-proj

perform similarly and 1-proj is again the weaker
method. Note that this classification task is more diffi-
cult than the digit one. In this case it appears that our
active method Act-ag slightly improves over Act-mu

when t increases. We speculate that this may be due
to the favorable bias of Act-st to choose central ver-
tices in the graph (e.g., vertex 30, 2 and 13 in Figure 1)
which are especially informative when the task is hard.

Acknowledgments

We thank the anonymous reviewers for valuable com-
ments. This work was supported in part by the IST

Programme of the European Community, under the
PASCAL Network of Excellence, IST-2002-506778.

References

Bauschke, H. H., & Borwein, J. M. (1996). On projection
algorithms for solving convex feasibility problems. SIAM
Review, 38, 367–426.

Belkin, M., Matveeva, I., & Niyogi, P. (2004). Regular-
ization and semi-supervised learning on large graphs.
COLT 2004, Proc. (pp. 624–638). Springer.

Belkin, M., & Niyogi, P. (2004). Semi-supervised learning
on riemannian manifolds. Machine Learning, 56, 209–
239.

Campbell, C., Cristianini, N., & Smola, A. (2000). Query
learning with large margin classifiers. ICML 2000, Proc.
(pp. 111–118). Morgan Kaufmann.

Chung, F. R. (1997). Spectral graph theory. No. 92
in CBMS Regional Conference Series in Mathematics.
American Mathematical Society.

Freund, Y., & Schapire, R. E. (1999). Large margin classi-
fication using the perceptron algorithm. Machine Learn-
ing, 37, 277–296.

Gentile, C., & Warmuth, M. K. (1998). Linear hinge loss
and average margin. NIPS 1998, Proc. (pp. 225–231).
MIT Press.

Herbster, M. (2001). Learning additive models online with
fast evaluating kernels. COLT 2001, Proc. (pp. 444–
460). Springer.

Herbster, M., Pontil, M., & Wainer, L. (2005). Online
learning over graphs (Working Paper). University Col-
lege London.

Kondor, R., & Lafferty, J. (2002). Diffusion kernels on
graphs and other discrete input spaces. ICML 2002,
Proc. (pp. 315–322). Morgan Kaufmann.

Shalev-Shwartz, S., Crammer, K., Dekel, O., & Singer, Y.
(2004). Online passive-aggressive algorithms. NIPS 16.
MIT Press.

Smola, A., & Kondor, R. (2003). Kernels and regular-
ization on graphs. COLT 2003, Proc. (pp. 144–158).
Springer.

Tong, S., & Koller, D. (2000). Support vector machine
active learning with applications to text classification.
ICML 2000, Proc. (pp. 999–1006). Morgan Kaufmann.

Wahba, G. (1990). Splines models for observational data,
vol. 59 of Regional conference series in Applied Mathe-
matics. SIAM.

Warmuth, M. K., Liao, J., Rätsch, G., Mathieson, M.,
Putta, S., & Lemmen, C. (2003). Active learning with
support vector machines in the drug discovery process.
Journal of Chemical Information and Computer Sci-
ences, 43, 667–673.

Zhu, X., Ghahramani, Z., & Lafferty, J. (2003a). Semi-
supervised learning using gaussian fields and harmonic
functions. ICML 2003, Proc. (pp. 912–919). AAAI
Press.

Zhu, X., Lafferty, J., & Ghahramani, Z. (2003b). Com-
bining active learning and semi-supervised learning us-
ing gaussian fields and harmonic functions. Proc. of the
ICML 2003 workshop on The Continuum from Labeled
to Unlabeled Data in ML and Data Mining (pp. 58–65).

