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Abstract

We present a new method to estimate the
intrinsic dimensionality of a submanifold M
in R

d from random samples. The method
is based on the convergence rates of a cer-
tain U -statistic on the manifold. We solve
at least partially the question of the choice
of the scale of the data. Moreover the pro-
posed method is easy to implement, can han-
dle large data sets and performs very well
even for small sample sizes. We compare the
proposed method to two standard estimators
on several artificial as well as real data sets.

1. Introduction

The topic of intrinsic dimensionality estimation of sub-
manifolds in R

d has a long history. In this paper we
consider the case where we have random samples from
a probability distribution which has support on a sub-
manifold in R

d. In recent years there has been done
a lot of work in estimating manifold structure from
the data. However finding low-dimensional approxi-
mations of submanifolds is considerably harder than
estimating their dimension and the goal of what kind
of the structure of the manifold should be preserved in
the approximation differs from method to method.
However the goal of estimating the dimension of a sub-
manifold is a well-defined mathematical problem. In-
deed all notions of dimensionality like e.g. topological,
Hausdorff or correlation dimension agree for submani-
folds in R

d. Differences arise only if one considers more
irregular sets like fractals, see (Falconer, 2003).
The methods for dimensionality estimation up to now
can be roughly divided into two groups. The first one
tries to determine the dimensionality by dividing the
data in small subregions followed by a principal com-
ponent analysis (PCA) of the points in each subregion.
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The number of dominant eigenvalues determines then
the dimension, see (Fukunaga, 1971). This method
has two drawbacks, first one has to find a suitable
scale for the size of the subregions and second one has
to determine what one considers as dominant eigen-
values, which is also a typical problem of standard
PCA. The second type of estimators was originally de-
signed to determine the dimension of the attractor of
a chaotic dynamical system from samples of its time
series. They are all based on the assumption that the
volume of an m-dimensional set scales with its size s
as sm which implies that also the number of neighbors
less than s apart will behave in the same way. This was
the motivation for Grassberger and Procaccia (1983)
to define the correlation integral as

Cn(s) =
2

n(n − 1)

n
∑

i<j

�

‖Xi−Xj‖≤s

where Xi = 1, . . . , n are the n sample points of our
manifold in R

d. Then the correlation dimension ν is
defined as

ν = lim
s→0

lim
n→∞

log Cn(s)

log s

In practice one computes Cn(s) for different si and
then fits a line through [log si, log Cn(si)] with least
squares. Similar to the method of Fukunaga also for
the correlation dimension one has the drawback that
one has to chose the scales si. Note that this is a cru-
cial step since the data is always 0-dimensional at a
very small scale and is maybe even d-dimensional at a
large scale, so that one either underestimates or over-
estimates the dimension.
In this paper, the quantity we estimate is essentially
the correlation integral with

�
replaced by a general

kernel function. However the way we estimate the di-
mension is based on the convergence rate of the mod-
ified correlation integral. The advantage is that we
only have to choose once a kind of ’smallest’ scale at
which one examines the data, the others are then de-
termined by the convergence rate. Also we examine
for the first time the influence of using in the correla-
tion integral the distance in R

d instead of the intrinsic
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distance of the manifold. The analysis of the limit of
the modified correlation integral shows explicitly how
the intrinsic and extrinsic curvature of the submani-
fold as well as the smoothness of the density of the
probability measure influence the asymptotics of the
correlation integral. Both effects lead to a scaling of
Cn(s) which is different from sm.

2. Theoretical Background

We assume that the probability measure P generat-
ing the data Xi ∈ R

d has support on a m-dimensional
submanifold M of R

d. That means we are not trying
to separate possible noise in the data from the under-
lying ground truth. In fact we will argue later in an
experiment that on the basis of a finite sample it is
in principle impossible to judge whether one has noise
in the data or a very curved manifold. Moreover we
also exclude the case of probability distributions with
support of fractal dimension. As in the case of noise
it is in principle impossible to judge based on a finite
sample whether the data has fractal dimension or just
very high curvature.
The m-dimensional submanifold M is a Riemannian
manifold if one considers the induced metric from R

d.
That means that the inclusion map i : M → R

d is an
isometry (in the sense of Riemannian manifolds). Note
that we will use in the following the somehow cumber-
some notation x ∈ M and i(x) ∈ R

d in order to make
it more obvious when we are working on the manifold
M and when on R

d. As any Riemannian manifold,
M is also a metric space with the path-metric. A
key point in the following proof will be the relation
of the distance d(x, y) on M and the Euclidean dis-
tance ‖i(x) − i(y)‖ in R

d of two points x, y ∈ M . This
relation has been derived in (Smolyanov et al., 2004):

Lemma 1 Let i : M → R
d be an isometric embedding

of the smooth m-dimensional Riemannian manifold M
into R

d and let x ∈ M\∂M , then ∀y ∈ BM (x, inj(x))

‖i(y) − i(x)‖2
Rd =d2

M (x, y) − 1

12
‖Π(γ̇, γ̇)‖2

TxRd

+ O(d5
M (x, y)),

where inj(x) is the injectivity radius1 at x, Π is the
second fundamental form and γ : [0, 1] → M , with
γ(0) = x and γ(1) = y is the unique geodesic2 from x
to y.

1The injectivity radius of a point is the radius of the
largest ball in M such that the exponential map is defined
and injective.

2Note that γ is not parameterized by arc-length

The second fundamental form Π is the extrinsic cur-
vature of M , see e.g. (Lee, 1997).
Before going into further detail let us state our as-
sumptions on M and P . We will need some regularity
of the submanifold. In particular we need to bound
the deviation of the extrinsic distance in R

d in terms
of the intrinsic distance in M . For each x ∈ M we
define the regularity radius r(x) as

r(x) = sup{r > 0
∣

∣ ‖i(x) − i(y)‖2
Rd ≥ 1

2
d2

M (x, y),

∀ y ∈ BM (x, r)}

Assumption 1 • i : M → R
d is a smooth, isomet-

ric embedding3,

• M has a bounded second fundamental form,

• M has bounded sectional curvature,

• for all x ∈ M , r(x) > 0, and r is continuous,

• δ(x) = inf{‖i(x) − i(y)‖
Rd

∣

∣ y ∈
M\BM (x, 1

3 min{inj(x), r(x)}) } > 0,∀x ∈ M ,

• Define Sε = {x ∈ M,d(x, ∂M) < ε}, then ∀ε > 0,
injε := infx∈M\Sε

inj(x) > 0.

• ∀ε > 0, rε := infx∈M\Sε
r(x) > 0.

• ∀ε > 0, δε := infx∈M\Sε
δ(x) > 0.

The first condition ensures that M is a smooth sub-
manifold of R

d with the metric induced from R
d (this

is usually meant when one speaks of a submanifold in
R

d). The next three properties guarantee that M is
well behaved. The fifth condition ensures that if parts
of M are far away from x in the geometry of M , they
do not come too close to x in the geometry of R

d. The
last three conditions ensure that up to a small strip at
the boundary we have global control over inj(x), δ(x)
and r(x).
The reader who is not familiar with Riemannian geom-
etry should keep in mind that locally, a submanifold
of dimension m looks like R

m.

Assumption 2 • P has a density p with respect to
the natural volume element dvol(x) =

√
det g dx

on M ,

• p is in C3(M),

•
∫

M
p2(x)dvol(x) < ∞.

3That means the Riemannian metric gab on M is in-

duced by R
d, gM

ab = i∗g
R

d

ab , where gR
d

ab = δab.
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The kernels used in this paper are always isotropic,
that is they are functions of the norm in R

d. Further-
more we make the following assumptions on the kernel
function k:

Assumption 3 • k : R+ → R is measurable, non-
negative and non-increasing,

• k ∈ C2(R+), ‖k‖∞ = K and ∂2k
∂x2 is bounded,

• k has compact support on [0, R],

• C1 =
∫

Rm k(‖y‖2
)dy < ∞,

C2 =
∫

Rm k(‖y‖2
)y2

1dy < ∞.

Furthermore we define

kh(‖i(x) − i(y)‖2
) =

1

hm
k(‖i(x) − i(y)‖2

/h2).

Now that we have stated the setting we are working
in, we can introduce our estimator. We denote by X
the i.i.d. sample Xi, i = 1, . . . , n of size n drawn from
P . Then the U -statistic we use is defined as

Un,h(k) =
2

n(n − 1)

n
∑

1≤i<j≤n

kh(‖i(Xi) − i(Xj)‖2
)

The expectation of Un,h(k) is given as

E Un,h(k) = E kh(‖i(X) − i(Y )‖2
)

=

∫

M

∫

M

kh(‖i(x) − i(y)‖2
)p(x)p(y) dvol(x) dvol(y)

The central point is how this U -statistic behaves as
n → ∞ and h → 0. At first we study how the expec-
tation behaves as h → 0. A first step is the following
modification of a result in (Hein et al., 2005):

Proposition 1 Let Sε = {x ∈ M,d(x, ∂M) < ε}.
Under the stated assumptions on M , P and k there
exists ∀ ε > 0 an h0 > 0, such that for all h < h0

∫

M\Sε

∫

M

kh

(

‖i(x) − i(y)‖2
Rd

)

p(x)dvol(x)p(y)dvol(y)

=

∫

M\Sε

(

C1p(x) + C2
h2

4
p(x)

[

− R +
1

2

∥

∥

∥

∥

∥

∑

i

Π(∂i, ∂i)

∥

∥

∥

∥

∥

2
]

+ C2
h2

2
(∆M p)(x) + Γ(x)h3

)

p(x)dvol(x),

where ∆M is the Laplace-Beltrami operator and R the
scalar curvature of M and Γ(x) a function depending
on h0, ‖f‖C3 and ‖p‖C3 .

Proof: The expansion of the integral is given in
Proposition 1 in (Hein et al., 2005), where h0(x) =
1
3 min{inj(x), r(x)}. Now due to our assumptions on
δε, injε and rε, the expansion can be done uniformly
on M\Sε with h0 = infM\Sε

h0(x) > 0. �

This proposition shows that Un,h(k) has only asymp-
totically the expected scaling behavior. There is a sec-
ond order correction with influence from the curvature
of M and the possibly non-uniform probability mea-
sure P .

Proposition 2 Under the stated assumptions on M ,
P and k,

lim
h→0

E Un,h(k) = C1

∫

M

p(x)2dvol(x)

Proof: Let fh(x) =
∫

M

kh(‖i(x) − i(y)‖2
)p(y)dvol(y).

Then by Proposition 1 in (Hein et al., 2005),
limh→0 fh(x) = C1p(x). Moreover one can show that
there exists a constant C such that |fh(x)| ≤ Cp(x).
Namely by our assumptions on M we have for suffi-
ciently small h

|fh(x)| ≤ K/hm

∫

M

�

‖i(x)−i(y)‖≤hR p(y)dvol(y)

≤ 2K/hmp(x)V ol({y | ‖i(x) − i(y)‖ ≤ hR})
≤ Cp(x)

The proposition then follows by the dominated
convergence theorem since by our assumption
∫

M
p(x)2dvol(x) < ∞. �

The next step in the proof is to control the deviation of
Uh,h from its expectation. The following concentration
inequality of Hoeffding lets us quantify the probability
that Un,h deviates from E Un,h by at most ε. We use
the following Bernstein-type of bound, see (Hoeffding,
1963; Serfling, 1980):

Theorem 1 (Hoeffding, 1963) Let ‖k‖∞ ≤ b,

E kh(‖i(X) − i(Y )‖2
) < ∞ and σ2 =

Var kh(‖i(X) − i(Y )‖2
) < ∞, then

P (|Un,h − E Un,h| ≥ ε) ≤ 2 e
−

[n/2]ε2

2σ2+2/3|b−E Un,h|ε

where [x] denotes the greatest integer smaller than x.

A straightforward application of this concentration in-
equality yields the following theorem:

Theorem 2 Let M , P and k fulfill the stated assump-
tions, then

P (|Un,h − E Un,h| ≥ ε) ≤ 2 e
−

[n/2]hmε2

2KE Un,h+2/3|K−hmE Un,h|ε
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Furthermore let n → ∞ and h → 0, then if nhm → ∞

lim
n→∞

Un,h(k) = C1

∫

M

p(x)2dvol(x), in probability

If the stronger condition nhm/ log n → ∞ holds, then

lim
n→∞

Un,h(k) = C1

∫

M

p(x)2dvol(x), almost surely

Proof: We have by assumption ‖kh‖∞ ≤ K/hm

and it can be verified that VarUn,h ≤ K/hm
E Un,h.

Now applying Theorem 1 yields the bound. Using this
concentration inequality convergence in probability of
Un,h towards its expectation follows immediately from
the condition nhm → ∞. Moreover we know from
Proposition 2 the form of E Uh,h as h → 0. Complete
convergence, which implies almost sure convergence,
follows from

∑∞
n=1 P (|Un,h − E Un,h| ≥ ε) < ∞. This

follows if the stronger condition holds. �

The previous theorem together with the following
corollary will be the cornerstones of our algorithm.

Corollary 1 Let M , P and k fulfill the stated as-
sumptions and define kh = 1

hl k(‖i(x) − i(y)‖2
/h2),

then if h → 0 and nhl → ∞

lim
n→∞

Un,h(k) = ∞, if l > m

lim
n→∞

Un,h(k) = 0, in probability if l < m

Proof: By Theorem 2 we have for l = m conver-
gence in probability to C1

∫

M
p(x)2dvol(x). Now with

the different power of h in front of the kernel we have
convergence towards C1

hl−m

∫

M
p(x)2dvol(x). Since the

integral is finite this diverges if l > m and converges
to zero if l < m. �

Note that we get convergence to a finite number if and
only if l = m, since 0 <

∫

M
p(x)2dvol(x) < ∞.

3. The Algorithm

The algorithm is based on the convergence result in
Theorem 2 and on Corollary 1. Using these results
we know that in order to get convergence in probabil-
ity the bandwidth h has to fulfill nhm → ∞. Other-
wise the U -statistic either diverges or approaches zero.
We will use this property by fixing a convergence rate
for each dimension, that means we are fixing h as a
function of the sample size n. Then we compute the
U -statistic for subsamples of different sizes, where h
varies according to the function we have fixed. Finally
the dimension is determined by the U -statistic which
has the smallest slope as a function of h.

3.1. First Step: Fixing hl(n)

As a first step we fix hl(n) as a function of the sample
size n and the dimension l. We choose the function in
such a way that it is just sufficient for convergence in
probability so that hl(n) approaches zero at the fastest
allowed rate, that is

nh(n)l =
1

cl
log n ⇒ hl(n) =

1

c

(

log n

n

)1/l

,

where c is a constant. The crucial point of this pro-
cedure is that the scales at which we look at the data
vary according to the dimension l, so that Un,h(k) will
depend as a function of the sample size n on the cho-
sen dimension l. We fix the constant c in the algorithm
by determining a certain nearest neighbor scale. Let
N be the total number of samples of our data set and
define d(Xi) as the distance of the sample Xi to its
nearest neighbor. We set:

hl(N) =
1

N

N
∑

i=1

d(Xi) ⇒ c =
1

hl(N)

(

log N

N

)1/l

.

In total we get for the function hl(n):

hl(n) = hl(N)

(

N

n

log n

log N

)1/l

Note that hl(N) does not depend on the dimension,
that is we examine the full data (all N sample points)
for each dimension at the same scale hl(N). The cru-
cial point however is that as we consider subsamples
of size n the scale hl(n) is different for each dimension.

3.2. Second step: Computing the dimension

The choice of the kernel seems not to influence the
result much. We choose a kernel with compact support
to save computational time, that is

k(x) = (1 − x)+

We consider subsamples of size
{[N/5], [N/4], [N/3], [N/2], N}. For each dimen-
sion l ∈ {1, . . . , lmax}, where we put usually
lmax = min{d, 15}, we compute the empirical es-
timate of U[N/r],hl([N/r])(k), r = 1, . . . , 5.
In order to improve the estimates of the subsamples
we consider not only one subsample but several
ones by using the so called two-sample U -statistics
which is defined as follows. Given two i.i.d. samples
X1, . . . , Xn and Y1, . . . , Yn, one considers the following
U -statistic

U =
1

n2

n
∑

i,j=1

k(Xi, Yj)
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It was shown by Hoeffding (Hoeffding, 1963) that also
this form of the U -statistic converges as in Theorem
1. In our case we will take two samples of the same
distribution, so that the expectation and variance are
the same as for the one-sample U -statistic.
Let us explain how we use this result for our subsam-
ples. Consider the size [N/2]. Using our full set of
N data points, we can build three samples, namely
(X2k, X2k), (X2k+1, X2k) and (X2k+1, X2k+1). The
first and the last one lead to one-sample U -statistics
and the second one to a two-sample U -statistic. For
each of these subsamples we compute the estimates
of U[N/2],h([N/2])(k) and then take the mean of them.
Obviously one gets for the subsample of size [N/r],
r = 5, 4, 3, 2, 1, r(r +1)/2 such estimates, and for each
r we take the mean of them. This method looks at
first quite complicated. However the implementation
is straightforward and solves the problem that espe-
cially for small sample sizes N taking subsamples leads
to high variances in the estimates. Using instead a set
of subsamples with the described method we can in
that way minimize the variance of the estimates cor-
responding to the subsamples.
The estimation of the U -statistics can be done for
all dimensions and for all subsample sizes simultane-
ously. Especially for high-dimensional data, which is
potentially the most interesting one, the main compu-
tational cost lies in the computation of the distances
and not in the calculations of U[N/r],h([N/r])(k).
In order to determine the dimension we fit for
each dimension l a line through the five points
[

log hl([N/r]), log U[N/r],hl([N/r])(k)
]

, r = 1, . . . , 5,
with weighted least squares with weights w(r) = 1/r
which can be easily done in closed form. The dimen-
sion is then determined by the line with the small-
est absolute value of the slope of the line. This is
justified since the slope of log Un,hl(n)(k) is given by
(m − l) log hl(n) as n → ∞ and h → 0 from Theo-
rem 2 and the resulting Corollary 1. We use weighted
least squares since for smaller subsamples we look at
the data at a larger scale. Therefore if one has high
curvature these estimates are less reliable.

4. Experiments

The experiments we perform are only partially based
on datasets which have been previously used for di-
mensionality estimation. The reason for this is that
these datasets do not have high extrinsic and intrin-
sic curvatures. In our experiments based on artificial
datasets we study the influence of high curvature as
well as noise on our estimator. Later on we will evalu-
ate the estimator on two real world datasets. The first
one is the face database used in the study of ISOMAP

(Tenenbaum et al., 2000) and the MNIST database.
For the MNIST database we actually do not know the
intrinsic dimensionality. Therefore we study first for
the digit 1 an artificial dataset, where we can control
the number of dimensions. This study gives then a
hint how well our estimator performs. We compare
the results of our method to that of the correlation di-
mension estimator described in the introduction and
the estimator of Takens (1985) defined as

ν−1 = − < log( ‖i(Xi) − i(Xj)‖ /hTakens) >

where < > is the mean over all distances smaller than
hTakens. In order to do a fair comparison we tried to
optimize the scales si for the correlation dimension
estimator as well as the ’maximal’ scale hTakens for the
Takens estimator over all the datasets. We fixed then
them to si = d+0.2 r σ, r = 1, . . . , 5 for the correlation
dimension estimator and hTakens = d + σ where d is
the mean and σ the standard deviation of the nearest
neighbor distances. We would like to note that also
for the Takens estimator one has to determine only
one scale, however since it is a kind of ’maximal scale’
it is more difficult to choose then a minimal scale as
for our method.

4.1. Sinusoid on the circle

In this example our one-dimensional submanifold is a
strongly oscillating sinusoid on the circle in R

3, see
Figure 1.

s(t) : [0, 2π) → R
3, s(t) → (sin t, cos t,

1

10
sin 150t)

We sample straightforward in our coordinate expres-
sion, which yields a non-uniform probability measure
on this manifold where more points appear at the ex-
treme points of the sinusoid. We compare this sub-
manifold to a circle with uniform noise of height 0.1 in
the z-direction, see Figure 2, which results in a strip of
the cylinder, which is 2-dimensional. The results are
shown in Table 1 for 400, 500 and 600 sample points.
Two conclusions can be drawn. The first rather ob-
vious one is that very curved submanifolds require a
large number of samples so that their dimension can
be well estimated since the high curvature of the sinu-
soid is misinterpreted as a second dimension for small
sample sizes. The second one is that for small sam-
ple sizes it is impossible to distinguish between noise
and high curvature. The rather surprising fact is that
already for a sample size of 600 we have an almost per-
fect distinction between the one-dimensional sinusoid
and the two-dimensional strip of the cylinder.
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Table 1. Correct estimates of dimension 1 for the sinusoid
and dimension 2 for the noisy circle of 90 trials. a/b/c, a
our method, b corr. dim. est., c Takens est.

400 500 600
Sinuosid 15/0/12 49/57/49 86/88/90

Noisy Circle 90/90/90 90/90/90 90/90/90
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Figure 1. 600 samples of the sinusoid

4.2. The m-sphere

In this experiment we study the m-dimensional spheres
Sm embedded in R

m+1. The n = 600, 800, 1000, 1200
data points are sampled in 90 trials uniformly from the
sphere Sm. The number of successful trials is given in
Table 2. For S7 and S9 the number of samples is no
longer sufficient (curse of dimensionality), most of the
time the dimension is underestimated by one.

4.3. The Gaussian distribution

In this experiment the data is drawn from an isotropic
Gaussian in R

d in order to show how the estimators
can deal with a varying probability distribution. The
results are shown in Table 3.

4.4. The 10-Möbius strip

The k-Möbius strip is a submanifold in R
3 which can

be created by taking a rectangle, twisting it k-times
and then identifying the ends. If k is odd one gets a
non-orientable manifold with surprising properties. It
is obvious that this manifold has high extrinsic cur-
vature, increasing with the number of twists k. We
considered a 10-Möbius strip, see Figure 3 for an illus-
tration with 16000 points. The coordinate representa-
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Figure 2. 600 samples of the circle with uniform noise of
height 0.1 in the z-direction

Table 2. Number of correct estimates of 90 trials for Sm.
a/b/c, a our method, b corr. dim. est., c Takens est.

600 800 1000 1200
S3 90/89/90 90/90/90 90/90/90 90/90/90
S5 83/80/88 87/81/90 89/86/90 90/89/90
S7 68/57/65 73/66/79 78/66/78 79/72/84
S9 30/36/32 47/30/43 50/33/47 58/45/50

tion for u ∈ [−1, 1], v ∈ [0, 2π), is as follows:

x1(u, v) =
(

1 +
u

2
cos

(k

2
v
))

cos(v),

x2(u, v) =
(

1 +
u

2
cos

(k

2
v
))

sin(v),

x3(u, v) =
u

2
sin

(k

2
v
)

.

We sampled in this coordinate representation 20, 40, 80
and 120 points. This example is done to illustrate that
even for manifolds with high extrinsic curvature the
intrinsic dimension can be estimated with a relatively
small sample size, see Table 4.

4.5. A 12-dimensional manifold in R
72

As the last artificial dataset we present a high-
dimensional dataset, a 12-dimensional manifold in 72-
dimensions. The submanifold is generated by

x(α) :[0, 1]12 → R
72,

x2i−1(α) = αi+1 cos(2παi), i = 1, . . . , 11,

x2i(α) = αi+1 sin(2παi), i = 1, . . . , 11,

x23(α) = α1 cos(2πα12), x24(α) = α1 sin(2πα12)

xj+24 = xj+48 = xj , j = 1, . . . , 24

By this construction the 12-dimensional manifold lies
effectively in a 24-dimensional subspace. We sam-
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Table 3. Number of correct estimates of 90 trials of a d-
dimensional Gaussian. a/b/c, a our method, b corr. dim.
est., c Takens est.

Dim 100 200 400 800
3 86/81/86 90/90/90 90/90/90 90/90/90
4 76/65/75 85/78/85 90/89/90 90/90/90
5 58/41/49 66/49/59 81/72/82 90/90/90
6 44/25/23 41/24/15 49/37/34 77/55/61

Table 4. Correct estimates of 90 trials of the 10-Möbius
strip. a/b/c, a our method, b corr. dim. est., c Takens est.

20 40 80 120
49/34/44 71/68/73 83/78/86 88/82/90

ple directly in these coordinates which yields a non-
uniform probability measure on the manifold, which
is concentrated around the origin. This leads to
an interesting phenomenon, when we try to estimate
the dimension. The results shown in Table 5 illus-
trate the connection between high curvature and non-
trivial probability measure effects on the manifold. We
believe that they somehow cancel out in this case.
Namely a highly curved manifold leads to an over-
estimation of the dimension whereas a concentrated
probability measure leads to an underestimation. For
a relatively small sample size of 800 we already get a
quite good estimate of the dimension, which is prob-
ably due to the high concentration around the origin.

4.6. The ISOMAP face database

The ISOMAP face database consists of 698 images
(256 gray levels) of size 64 × 64 of the face of a sculp-
ture. This dataset has three parameters: the vertical
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Figure 3. The 10-Möbius strip with 16000 points.

Table 5. Correct est. of 90 trials on the 12-dim manifold.
a/b/c, a our method, b corr. dim. est., c Takens est.

200 400 800 1600
46/42/43 60/51/61 64/70/68 84/85/85

and horizontal pose and the lighting direction (one-
dimensional). All estimators get for this dataset in
R

4096 the correct intrinsic dimension of 3.

4.7. The MNIST dataset

The MNIST dataset consists of 70000 images (256 gray
levels) of size 28×28 of handwritten digits. In the gen-
eration of the MNIST dataset for all images the center
of mass was computed and then the image translated
such that the center of mass lies at the center of the
image. However note that this does not mean that
there are no translational degrees of freedom in this
dataset since e.g. the digit 1 can be written with a
line below or not and therefore the center of mass will
vary.

4.7.1. The artificial 1-digit dataset

The intrinsic dimension of each digit is in principle
unknown. In order to validate our experiment we con-
structed an artificial dataset of the digit 1 where we
can control the dimensionality. Namely we have 5 de-
grees of freedom: two for translations (T), one for
rotation (R), one for line thickness (L) and one for
having a small line at the bottom (V). The images
are constructed by having an abstract 1 as a function
on [0, 1]2 where the different transformations are ap-
plied and then this function on [0, 1]2 is discretized to
an image of size 28 × 28. We constructed 5 datasets
each of size 10000, the letter combination shows which
transformations have been applied, see Figure 4 for
samples of the TRLV dataset. The results of the es-
timators on this four datasets are shown in Table 6.
In three cases we are able to estimate the correct in-
trinsic dimension, whereas in one case we overestimate
the dimension. Regarding these results on this artifi-
cial dataset we have some confidence in the results on
the real MNIST dataset.

Figure 4. Samples of the artificial 1-dataset T+R+L+V.
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Table 6. Estimated Dimension of the artificial 1-data sets.

Art. Digit 1 T TR TRL TRLV
int. dim. 2 3 4 5

est. int. dim. 2/1/2 3/4/4 5/4/4 5/5/5

Table 7. Number of samples and estimated intrinsic di-
mensionality of the digits in MNIST.

1 2 3 4 5
7877 6990 7141 6824 6903
8/7/7 13/12/13 14/13/13 13/12/12 12/12/12

6 7 8 9 0
6876 7293 6825 6958 6903

11/11/11 10/10/10 14/13/13 12/11/11 12/11/11

4.7.2. Intrinsic Dimensionality of the Digits

in MNIST

The estimated intrinsic dimensions are reported for
each digit in Table 7 together with the number of sam-
ples of the digit in the MNIST database. Considering
our result of the artificial dataset for the digit 1 we
think that an estimated dimension 8 seems quite rea-
sonable. Additional degrees of freedoms could be the
length of the main line, the angle between the main
line and the upper line and the length of the upper
line. The intrinsic dimensions of digit 2 and 3 were
estimated in (Costa & Hero, 2004) for a subsample of
size 1000 as 13 and 12 respectively 12 and 11 depend-
ing on the way they build their neighborhood graph.
We estimate an intrinsic dimension of 13 for digit 2
and 14 for digit 3. In comparison the results roughly
agree. The difference could arise since we consider the
whole dataset we look at the data at a smaller scale
and therefore estimate a higher dimension.

5. Discussion

We have presented an algorithm for intrinsic dimen-
sionality estimation of a submanifold in R

d from ran-
dom samples. The assumptions we impose on the sub-
manifold and the probability measure on this subman-
ifold are not restrictive. A more careful analysis might
even reveal that some of these assumptions are redun-
dant. Our theoretical analysis clarifies the influence
of the curvature of the submanifold and smoothness
of the density on the asymptotic behavior of our esti-
mated quantity. Opposite to the standard correlation
dimension estimator we only have to choose once a
scale at which we examine the data, the scales at which
we examine subsamples are then fixed, so that we

have only one free parameter in our algorithm. Even
more we fixed this parameter by choosing the somehow
smallest scale at which it makes sense to look at the
data. In that sense we have presented an algorithm
without parameters which estimates the dimension for
all kinds of submanifolds irrespectively of their intrin-
sic and extrinsic curvature and works well also for real
world datasets. The experiments show that we are on
average significantly better than the direct correlation
dimension estimator and on a slightly better level than
the Takens estimator.
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