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Abstract

Unsupervised learning methods often involve
summarizing the data using a small number
of parameters. In certain domains, only a
small subset of the available data is relevant
for the problem. One-Class Classification or
One-Class Clustering attempts to find a use-
ful subset by locating a dense region in the
data. In particular, a recently proposed al-
gorithm called One-Class Information Ball
(OC-IB) shows the advantage of modeling a
small set of highly coherent points as opposed
to pruning outliers. We present several mod-
ifications to OC-IB and integrate it with a
global search that results in several improve-
ments such as deterministic results, optimal-
ity guarantees, control over cluster size and
extension to other cost functions. Empiri-
cal studies yield significantly better results
on various real and artificial data.

1. Introduction

Unsupervised learning methods often involve summa-
rizing the data using a small number of parameters. In
some domains, only a small subset of the available data
is relevant while the rest shows poor correlation to the
problem and needs to be pruned for building a good
model. One major type of data in bioinformatics that
exhibits such properties is micro-array data recording
an organism’s biochemical response to a specific set of
conditions such as stress (Gasch A. P. et al., 2000) or
disease (Ash A. Alizadeh et al., 2000). Such a dataset
consists of a group of experiments (arrays) capturing
mRNA expression for a large number of genes. Typi-
cally, only a small subset of the measured genes show
correlated (anomalous) expression across a subset of
the experiments, when compared to a control experi-
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ment. In another application, Crammer and Chechik
(2004) used One-Class Clustering to design a docu-
ment retrieval system. Often, a reasonable sampling
of only the positive examples of the relevant document
classes is available, while the input space of irrelevant
documents is hard to sample and/or is ill-defined. Fur-
thermore, in such a system, a user is typically inter-
ested in retrieving a small list of highly relevant docu-
ments (high precision) rather than obtaining a list of
all positive examples (high recall). In such a scenario,
a One-Class Clustering based classifier designed to dis-
cover a dense region for each document class may be
more suitable than building a supervised classifier.

Earlier work on One-Class clustering involved detec-
tion of large-scale structures (Schölkopf et al., 1995;
Tax & Duin, 1999; Schölkopf et al., 2001). However,
Crammer and Chechik (2004) subsequently showed
that for many such problems (such as the ones men-
tioned above), the opposite approach of directly mod-
eling the dense region, and ignoring points outside
the region, is more appropriate. One way of model-
ing a small dense region is by searching for the lo-
cation of a ball of small radius that contains a large
number of data points. This was the strategy used
in One Class Information Ball (OC-IB) (Crammer &
Chechik, 2004), which tries to find a local minimum
of an appropriate cost function, and starts the search
by randomly selecting one of the data points. How-
ever, such a local search can get stuck in a bad lo-
cal minimum. In this paper we present a simple yet
powerful global search method using an approxima-
tion algorithm and use its output to initialize a local
search. The “hybrid” method gives substantially su-
perior results on various real and artificial datasets.
Our method extends to some new types of cost func-
tions, is deterministic and provides control over cluster
size as well as optimality bounds for some of the cost
functions proposed.

The rest of the paper is organized as follows: In Section
2 we define two general forms of cost functions that
work with all Bregman divergences. In Section 3.1 we
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present an algorithm that finds the global optima for
an approximation of the original One-Class problem.
In Section 3.2 we present a local search algorithm that
can take either size or radius as input. In Section
3.3, we present a hybrid algorithm that we refer to as
Hyper-BB that combines the local and global search
methods. In Section 4 we present a simple extension
of our method that works with a biologically relevant
distance measure, and in Section 5 we present results
on some real and artificial datasets.

2. Cost Function

Given a set Z of n points in R
d, and a measure of one-

class cluster cost, we define the problem of one-class
clustering as one of the following:

Definition 1: Find the cluster G =
{p1,p2, .pi, ..,ps} ⊂ Z of size s that has the
smallest cost.

Definition 2: Find the largest cluster G of cost less
than or equal to qmax.

In practice, definitions 1 and 2 are functionally simi-
lar, since for a given qmax there exists a largest s, and
for a given s there exists a smallest qmax. The main
difference from a user’s point of view is that in defini-
tion 1 the algorithm takes an integer s as input and
searches for a solution with the smallest cost, while in
definition 2, it takes a threshold qmax ∈ R as input
and searches for a cluster with the largest size with
cost less than qmax.

Cost as a function of Distance: Given a distance 1

measure D(x,y) 7→ [0,∞), and a cluster representa-
tive c ∈ R

d, we define the Average Distance cost
QAD as the average distance of all points in G from c:

QAD(G, c) =
1

s

s∑

i=1

D(pi, c), (1)

and the Maximum Distance cost QMD as the max-
imum distance among all points in G from c:

QMD(G, c) =
s

max
i=1

D(pi, c). (2)

We shall see in Section 3.1 and 3.2 how the choice
between Equation 1 and 2 affects the design of the
algorithm for searching for a good cluster. Also note
that our cluster cost is now uniquely defined by the
set G and representative c.

Choice of Distance Measure: Bregman divergences
form a family of distance measures, defined as follows:
Let φ : S 7→ R be a strictly convex function defined on

1In this paper, we use “distance” in an informal way to
also include divergences that are not a metric.

a convex set S ⊆ R
d, such that φ is differentiable on

int(S), the interior of S (Rockafeller, 1970). The Breg-
man divergence Dφ : S × int(S) 7→ [0, inf) is defined
as Dφ(x,y) = φ(x)−φ(y)− (x−y,▽φ(y)) where ▽φ

is the gradient of φ. For example, for φ(x) =‖ x ‖2,
Dφ(x,y) =‖ x−y ‖2, which is the Squared Euclidean
Distance. Similarly, other forms of φ lead to other
Bregman divergences such as Logistic Loss, Itakura-
Saito Distance, Hinge Loss, Mahalanobis Distance and
KL Divergence (Pietra et al., 2001; Banerjee et al.,
2004). A k-means clustering algorithm based on itera-
tive relocation that is applicable to all Bregman diver-
gences has been recently described by Banerjee et al.
(2004). The local search used by algorithms presented
in this paper for one class clustering uses a different
iterative relocation scheme that also generalizes to all
Bregman divergences.

Properties of QAD and QMD:

Proposition 2.1. For a given s and c , a cluster G

that minimizes either QAD or QMD consists of the s

points closest to c.

Proposition 2.1 follows from the observation that for
any given center c, for both QAD and QMD, adding
the points closest to c first into the cluster increases
the cost by the smallest amount.

Theorem 2.2. (Banerjee et al., 2004): Let X be
a random variable taking values in X = {xi}

n
i=1 ⊂

C ⊆ R
d following ν 2. Given a Bregman divergence

Dφ : C × int(C) 7→ [0, inf), the problem

min
c∈C

Eν [Dφ(X, c)]

has a unique minimizer given by c∗ = µ = Eν [X ].

When the cost function is QAD, and D = Dφ, Theo-
rem 2.2 allows us to compute the optimal center for a
One-Class cluster G as the mean of the corresponding
data points.

The cost function QMD for a cluster is uniquely defined
by the cluster representative and the farthest point,
and therefore the following is true:

Proposition 2.3. Order Preserving: The solu-
tions for QMD for any strictly monotonically increas-
ing family of distance functions are identical.

For example, for Euclidean Distance (a metric) ver-
sus the Squared Euclidean Distance (a Bregman di-
vergence), the solutions for QMD are equivalent, with
all solutions having the same same cost ordering. For

2Theorem 2.2 is more general in that it holds for any
measure ν defined on the samples. For our one class clus-
tering formulation, we assume all points to have the same
weight.
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Algorithm 1 HOCC

Input: Distance matrix M containing distance between all
points, desired list of cluster sizes slist.

Output: Pairs of solution set containing indexes of best
centroid followed by member points indices for each clus-
ter size specified in slist.
[radM, idxM ] = sortrows(M)
for j = 1 to |slist| do

bestIdx = min(Q({radM(i, slist(j)}
n

i=1))

solution(j) = {bestIdx, {idxM(bestIdx, j)}slist(j)
j=1 }

end for

a given cluster G, QMD using the Squared Euclidean
distance is simply the square of the QMD using Eu-
clidean Distance. Furthermore, for QMD, the One-
Class clustering problem reduces to finding a ball of
smallest radius with s points in it, or finding a ball
of a given radius that encloses maximum number of
points.

3. Algorithms

For definition 1 described in Section 2, the best so-
lution can be found exhaustively in O(ns) time. For
most domains, this polynomial time solution for find-
ing the global optima would be too slow. Rather,
faster approximation algorithms that find a “good
enough” solution are required.

3.1. Global Search: HOCC

The key idea is to perform a simpler exhaustive global
search by restricting the cluster representative to be
one of the data points, i.e. c ∈ Z. Then, the following
holds true for both cost functions QAD and QMD:

Proposition 3.1. If c is restricted to c ∈ Z, then
the number of distinct 3 clusters of size 2 through n is
n(n − 1), and can be enumerated.

Proposition 3.1 is the basis of our Hypersphere One
Class Clustering (HOCC, Algorithm 1) and follows
from Proposition 2.1 based on the observation that
the cluster representative and the farthest point de-
termine members of G, and such a tuple can only be
picked from Z. Such clusters could be visualized as
bounded by “hyperspheres” in the corresponding di-
vergence space and HOCC enumerates all such spheres
and picks the one with the lowest cost for the specified
size s. HOCC involves three steps: (1) sort elements
of each row of M and save the corresponding matrices
radM and idxM (represented by sortrows in Algo-
rithm 1). (2) compute the cost Q for each position in
radM , and (3) pick the cluster of size s from the sth

3If a cluster is uniquely defined by G and c, the cost
changes even if G remains the same but c changes.

column that has the smallest Q. After step 1, the sth

sorted index of row i represents the farthest point in
a cluster of size s with center as the ith point. Pick-
ing the smallest element of the sth column of matrix
Q(radM) then gives the optimal solution for size s.
The only change when running HOCC for the max-
imum cost QMD versus the average cost QAD is the
cost computed by a call to a function Q. For QMD, the
value of element radM(i, s) represents the cost, while
the cumulative average 1

s

∑s
j=1 radM(i, j) represents

the cost QAD. We can enumerate the lowest cost clus-
ters of all size in O(n2log(n)) time, and if a Heap data
structure is used, sorting can be performed only up
to the maximum desired cluster size m = max(slist)
in O(nmlog(m)) time. In practice this could be much
faster than O(n2log(n)), since the desired cluster size
m is often much smaller than n. The memory require-
ment of the HOCC algorithm as presented is O(n2),
but for a fixed cluster size s can be reduced to O(n)
if distances for each row sort are computed on the fly,
only the sth member of each sorted row is kept, and
the s−2 nearest points (excluding the farthest and the
center itself that are already known) for the optimal
center are recomputed at the end. The time complex-
ity for the whole process still remains O(n2logn).

Optimality bound for QMD for Squared Eu-
clidean Distance: Proposition 2.3 allows us to do
perform the following analysis: If we put points in a
cluster G on a spherical shell of radius r in a Euclidean
Space, then the minimum QMD for Squared Euclidean
Distance would be r2, and the optimal cluster repre-
sentative is the mean of the points in G. If we pick a
cluster representative from G, the maximum distance
to other points in G would be 2r and the QMD for
Squared Euclidean distance would be 4r2. This is 4
times the optimal.

It is hard to give a general optimality bound for all
Bregman divergences for QMD, but it is possible to do
so for QAD:

Proposition 3.2. Optimality bound for QAD: For
a Bregman Divergence Dφ where l ≤ φ′′ ≤ u, the aver-
age distance cost (QMD) of the cluster found by HOCC
algorithm is within 1 + u

l
times the optimal solution.

We can prove the above using the following lemma:

Lemma 3.3. (Banerjee et al., 2004) For all Breg-
man Divergences Dφ, and points {pi}

s
i=1,w, c∗ ∈ R

d,
where c∗ is the minimizer for QAD for D = Dφ, the
following is true:

1

s

s∑

i=1

Dφ(pi, c
∗) + Dφ(c∗,w) =

1

s

s∑

i=1

Dφ(pi,w) (3)

For the Squared Euclidean Distance, u = l = 2, there-
fore the above optimality guarantee reduces to within
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2 times of optimal. For an unbounded divergence ap-
plied to a given dataset, it will be possible to bound l

and u, in which case we would get corresponding op-
timality bounds.

HOCC for a specific cost qmax: A simple modifi-
cation to the HOCC algorithm makes it work with a
fixed cost qmax as input. After the first step of sort-
ing each of the rows of M in Algorithm 1, instead of
picking the sth element of a row i to compute cost,
we perform a binary search on each of the sorted rows
to find the largest column index j such that the value
of Q(radM(i, j)) ≤ qmax. The value of j then rep-
resents the size of the largest cluster at center i that
has cost within the threshold qmax. The best cluster
is then found simply by picking the points from 1 to j

corresponding to the row that gives the largest j.

3.2. Local Search: BBOCC

Our local search algorithm that we call Batch Ball One
Class Clustering or BBOCC (Algorithm 2) is moti-
vated along similar lines as the One-Class IB proposed
by Crammer and Chechik (2004), but uses the up-
date rule based on Theorem 2.2 to find the optimal
center at each iteration. It also provides the ability
to handle either QAD or QMD cost functions, and al-
lows local search to be based on either a fixed cluster
size or fixed cost. In Algorithm 2, a routine named
computeSize is executed when qmax is passed as an in-
put. Using proposition 2.1, computeSize finds the right
cluster size in O(n) and O(logn) time respectively for
QAD and QMD by searching for the largest cluster size
that has cost below qmax.

Proposition 3.4. Algorithm 2 is guaranteed to con-
verge to a local minima for QAD for all Bregman di-
vergences, for a fixed cost qmax as input.

Proof. Let the set of members at iteration i be G1.
Let the center before update be c, and cost be QAD1.
Computing the optimal center c∗ using Theorem 2.2
gives us a new cost QAD2 ≤ QAD1. Since c∗ can be
different than c, there can be a point f ∈ G1 and
another point g 6∈ G1 such that Dφ(c∗, g) ≤ Dφ(c∗, f).
Let us assume this is true (if not, the algorithm has
already converged). G2 = {(G1 \ f) ∪ g} has cost
QAD3 ≤ QAD2 ≤ QAD1 ≤ qmax. Therefore, adding p

closer points and removing p farthest points from the
new center c∗ will result in a cost QADP ≤ QAD1 ≤
qmax. Hence the number points in G cannot decline
at each iteration, but can increase. If the members
do not change in an iteration or if the cost fails do
decline even with some membership change for two
consecutive iterations, the algorithm converges.

Algorithm 2 BBOCC

Input: Data Z, initial cluster center cin (optional), desired
cluster size s or cost threshold qmax, distance function
D, cost function Q.

Output: Solution set G containing the member points,
and the center c∗.
if cin = ∅ then

Pick randomly a point from Z and assign it to cin

end if
c = cin; lG = ∅; G = ∅; qpp =∞; qp =∞;
repeat

for i = 1 to n do
distAll(i)← D(Zi, c)

end for
[val, index] = sort(distAll)
Set sc = s else sc = computeSize(val,c, Q, qmax)
if (Q = QMD) ∧ (val(sc) ≥ qp) then

c = cp

return
else

cp = c; qpp = qp; qp = val(sc)
end if
lG = G; G = Z(index(i))sc

i=1

c = 1
sc

∑sc

i=1 Z(index(i))

until (lG = G) ∧ qpp = qp

c∗ = c

Along similar lines, we can also prove:

Proposition 3.5. Algorithm 2 is guaranteed to con-
verge to a local minima for QAD for all Bregman di-
vergences, for a fixed cluster size s as input.

For cost QMD, a call to function computeSize does
not return an optimum center. In case of Euclidean
distance, finding the optimal center is equivalent to
finding the minimum bounding sphere. Since the com-
putation of the minimum bounding sphere for a set of
points is non-trivial, computeSize uses a simple heuris-
tic: for good solutions involving dense regions, the
points are likely to be symmetrically distributed, and
in such cases the average center could be a good ap-
proximation (White & Jain, 1996). Thus, the func-
tion computeSize checks to see if computing the mean
center reduces cost QMD, i.e. the distances from the
farthest point. If it fails to find a smaller radius, the
algorithm terminates. Therefore, for cost QMD, Al-
gorithm 2 does not guarantee a local minima, but in
practice, as we will see in Section 5, it seems to work
well.

3.3. Hybrid Search: Hyper-BB

The hybrid search algorithm Hyper Batch Ball
(Hyper-BB) is a simple combination of the global ap-
proximation HOCC and the local search BBOCC. For
either a fixed cluster size or radius, given a a cost
function Q, data Z, and distance D, it involves the
following two steps: (1) Find the optimal cluster rep-
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resentative c∗hocc using HOCC, and (2) pass this center
as seed to BBOCC: cin = c∗hocc.

Hyper-BB inherits the same global guarantees that
HOCC provides but has the added advantage that the
local search is likely to improve the results substan-
tially. Empirical results presented later support this
intuition. The global search seeds the local search,
and therefore Hyper-BB has a hybrid search bias that
combines local and global search. Because HOCC is
deterministic, and since the output of BBOCC is de-
termined by the seeding, the output of Hyper-BB al-
gorithm is also deterministic.

4. Extension to Pearson Distance

Pearson Correlation captures the similarity between
two variables in R

d that is invariant to linear scal-
ing (such as a multiplicative and/or additive offsets),
and is therefore a popular similarity measure for clus-
tering gene-expression and other biological data (Sha-
ran & Shamir, 2000; Mansson et al., 2004). For two
vectors x,y ∈ R

d, the Pearson correlation P can be

computed as P (x,y) = Zs(x)•Zs(y)
d−1 , where Zs(x) rep-

resents z-scoring 4 of x and is equal to x−µ(x)
σ(x) , µ(x)

is the mean of the vector x and σ(x) is the standard
deviation, where σ is the unbiased estimator for a nor-
mal distribution. We define the Pearson Distance as
DP = 1−P . Since P 7→ [−1, 1], therefore DP 7→ [0, 2].
It can be shown that Pearson Distance is equal to the
Squared Euclidean Distance between z-scored points
(between Zs(x) and Zs(y)) normalized by 2(d − 1):

DP (x,y) =
‖ Z(x) − Z(y) ‖2

2(d − 1)
(4)

Therefore, Pearson Distance is the Squared Euclidean
Distance between the z-scored vectors projected onto a
hypersphere of radius 1 (radius 1√

2
in Euclidean space)

centered at the origin.

Using HOCC and BBOCC with Pearson Dis-
tance: We refer to QAD and QMD as the Average
Pearson Distance (APD) and the Maximum Pearson
Distance (MPD) when D = DP . The following di-
rectly follows from a proof given by Dhillon and
Modha (2001):

Proposition 4.1. The representative point c∗P that
minimizes APD is equal to the mean vector of the
points in G projected onto a sphere of unit radius,
i.e. c∗P = argmin

c
(QAD(G, c)) = mG

‖mG‖ , where mG =

1
s

∑s
i=1 Z(pi).

4Often used in statistics, normally performed between
points across a dimension. Here we perform it between
dimensions for one data point.

Because of Proposition 4.1, for D = DP the optimal
representative computation involves the averaging of
the z-scored points rather than the original points, and
then re-projecting of the mean onto the sphere. This
minor modification to Algorithm 2 makes it applicable
to DP , while Algorithm 1 can be used with Pearson
Distance without any modifications. Furthermore, it
can be shown that just like for Squared Euclidean Dis-
tance, the within two times optimality guarantee for
HOCC and Hyper-BB also holds true for Pearson Dis-
tance.

5. Experimental Results

5.1. Datasets used

We test our algorithms on two real and two artificial
datasets, and Table 1 summarizes the main aspects of
these datasets. For real data, we chose to experiment
with gene-expression data because we plan to incorpo-
rate Hyper-BB into methods for identifying biochem-
ical pathways on such data.

Real Data: The two real data sets were obtained from
Ash A. Alizadeh et al. (2000) and Gasch A. P. et
al. (2000) respectively. The Alizadeh data consists of
expression profile of 4,026 genes from 46 B-Cells Lym-
phoma cancer tissues, and also comes with the survival
history for 40 patients, with 18 surviving long-term
and 22 dying much earlier. The Gasch dataset con-
sists of 6,151 genes of yeast Saccharomyces cervisiae
responding to diverse environmental conditions over
173 microarray experiments. These experiments were
designed to measure the response of the yeast strain
over various forms of stress such as temperature shock,
osmotic shock, starvation and exposure to various tox-
ins. For each stress type there are multiple experi-
ments with varying intensity of that stress, and all
the 173 experiments are labeled by the type of stress
that was applied. The Alizadeh data was also used by
Crammer and Chechik (2004), and the Gasch data is a
widely used benchmark for testing algorithms designed
for clustering microarray data.

Simulated Data: We created two high-dimensional
data-sets to test the hypothesis that a hybrid search
becomes extremely important when the dense region
is small in mass and is relatively isolated from the rest
of the data. For this we created two high dimensional
data-sets, each consisting of 40 dimensions and 4,026
data points. The Hard data consists of 3 spherical
Gaussians with one of the Gaussians containing 5% of
the probability mass, and being separated by a dis-
tance much larger than the standard deviation of two
other wider and highly overlapping gaussians. For the
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Table 1. A summary of the datasets used.

Data set Source n d Meaningful D

Alizadeh Microarray 4, 026 40 DP

Gasch Microarray 6, 151 173 DP

Hard Simulated 4, 026 40 Sq. Euclidean
Easy Simulated 4, 026 40 Sq. Euclidean

Easy dataset, we use the same 3 gaussians but place
the small dense Gaussian close to the center of the rest
of the data.

5.2. Evaluation

Effectiveness of Local Search: We compared OC-
IB with BBOCC across multiple trials with various
cluster sizes on Alizadeh data. Figure 1 (top) shows
the difference in the cost of solutions for multiple tri-
als over a range of cluster size for cost QAD, while
the darker(pink) bars in Figure 1 (bottom) show the
fraction of trials for which BBOCC gave results with
lower cost than the lowest in all trials for OC-IB. Since
the size of the cluster cannot be controlled in OC-IB,
the comparison is across bucketed cluster sizes in the
range shown on x-axis, with the number of trials in
each of the 6 buckets varying between 95 and 126.
OC-IB could not be tested on the gene-expression data
with DP since it only works with Bregman divergences,
hence Squared Euclidean was used for this particular
test. Such a test is still reasonable since we are per-
forming an unsupervised evaluation. We found similar
differences in performance between BBOCC and OC-
IB for the other three datasets. We believe BBOC
performs better because it uses an optimal center up-
date at each iteration (Theorem 2.2).

Lesion Studies for Hyper-BB: We studied the im-
portance of the local and global search in our hybrid
algorithm by comparing Hyper-BB against running
HOCC and BBOCC separately. We also compared
our methods against “BBOC-10”, where we pick the
best of 10 trials of BBOC, and against a “Naive” al-
gorithm that picks the s closest points to the mean
of Z as the solution. For every tested cluster size, re-
sults of BBOCC and BBOCC-10 were averaged over
50 trials. Figure 2 shows the results on three differ-
ent datasets for both QAD and QMD cost measures.
Clearly, the global search (HOCC) by itself performs
substantially better than the local search (BBOCC)
for all cluster sizes, but even the combination (Hyper-
BB) shows significant improvement over HOCC. The
property that HOCC and Hyper-BB are determinis-
tic while BBOCC’s performance varies substantially
across multiple trials (not plotted in Figure 2 for clar-

ity) makes the improvement even more significant. On
the Easy dataset (not shown) BBOCC performed as
well as Hyper-BB for clusters of size larger than 10,
while the naive algorithm that simply picks the data
center gave results as good as Hyper-BB. But for the
other three non-trivial datasets, the Hybrid algorithm
clearly performs better than it’s components, and even
compared to BBOCC-10. One of the surprising things
to notice is that for the Hard dataset ( Figure 2, col-
umn 3) and for small cluster sizes Batch-BB performs
worse than Naive, even though this dataset was not
designed to have the dense region at the center of the
data. These lesion studies confirm our intuition that
both the local and global components of Hyper-BB are
important in identifying small, dense regions.

Choice of cost function: We designed our algo-
rithms to work for QMD as an alternative to QAD.
The most surprising result was the discovery that for
both Squared Euclidean Distance and Pearson Dis-
tance, Hyper-BB results on high dimensional datasets
are almost independent of the cost function used to
train Hyper-BB and and the one used to evaluate the
results. Figure 3 shows that the results for various
cluster sizes for matching and mismatching cost func-
tions give almost identical performance for Hyper-BB.
We found this to be true for all the four datasets, al-
though plots for only two of them are shown. Our
explanation for this phenomena is that since all the
four datasets were high dimensional, and since Hyper-
BB finds near-optimal clusters, the points mostly lie
within a thin spherical shell, making the max and av-
erage distance almost equal. This tells us that given
the local and global guarantees for QAD, it should be
the preferred cost function for Hyper-BB.

Results against labeled data: One-class cluster-
ing aims at finding one tightly knit cluster rather than
classifying all the data. However, one indication of the
quality of the detected cluster is its purity in terms of
distribution of class labels, if such labels are available.
In our experiments, small clusters were invariably very
pure. For example, when we applied Hyper-BB to clus-
ter the 173 experiments in Gasch data using the 6,151
genes as features, the closest 7 points to the densest re-
gion were all labeled as heat shock experiments. This
represented a precision of 1 for a recall of 0.41 for re-
covering an experiment type whose prior in the data
was 0.1 (17 out of 173).

6. Concluding Remarks

The HOCC enumeration algorithm is a fast global
approximation and provides optimality bounds un-
der certain conditions, while our local search BBOCC
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Figure 2. Comparison of performance of BBOCC, BBOCC-10, HOCC, Hyper-BB and the Naive algorithm using QAD

(first row) and QMD (second row) as training and evaluation cost functions on three datasets: Gasch (left column),
Alizadeh (center) and Hard(right). The y-axis is the evaluation cost, while the x-axis is the size of the cluster for which
the evaluation was performed. For BBOCC and BBOC-10, the results were averaged over 50 trials. The variance in the
performance of BBOC and BBOC-10 over the 50 trials was too large to plot meaningfully.

shows empirical improvement in the quality of the
local minima compared to OC-IB. Both HOCC and
BBOCC can take either a threshold cost or cluster
size as input. Hyper-BB is a combination of HOCC
and BBOC and inherits desirable properties of the
two components such as optimality bound, determin-
istic output, and the ability to take cluster size or
cost threshold as input. Empirical results show that
both HOCC and BBOCC are important components
of Hyper-BB, and that Hyper-BB is excellent at find-
ing dense regions, with dramatically better results
than a local search in situations where the dense region
is small and isolated. We extended Hyper-BB to work
on Pearson Distance that directly optimizes the Pear-
son Correlation, an important measure for clustering
many kinds of biological data.

A key issue not addressed in this paper is that of model
selection, which in this setting translates to the ap-
propriate choice of size s or cost qmax. Several ap-
proaches readily suggest themselves, especially given
that our methods incrementally grow the clusters un-
til the threshold s or qmax is exceeded. For example,
since we are seeking a cluster that is dense relative to
the background, statistical testing against a null hy-
pothesis that the cluster points are coming from the
same distribution as the background, can readily be
carried out. In other situations, the application do-
main dictates the choice of s.

Although we do not discuss it in this paper due to
lack of space, our method can be extended to a di-
ametric (Dhillon et al., 2003) version that captures
both correlated and anti-correlated genes. We plan to
apply one-class clustering to the problem of feature se-
lection for gene expression data and answer questions
such as “Is a biochemical pathway over or under-active
in a set of gene-expression data, and if it is, which of
the subset of experiments are those?” Another exten-
sion would be to use one-class clustering as a compo-
nent to solve more complex clustering settings such
as semi-supervised clustering, coclustering, and clus-
tering with feature selection. We feel that given the
simplicity and elegance of one-class clustering, such
extensions might present a new way of looking at clus-
tering in general.
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