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Abstract

Recently, several manifold learning algo-
rithms have been proposed, such as ISOMAP
(Tenenbaum et al., 2000), Locally Linear Em-
bedding (Roweis & Saul, 2000), Laplacian
Eigenmap (Belkin & Niyogi, 2001), Locality
Preserving Projection (LPP) (He & Niyogi,
2003), etc. All of them aim at discovering
the meaningful low dimensional structure of
the data space. In this paper, we present
a statistical analysis of the LPP algorithm.
Different from Principal Component Analy-
sis (PCA) which obtains a subspace spanned
by the largest eigenvectors of the global co-
variance matrix, we show that LPP obtains
a subspace spanned by the smallest eigenvec-
tors of the local covariance matrix. We ap-
plied PCA and LPP to real world document
clustering task. Experimental results show
that the performance can be significantly im-
proved in the subspace, and especially LPP
works much better than PCA.

1. Introduction

Manifold learning algorithms based on geometrical
analysis have received a lot of attention in recent years.
The typical algorithms include ISOMAP (Tenenbaum
et al., 2000), Locally Linear Embedding (Roweis &
Saul, 2000), Laplacian Eigenmap (Belkin & Niyogi,
2001), Locality Preserving Projection (LPP) (He &
Niyogi, 2003), etc. The former three are non-linear al-
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gorithms, while LPP is linear. The basic assumption
of these algorithms is that, in many cases of inter-
est, the observed data are sampled from a underlying
sub-manifold which is embedded in high dimensional
space. The task of manifold learning algorithms is to
discover the meaningful low dimensional structure.

LPP is originally derived by linearly approximating
the eigenfunctions of the Laplace Beltrami operator on
the manifold. Its applications on face recognition (He
et al., 2005) and document representation (He et al.,
2004) have shown its effectiveness in discovering the
local geometrical structure of the data space. PCA is
a classical technique for linear dimensionality reduc-
tion. Different from LPP which aims at preserving
the local structure, PCA aims at preserving the global
structure. It projects the data along the directions of
maximal variances. The basis functions obtained by
PCA are the eigenvectors of the data covariance ma-
trix. Bregler and Omohundro have proposed a local
PCA approach to discover the local geometrical struc-
tures of the data space (Bregler & Omohundro, 1995).
The main difference between local PCA and LPP is
that local PCA is globally non-linear while LPP is
globally linear.

In this paper, we show that the basis functions ob-
tained by LPP are the eigenvectors of the local covari-
ance matrix. We first define a € covariance matrix.
Thus, the standard covariance matrix used in PCA
and the local covariance matrix used in LPP can be
characterized by different choices of €. Specifically, in
PCA, ¢ is chosen to be infinity, while in LPP, € is cho-
sen to be sufficiently small. We also show that, under
certain conditions, LPP and Laplacian Eigenmap can
give the same result.

The rest of this paper is organized as follows: Section 2
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provides a brief review of PCA and LPP. In Section 3,
we provide a statistical analysis of the LPP algorithm.
In Section 4, we show that LPP and Laplaican Eigen-
map can give the same result under certain conditions.
Some experimental evaluations on document cluster-
ing are provided in Section 5. Finally, we conclude our
paper in Section 6.

2. A Brief Review of PCA and LPP

PCA is a canonical linear dimensionality reduction al-
gorithm. The basic idea of PCA is to project the data
along the directions of maximal variances so that the
reconstruction error can be minimized. Given a set
of data points {x1,---,X,}, let w be the transfor-
mation vector and y; = w’x;. Let X = %sz and
Y= % > y;. The objective function of PCA is as fol-
lows:

n
Wopt = arg Hlvé‘}X Z (y’L -
i=1
n
= argmaxZwT (x-—%)(x—%)"w
w
i=1
= argmaxw’Cw
w
where C = 15" (x—%)(x—%)" is the data co-

variance matrix. The basis functions of PCA are the
eigenvectors of the data covariance matrix associated
with the largest eigenvalues.

Different from PCA which aims to preserve the global
structure, LPP aims to preserve the local structure.
Given a local similarity matrix S, the optimal projec-
tions can be obtained by solving the following mini-
mization problem (He & Niyogi, 2003):
. T T 2
Wopt = arg m“llnz (W X; — W xj) Sij

ij
= argminw! XLXTw

w

where L = D — S is the graph Laplacian (Chung,
1997) and D;; = Zj Sij. For the detailed derivation
of LPP, please see (He & Niyogi, 2003). The basis
functions of LPP are the eigenvectors of the matrix
XLXT associated with the smallest eigenvalues. Let
e=(1,---,1)T. Tt is interesting to note that, when
the similarity matrix S = ee whose entries are all
=, the corresponding matrlx XLXT is just the data
covariance matrix C = X(I — tee”)XT. In such a
case, the constructed graph is a complete graph whose
weights on all the edges are equal to % This observa-
tion motivates us to consider the connection between
PCA and LPP, and especially the connection between
the data covariance matrix and the matrix XLX7.

3. Statistical Analysis of LPP

In this section, we provide a statistical analysis of LPP.
We begin with a definition of € Covariance Matriz.
3.1. ¢ Covariance Matrix

Let x,y be two independent random variables in the
data space. We define

Co= 3B [ -y -y lx -yl <d ()

where € is a real number. Throughout this paper, we
call C. € covariance matriz. Let C denote the covari-
ance matrix and m denote the mean vector. Thus,

m)(x — m)] (2)

We have the following theorem:

C=E[x-

Theorem 3.1 lim._. ., C. =C.

Proof Since x and y are independent, we have

lim C.

-y)"]
[(x=¥)(x = ¥)"Ix]]

[xx” +yy" —xy" —yx"|x]]

B(x
§[
BB
B 7]

3 XX +E[yy]—me—mx

= F [XXT] —mm?”

= E[(x-m)(x-—m)"]

This completes the proof. |

3.2. Convergence of XLX"

Given a set of data points x1,Xs,--- ,X, in RY, we
define a n x n similarity matrix as follows:

_ L = x5l <
Sij _{ 0, otherwise. (3)

Let X = [x1,X2, -+ ,Xn]. Let D be a n x n diagonal
matrix such that D;; = Zj S;j. Thus, the Laplacian
matrix is L = D — 5. We have the following theorem:
Theorem 3.2 lim,,_ nTlﬁXLXT =
Prob(||z— y|| <e).

C., where 3 =

Proof

XSXT =

2. 5% ZXzZ ;)

Jj=
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Note that, Si; = 1)x,_x,|<c- Let p(x) be the density
function. By the Law of Large Number, we have

1< 1<
; Ta . _ 7 T
lim — E x; Sij = lim — E X Lx; —x; | <e
n—oo n n—oo N
j=1 j=1

= E[y" 1y <] :/

ly—xill<e

yp(y)dy
= 9e (Xz)

ge is a function from R to R?. Again, by the Law of
Large Number, we have

1
lim —QXSXT

n—oo N

1 n
lim — iGe(X;
i, 7 2 xigex)

/ xg. (x)p(x)dx

= /XP(X) </|yx”<€yTp(y)dy> dx

= / xy” p(x)p(y)dxdy
ly—x|<e

BE [xy"||ly — x| < ¢]

8 =

where (3 is a normalization factor,
f”x_yH<€ p(x)p(y)dxdy. Similarly, we have

n
XDXT = Z Dyix;xT
i=1
By the definition of D;;, we have
. 1
lim —D;; = P(|ly — x| <€)

n—oo N

= / p(y)dy = he(xi)
ly—x:<e
By the Law of Large Number, we get
. 1 T
lim —QXDX
n—oo M,

1 n
1. 7 'he )
nlm niEIXXI (X)

- / sx” h (x)p(x)dx

= / xx" p(x)p(y)dxdy
Ix—yll<e

BE [xxT|||y x| < 6]

Therefore,
1
lim — XLX"
n—oo N
1
= lim — (XDX" - XSXx7)
n—oo N,
= BB [xx" —xy"[lly — x| < €]
B
= SE[x=y)x-y)"lly - x| <€
= pC

LXLxT=c.. 1|

Finally, we get lim,_, w23

Thus, the objective function of LPP can be rewritten
as follows:

Wopt

= argminw’ Cew
w

= argminw! E {(x —y)(x— y)T llx — ¥yl < e] w

= argminw’ F {(WTX - wTy)2 Ix -yl < 6} w
w

4. Computational Analysis of LPP
4.1. Connection to Laplacian Eigenmaps

In this subsection, we discuss the computational re-
lationship between LPP and Laplacian Eigenmaps
(Belkin & Niyogi, 2001). The eigenvalue problem of
LPP scales with the number of dimensions (d), while
that of Laplacian Eigenmaps scales with the number
of data points (n). The rank of X is no greater than
min(n,d). Thus, if d > n, we can reduce the data
space into an n dimensional subspace without losing
any information by using Singular Value Decomposi-
tion (SVD). Correspondingly, the data matrix X in
such a subspace becomes a square matrix. We have
the following proposition:

Proposition 4.1 If X is a full rank square matrix,
then LPP and Laplacian FEigenmap have the same re-
sult.

Proof Recall that the eigenvalue problem of LPP is
as follows:
XLXTw = XDXTw (4)

Let y = XTw. Equation (4) can be rewritten as fol-
lows:

XLy = XXDy (5)

Since X is a full rank square matrix, we get the fol-
lowing equation:
Ly = ADy (6)

which is just the eigenvalue problem of Laplacian
Eigenmaps. |
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Table 1. Performance comparisons on Reuters-21578 corpus*

Accuracy
k | Kmeans | PCA(best) | PCA | LPP(best) | LPP | LE | NMF-NCW
2 0.871 0.913 0.864 0.963 0.923 | 0.923 0.925
3 0.775 0.815 0.768 0.884 0.816 | 0.816 0.807
4 0.732 0.773 0.715 0.843 0.793 | 0.793 0.787
5 0.671 0.704 0.654 0.780 0.737 | 0.737 0.735
6 0.655 0.683 0.642 0.760 0.719 | 0.719 0.722
7 0.623 0.651 0.610 0.724 0.694 | 0.694 0.689
8 0.582 0.617 0.572 0.693 0.650 | 0.650 0.662
9 0.553 0.587 0.549 0.661 0.625 | 0.625 0.623
10 0.545 0.573 0.540 0.646 0.615 | 0.615 0.616
ave. 0.667 0.702 0.657 0.773 0.730 | 0.730 0.730
Mutual Information
k | Kmeans | PCA(best) | PCA | LPP(best) | LPP | LE | NMF-NCW
2 0.600 0.666 0.569 0.793 0.697 | 0.697 0.705
3 0.567 0.594 0.536 0.660 0.601 | 0.601 0.600
4 0.598 0.621 0.573 0.671 0.635 | 0.635 0.634
) 0.563 0.567 0.538 0.633 0.603 | 0.603 0.587
6 0.579 0.587 0.552 0.636 0.615 | 0.615 0.603
7 0.573 0.572 0.547 0.629 0.617 | 0.617 0.600
8 0.556 0.557 0.530 0.615 0.587 | 0.587 0.583
9 0.549 0.545 0.532 0.605 0.586 | 0.586 0.560
10 0.552 0.549 0.528 0.607 0.586 | 0.586 0.561
ave. 0.571 0.584 0.545 0.650 0.614 | 0.614 0.604

*PCA denotes the clustering result obtained by PCA with k-1 dimensions and PCA (best) denotes the best result

obtained by PCA at the optimal dimension.

In many real world applications such as information
retrieval, the dimensionality of the data space is typi-
cally much larger than the number of data points. In
such a case, LPP and Laplacian Eigenmaps will have
the same embedding result if these data vectors are
linearly independent.

4.2. Connection to Principal Component
Analysis

LPP is essentially obtained from a graph model. In
the original algorithm, a nearest neighbor graph is con-
structed to discover the local manifold structure (He &
Niyogi, 2003). Intuitively, LPP with a complete graph
should discover the global structure. In this subsec-
tion, we present a theoretical analysis on the relation-
ship between LPP and PCA. Specifically, we show that
LPP with a complete inner product graph is similar to
PCA. Without loss of generality, we assume that the
data features are uncorrelated (the covariance matrix
is of full rank), otherwise we can apply Singular Value
Decomposition first. Also, we assume that the data
points have a zero mean. Thus, the matrix X X7 is
the covariance matrix.

Suppose the weight on an edge linking x; and x; is set
to their inner product x7x;. Thus, the weight matrix
S of the complete graph can be written as X7 X. The
generalized minimum eigenvalue problem of LPP can
be written as follows:

XLXTa=AXDX"a
= X(D-SXTa=)XDXxTa
= XSXTa=(1-MNXDXx"a
= XXT'XXxTa=(1-NXDXTa (7)
Since the diagonal matrix D is close to the identity
matrix, XDXT ~ XX, the minimum eigenvalues of

equation (7) correspond to the mazimum eigenvalues
of the following equation:

XXTXXTa=XXXTa
Since X X7 is of full rank, we get:
XXTa=)a

which is just the eigenvalue problem of PCA. The
above analysis shows that LPP with a complete in-
ner product graph is similar to PCA. Both of them
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discover the global structure. The only difference is
that there is a diagonal matrix D in LPP which mea-
sures the local density around x;, while in PCA, every
data point is equally treated.

5. Experimental Evaluation

In this section, we evaluate the applicability of LPP,
PCA, and Laplacian Eigenmaps for document cluster-
ing.

5.1. Data Preparation

Two document data sets were used in our experiments,
i.e. Reuters-21578 and TDT2. Reuters contains 21578
documents in 135 categories. Documents that appear
in two or more categories were removed. We selected
the largest 30 categories. Finally, it left us with 8067
documents in 30 categories. Each document is repre-
sented as a term-frequency vector. We simply removed
the stop words. Each document vector is normalized
so that it has unit norm. No further preprocessing was
done.

The TDT2 document data set 'consists of data col-
lected during the first half of 1998 and taken from 6
sources, including 2 newsviews, 2 radio programs and
2 televisions. It consists of 11201 on-topic documents
which are classified into 96 semantic classes. Those
documents appearing in two or more classes were re-
moved, and we selected the largest 50 categories, thus
leaving us with 9394 documents of 30 categories.

5.2. Experimental Design

In this work, we compared the following five document
clustering methods:

e K-means (K-means)
e LPP+K-means (LPP)
o PCA+K-means (PCA)

Non-negative Matrix Factorization based cluster-
ing (NMF-NCW, (Xu et al., 2003))

Laplacian Eigenmaps+K-means (LE)

The weighted Non-negative Matrix Factorization
based document clustering algorithm (NMF-NCW,
(Xu et al., 2003)) is a recently proposed algorithm,
which has shown to be very effective in document clus-
tering. Please see (Xu et al., 2003) for details. In the

!Topic  Detection and Tracking corpus at
http://www.nist.gov/speech/tests/tdt /tdt98/index.htm

LPP and Laplacian Eigenmap algorithms, one needs
to build a € neighborhood graph (Eqn. 3). However,
in real applications, it is difficult to choose a optimal
€. In our experiments, we build a p nearest neighbor
graph as follows:

szxj, if x; is among the p nearest
g — neighbors of x;, or x; is among
v the p nearest neighbors of x;;
0, otherwise.

(8)
The parameter p was set to 15. For each method,
k(=2,3,---,10) document classes were randomly se-
lected from the data corpus. Clustering is then per-
formed on these k& document classes. The clustering
result is evaluated by comparing the obtained label of
each document with that provided by the data corpus.
Two metrics, the accuracy (AC) and the normalized
mutual information metric (M1) are used to measure
the clustering performance (Xu et al., 2003). Given
a data point x;, let r; and s; be the obtained clus-
ter label and the label provided by the data corpus,
respectively. The AC is defined as follows:

AC = Z?:l 5(87477Lma’p(r2)) (9)

where n is the total number of data points and §(z, y)
is the delta function that equals one if x = y and
equals zero otherwise, and map(r;) is the permutation
mapping function that maps each cluster label r; to
the equivalent label from the data corpus. The best
mapping can be found by using the Kuhn-Munkres
algorithm (Lovasz & Plummer, 1986).

Given two sets of data clusters C, C’, their mutual
information metric MI(C,C") is defined as:

/

p(C‘,Clv)
p(ci, c}) - logg————

plei) - p(cj)

(10)
where p(c;) and p(c]) are the probabilities that a data
point arbitrarily selected from the corpus belongs to
the clusters ¢; and cf, respectively, and p(c;,cj) is
the joint probability that the arbitrarily selected data
point belongs to the clusters c¢; as well as c; at the
same time. In our experiments, we use the normalized
mutual information MT as follows:

MI(C,C")
max(H(C). HCY) Y

MIc,cy= Y

c;€C,cieC”

MI(C,C) =

where H(C') and H(C') are the entropies of C' and ",
respectively. It is easy to check that MI(C,C") ranges

from 0 to 1. MI = 1 if the two set of clusters are
identical, and M I = 0 if the two sets are independent.
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Table 2. Performance comparisons on TDT?2 corpus*

Accuracy
k | Kmeans | PCA(best) | PCA | LPP(best) | LPP | LE | NMF-NCW
2 0.989 0.992 0.977 0.998 0.998 | 0.998 0.985
3 0.974 0.985 0.944 0.996 0.996 | 0.996 0.953
4 0.959 0.970 0.894 0.996 0.996 | 0.996 0.964
5 0.948 0.961 0.914 0.993 0.993 | 0.993 0.980
6 0.945 0.954 0.879 0.993 0.992 | 0.992 0.932
7 0.883 0.903 0.849 0.990 0.988 | 0.987 0.921
8 0.874 0.890 0.829 0.989 0.987 | 0.988 0.908
9 0.852 0.870 0.810 0.987 0.983 | 0.984 0.895
10 0.835 0.850 0.786 0.982 0.979 | 0.978 0.898
ave. 0.918 0.931 0.876 0.992 0.990 | 0.990 0.937
Mutual Information
k | Kmeans | PCA(best) | PCA | LPP(best) | LPP | LE | NMF-NCW
2 0.962 0.965 0.925 0.981 0.981 | 0.981 0.939
3 0.946 0.962 0.894 0.977 0.976 | 0.976 0.924
4 0.932 0.942 0.856 0.979 0.979 | 0.979 0.951
) 0.935 0.942 0.892 0.975 0.973 | 0.973 0.965
6 0.936 0.939 0.878 0.975 0.974 | 0.974 0.923
7 0.884 0.892 0.849 0.969 0.968 | 0.966 0.915
8 0.889 0.895 0.841 0.970 0.967 | 0.967 0.911
9 0.875 0.878 0.831 0.970 0.966 | 0.967 0.905
10 0.865 0.869 0.813 0.962 0.959 | 0.958 0.897
ave. 0.914 0.920 0.864 0.973 0.971 | 0.97 0.926

*PCA denotes the clustering result obtained by PCA with k-1 dimensions and PCA (best) denotes the best result

obtained by PCA at the optimal dimension.

5.3. Clustering Results

Table 1 and 2 shows the experimental results. The
evaluation was conducted with different number of
clusters, ranging from two to ten. For each given clus-
ter number k, 50 tests were conducted on the ran-
domly chosen clusters, and the average performance
was computed over these 50 tests. For each single test,
K-means algorithm was applied 10 times with different
initializations and the best result was recorded. As can
be seen, the performance of LPP is much better than
that of PCA, and close to that of Laplacian Eigen-
maps. Also, LPP based document clustering algorithm
performed slightly better than NMF based document
clustering algorithm (Xu et al., 2003).

When applying dimensionality reduction algorithms
for document analysis, how to estimate the optimal
dimension is a key problem. In spectral clustering
(Belkin & Niyogi, 2001; Shi & Malik, 2000; Ng et al.,
2001), the dimension of the subspace can be set to the
number of clusters. For PCA and LPP based cluster-
ing algorithms, in generally their performance varies
with the number of dimensions. In Figure 1, we show

the optimal dimensions obtained by LPP and PCA, as
well as the standard deviations. As can be seen, the
optimal dimension obtained by LPP is very close to
k — 1, while it is difficult for PCA to estimate the op-
timal dimension. Also, the standard deviation of the
optimal dimension for PCA is much bigger than that
for LPP. This indicates that dimensionality estimation
for LPP is much more stable.

Moreover, it can be seen that the performance of LPP
is very close to that of Laplacian Eigenmap. Actually
in our experiments, for 312 out of 450 (50 x 9) tests
on Reuters corpus and 430 out of 450 (50 x 9) tests on
TDT2 corpus, the data matrix X is full rank square
matrix, thus the clustering results using LPP are iden-
tical to those using Laplacian Eigenmaps according to
Proposition 4.1.

5.4. Local VS. Global

In LPP based clustering, one needs to set the number
of nearest neighbors, i.e. the value of p, which defines
the “locality”. In Figure 2, we show the relationship
between the clustering performance and the value of
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Figure 1. In generally, the performance of PCA and LPP based clustering algorithms varies with the dimensionality of the
reduced subspace. The left plot shows the dimensionality of the subspace obtained by PCA in which the best clustering
performance is obtained, and the right plot shows the optimal dimensionality obtained by LPP. As can be seen, the
optimal dimensionality of LPP is very close to k — 1, where k is the number of clusters. Therefore, if k is given, the
optimal dimensionality of LPP can be accurately estimated. However, for PCA based clustering algorithm, there seems
no relationship between the number of clusters and the optimal dimensionality. Each bar shows the average of 50 test
runs, and the error bar indicates the standard deviation. The standard deviation indicates that LPP is less sensitive to

dimensionality than PCA.

p. For LPP and PCA, clustering were performed in
k — 1 dimensional subspace. Here, the clustering per-
formance is the average over 2~10 classes. The value
of p varies from 3 to 40. As can be seen, the perfor-
mance of LPP clustering reaches its peak when p is 6
in TDT2 corpus and 15 in Reuters21578 corpus. After
than, as p increases, the performance decreases. We
also show the result of LPP with a complete graph (p
is taken to be infinity). This experiment shows that
the local structure is more important than the global
structure as to discovering the semantic structure of
the document space.

6. Conclusion

In this paper, we have presented statistical and compu-
tational analysis of the Locality Preserving Projections

algorithm. We define an € covariance matrix. When
€ tends to infinity, the e covariance matrix becomes
the standard covariance matrix which is used in PCA.
When ¢ is extremely small, the € covariance matrix
captures the local covariance and is used in LPP. We
also show that the matrix XLX7 converges to the e
covariance matrix as the number of data points tends
to infinity.

Computational analysis of LPP and Laplacian Eigen-
maps shows that they can give the same result when
the number of dimensions is larger than the number
of data points and the data vectors are linearly inde-
pendent. We have also shown that LPP with a com-
plete inner product graph model is similar to Principal
Component Analysis. In such a case, both of LPP and
PCA discover the global structure of the data space.
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