

Learning Strategies for Story Comprehension:
A Reinforcement Learning Approach

Eugene Grois E-GROIS@UIUC.EDU
David C. Wilkins DCW@UIUC.EDU
Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA

Abstract
This paper describes the use of machine learning
to improve the performance of natural language
question answering systems. We present a
model for improving story comprehension
through inductive generalization and
reinforcement learning, based on classified
examples. In the process, the model selects the
most relevant and useful pieces of lexical
information to be used by the inference
procedure. We compare our approach to three
prior non-learning systems, and evaluate the
conditions under which learning is effective.
We demonstrate that a learning-based approach
can improve upon “matching and extraction”-
only techniques.

1. Introduction
This paper presents a model for the automated acquisition
of behavior policies for tasks that are not readily cloned
due to the difficulty of gathering explicit traces of
successful execution. We apply our model to the task of
automatically learning strategies for natural language
question answering from examples composed of textual
sources, questions, and answers. Our approach is focused
on one specific type of text-based question answering
known as story comprehension. Most TREC-style QA
systems are designed to extract an answer from a
document contained in a fairly large general collection
[Voorhees, 2003]. Story comprehension requires a similar
approach, but involves answering questions from a single
narrative document. An important challenge in text-based
question answering in general is posed by the syntactic
and semantic variability of question and answer forms,
which makes it difficult to establish a match between the
question and answer candidate. This problem is
particularly acute in the case of story comprehension due

 Appearing in the proceedings of the 22nd International
Conference on Machine Learning, Bonn, Germany, 2005.
Copyright 2005 by the author(s)/owners(s).

to the rarity of information restatement in the single
document.

Several recent systems have specifically addressed the
task of story comprehension. The Deep Read reading
comprehension system [Hirschman et al., 1999] uses a
statistical bag-of-words approach, matching the question
with the lexically most similar sentence in the story.
Quarc [Riloff and Thelen, 2000] utilizes manually
generated rules that select a sentence deemed to contain
the answer based on a combination of syntactic similarity
and semantic correspondence (i.e., semantic categories of
nouns). The Brown University statistical language
processing class project systems [Charniak, et al., 2000]
combine the use of manually generated rules with
statistical techniques such as bag-of-words and bag-of-
verb matching, as well as deeper semantic analysis of
nouns. As a rule, these three systems are effective at
identifying the sentence containing the correct answer as
long as the answer is explicit and contained entirely in that
sentence. They find it difficult, however, to deal with
semantic alternations of even moderate complexity. They
also do not address situations where answers are split
across multiple sentences, or those requiring complex
inference.

Statistical learning techniques have been applied to the
task of finding answers to questions. For example,
[Berger et al., 2000] induces questions-answer
correspondence from FAQs and call center data. These
techniques perform better in domain-specific applications
than in general-purpose ones. Also, they match explicit
and complete answers from a list to a given question.
They do not perform translation of text to generate non-
explicit or composite answers.

Our framework, called QABLe (Question-Answering
Behavior Learner), draws on prior work in learning action
and problem-solving strategies [Tadepalli and Natarajan,
1996; Khardon, 1999]. We represent textual sources as
sets of features in a sparse domain, and treat the QA task
as behavior in a stochastic, partially observable world.
QA strategies are learned as sequences of transformation
rules capable of deriving certain types of answers from

Learning Strategies for Story Comprehension: A Reinforcement Learning Approach

particular text-question combinations. Strategies
determine which transformation rules to apply when. The
transformation rules are generated by instantiating
primitive domain operators in specific feature contexts. A
process of reinforcement learning [Kaebling, et al., 1996]
is used to select and promote effective transformation
rules. Representations of the underlying domain features
are learned in the course of interacting with the domain,
and encode the features at the levels of abstraction that are
found to be conducive to successful behavior. This
selection effect is achieved by a fusion of abstraction
space generalization [Knoblock, 1992] and reinforcement
learning elements.

Our approach is similar to a technique known as behavior
cloning, in which control/action rules are induced from
traces generated by a “teacher” [Sammut, et al., 1992;
Bratko, et al., 1998]. Behavior cloning has been applied
successfully in various control and planning applications,
where traces of explicit actions or solution steps are easily
obtainable. Question-answering, however, is not an
explicitly traceable task. The exact process by which a
human analyzes and answers a question, and the internal
representations used to facilitate that process, are in large
part hidden and not amenable to explicit modeling
techniques. Therefore, our goal for QABLe is not to clone
human QA behavior, but rather to independently learn
rules and behavior policies composed of these rules that
produce results similar to those of the human teacher.

Conceptually, our approach resembles the learning of
reactive action models [Benson, 1995], wherein decision
lists of teleo-operators [Benson and Nilsson, 1995] are
induced through experimentation in the domain. Our

approach is also similar in spirit to the noisy channel-
based translation of strings proposed by [Marcu and
Popescu, 2005].

The rest of this paper is organized as follows. Section 2
presents the details of the QABLe framework. In section
3 we describe preliminary experimental results which
indicate promise for our approach. In section 4 we
summarize and draw conclusions.

2. QABLe – Learning to Answer Questions
2.1 Overview

Figure 1 shows a diagram of the QABLe framework. The
bottom-most layer is the natural language textual domain.
It represents raw textual sources, questions, and answers.
The intermediate layer consists of processing modules that
translate between the raw textual domain and the top-most
layer, an abstract representation used to reason and learn.

This framework is used both for learning to answer
questions and for the actual QA task. While learning, the
system is provided with a set of training instances, each
consisting of a textual narrative, a question, and a
corresponding answer. During the performance phase,
only the narrative and question are given.

At the lexical level, an answer to a question is generated
by applying a series of transformation rules to the text of
the narrative. These transformation rules augment the
original text with one or more additional sentences, such
that one of these explicitly contains the answer, and
matches the form of the question.

lexically pre-
process raw text

extract current
state features &
compare to goal

goal state
reached?

more
processing

time?

lookup existing
applicable rule

valid rule
exists?

more
primitive

ops?

instantiate
new rule

generalize against
rule base

execute rule in
domain

yes

no

yes yes

no

no

modify raw text
match candidate

sentence
extract answer

yes

apply
reinforcement to

rule base

no
return FAIL

raw text, question, (answer)lexicalized answer

acting by
inference

acting by
search

RAW
TEXTUAL
DOMAIN

ABSTRACT
BEHAVIOR
LEARNING

FRAMEWORK

INTERMEDIATE
PROCESSING

LAYER

START

Figure 1. The QABLe architecture for question answering.

Learning Strategies for Story Comprehension: A Reinforcement Learning Approach

On the abstract level, this is essentially a process of
searching for a path through problem space that
transforms the world state, as described by the textual
source and question, into a world state containing an
appropriate answer. This process is made efficient by
learning answer-generation strategies. These strategies
store procedural knowledge regarding the way in which
answers are derived from text, and suggest appropriate
transformation rules at each step in the answer-generation
process. Strategies (and the procedural knowledge stored
therein) are acquired by explaining (or deducing) correct
answers from training examples. The framework’s ability
to answer questions is tested only with respect to the kinds
of documents it has seen during training, the kinds of
questions it has practiced answering, and its interface to
the world (domain sensors and operators).

In the next two sections we discuss lexical pre-processing,
and the representation of features and relations over them
in the QABLe framework. In section 2.4 we look at the
structure of transformation rules and describe how they
are instantiated. In section 2.5, we build on this
information and describe details of how strategies are
learned and utilized to generate answers. In section 2.7
we explain how candidate answers are matched to the
question, and extracted.

2.2 Lexical Pre-Processing
Several levels of syntactic and semantic processing are
required in order to generate structures that facilitate
higher order analysis. We currently use MontyTagger 1.2,
an off-the-shelf POS tagger based on [Brill, 1995], for
POS tagging. At the next tier, we utilize a Named Entity
(NE) tagger for proper nouns a semantic category
classifier for nouns and noun phrases, and a co-reference

resolver (that is limited to pronominal anaphora). Our
taxonomy of semantic categories is derived from the list of
unique beginners for WordNet nouns [Fellbaum, 1998].
We also have a parallel stage that identifies phrase types, a
form of structural relation. Table 1 gives a list of phrase
types currently in use, together with the categories of
questions each phrase type can answer. In the near future,
we plan to utilize a link parser to boost phrase-type
tagging accuracy. We also would like to extract deeper
semantic relations. For questions, we have a classifier that
identifies the semantic category of information requested
by the question. Currently, this taxonomy is identical to
that of semantic categories. However, in the future, it may
be expanded to accommodate a wider range of queries. A
separate module reformulates questions into statement
form for later matching with answer-containing phrases.

2.3 Representing the Question-Answering Domain

In this section we explain how features are extracted from
raw textual input and tags which are generated by pre-
processing modules.

A sentence is represented as a sequence of words 〈w1,
w2,…, wn〉, where word(wi, word) binds a particular word
to its position in the sentence. The kth sentence in a
passage is given a unique designation sk. Several simple
functions capture the syntax of the sentence. The sentence
Main (e.g., main verb) is the controlling element of the
sentence, and is recognized by main(wm, sk). Parts of
speech are recognized by the function pos, as in pos(wi,
NN) and pos(wi, VBD). The relative syntactic ordering of
words is captured by the predicate before(wi, wj). It can be
applied recursively, as before(wi, before(wj, wk)) to
generate the entire sentence starting with an arbitrary
word, usually the sentence Main. The integrity of the
sentence is checked by the function inSentence(wi, si) ⇒
main(wm, sk) ∧ (before(wi, wm) ∨ before(wm, wi)) for each
word wi in the sentence. A consecutive sequence of
words is a phrase entity or simply entity. It is given the
designation ex and declared by a binding function, such as
entity(ex, NE) for a named entity, and entity(ex, NP) for a
syntactic group of type noun phrase. Each phrase entity is
identified by its head, as head(wh, ex), and we say that the
phrase head controls the entity. A phrase entity is defined
as head(wh, ex) ∧ inPhrase(wi, ex) ∧ … ∧ inPhrase(wj, ex).

We also wish to represent higher-order relations such
as functional roles and semantic categories. Functional
dependency between pairs of words is encoded as, for
example, subj(wi, wj) and aux(wj, wk). Functional groups
are represented just like phrase entities. Each is assigned a
designation rx, declared for example, as func_role(rx,
SUBJ), and defined in terms of its head and members
(which may be individual words or composite entities).
Semantic categories are similarly defined over the set of
words and syntactic phrase entities – for example,

Phrase Type Comments
SUBJ “Who” and nominal “What”
VERB event “What”
DIR-OBJ “Who” and nominal “What”
INDIR-OBJ “Who” and nominal “What”

ELAB-SUBJ descriptive “What” (eg. what
kind)

ELAB-VERB-TIME time
ELAB-VERB-PLACE place
ELAB-VERB-MANNER manner
ELAB-VERB-CAUSE “Why”

ELAB-VERB-INTENTION “Why” as well as “What
for”

ELAB-VERB-OTHER smooth handling of
undefined verb phrase types

ELAB-DIR-OBJ descriptive “What” (eg. what
kind)

ELAB-INDIR-OBJ descriptive “What” (eg. what
kind)

VERB-COMPL WHERE/WHEN/HOW
concerning state or status

Table 1. Phrase types used by QABLe framework.

Learning Strategies for Story Comprehension: A Reinforcement Learning Approach

sem_cat(cx, PERSON) ∧ head(wh, cx) ∧ pos(wi, NNP) ∧
word(wh, “John”).

Semantically, sentences are treated as events defined by
their verbs. A multi-sentential passage is represented by
tying the member sentences together with relations over
their verbs. We declare two such relations – seq and
cause. The seq relation between two sentences, seq(si, sj)
⇒ prior(main(si), main(sj)), is defined as the sequential
ordering in time of the corresponding events. The cause
relation cause(si, sj) ⇒ cdep(main(si), main(sj)) is defined
such that the second event is causally dependent on the
first.

2.4 Primitive Operators and Transformation Rules
The system, in general, starts out with no procedural
knowledge of the domain (i.e., no transformation rules).
However, it is equipped with 9 primitive operators that
define basic actions in the domain. Primitive operators are
existentially quantified. They have no activation
condition, but only an existence condition – the minimal
binding condition for the operator to be applicable in a
given state. A primitive operator has the form AC E ˆ→ ,
where EC is the existence condition and Â is an action
implemented in the domain. An example primitive
operator is

primitive-op-1 : ∃ wx, wy → add-word-after(wy, wx)
Other primitive operators delete words or manipulate
entire phrases. Note that primitive operators act directly
on the syntax of the domain. In particular, they
manipulate words and phrases. A primitive operator
bound to a state in the domain constitutes a transformation
rule. The procedure for instantiating transformation rules
using primitive operators is given in Figure 2. The result
of this procedure is a universally quantified rule having
the form AGC R →∧ . A may represent either the name
of an action in the world or an internal predicate. C
represents the necessary condition for rule activation in
the form of a conjunction over the relevant attributes of
the world state. RG represents the expected effect of the
action. For example,

() () ()() →∧∧ 433221 ,,, wwbeforeGwwbeforewwbefore R

()34, wwafterwordadd −−

indicates that when the phrase “w1 w2 w3” is found in the
text, this operator is expected to attach w4 to the end,
generating the phrase “w1 w2 w3 w4”.

An instantiated rule is assigned a rank composed of:

• priority rating (p)
• level of experience with rule (f)
• confidence in current parameter bindings (c)

The first component, priority rating, is an inductively
acquired measure of the rule’s performance on previous

instances. The second component modulates the priority
rating with respects to a frequency of use measure. The
third component captures any uncertainty inherent in the
underlying features serving as parameters to the rule. The
rank of a rule is computed by the following function:

()()fcprank ++××= 1log1

Each time a new rule is added to the rule base, an attempt
is made to combine it with similar existing rules to
produce more general rules having a wider relevance and
applicability.

Given a rule
1Aggcc R

y
R
xba →∧∧∧ covering a set of

example instances 1E and another rule

2Aggcc R
z

R
ycb →∧∧∧ covering a set of examples 2E , we

add a more general rule 3Agc R
yb →∧ to the strategy. The

new rule 3A is consistent with 1E and 2E . In addition it
will bind to any state where the literal bc is active.
Therefore the hypothesis represented by the triggering
condition is likely an overgeneralization of the target
concept. This means that rule 3A may bind in some states
erroneously. However, since all rules that can bind in a
state compete to fire in that state, if there is a better rule,
then 3A will be preempted and will not fire. Figure 3 gives
the rule generalization algorithm.

2.5 Generating Answers
Returning to Figure 1, we note that at the abstract level the
process of answer generation begins with the extraction of
features active in the current state. These features
represent low-level textual attributes and the relations over
them described in section 2.3.

Immediately upon reading the current state, the system
checks to see if this is a goal state. A goal state is a state
whose corresponding textual domain representation
contains an explicit answer in the right form to match the
questions. In the abstract representation, we say that in
this state all of the goal constraints are satisfied.

Instantiate Rule
Given:

• set of primitive operators
• current state specification
• goal specification

1. select primitive operator to instantiate
2. bind active state variables & goal spec to existentially

quantified condition variables
3. execute action in domain
4. update expected effect of new rule according to change

in state variable values

Figure 2. Procedure for instantiating transformation rules
using primitive operators.

Learning Strategies for Story Comprehension: A Reinforcement Learning Approach

If the current state is indeed a goal state, no further
inference is required. The inference process terminates
and the actual answer is identified by the matching
technique described in section 2.6 and extracted.

If the current state is not a goal state and more processing
time is available, QABLe passes the state to the Inference
Engine (IE). This module stores strategies in the form of
decision lists of rules. For a given state, each strategy may
recommend at most one rule to execute. For each strategy
this is the first rule in its decision list to fire. The IE
selects the rule among these with the highest relative rank,
and recommends it as the next transformation rule to be
applied to the current state.

If a valid rule exists it is executed in the domain. This
modifies the concrete textual layer. At this point, the pre-
processing and feature extraction stages are invoked, a
new current state is produced, and the inference cycle
begins anew.

If a valid rule cannot be recommend by the IE, QABLe
passes the current state to the Search Engine (SE). The SE
uses the current state and its set of primitive operators to
instantiate a new rule, as described in section 2.4. This
rule is then executed in the domain, and another iteration
of the process begins.

If no more primitive operators remain to be applied to the
current state, the SE cannot instantiate a new rule. At this
point, search for the goal state cannot proceed, processing
terminates, and QABLe returns failure.

When the system is in the training phase and the SE
instantiates a new rule, that rule is generalized against the
existing rule base. This procedure attempts to create more
general rules that can be applied to unseen example
instances.

Once the inference/search process terminates (successfully
or not), a reinforcement learning algorithm is applied to all
rules that were active in that session. This reinforcement

affects the priority rating (p) (see sect. 2.4) of each rule
that fired in the current run. Specifically, rules on the
solution path receive positive reward, and rules that fired,
but are not on the solution path receive negative
reinforcement.

A new rule is initially given a nominal priority rating, 0p .
In generalizing, a newly created abstract rule is assigned a
priority rating slightly higher than those of its more
specific precursor rules. This guarantees that the abstract
rule will have an opportunity to be tested.

Reinforcement is applied as Rpp +=′ . The reward R is
a constant value, and 0pR < . Once a rule’s priority
rating drops below a threshold t, the rule is effectively
dropped and never used again. In this way, rules that
consistently perform poorly are quickly discarded.

2.7 Candidate Answer Matching and Extraction
As discussed in the previous section, when a goal state is
generated in the abstract representation, this corresponds
to a textual domain representation that contains an explicit
answer in the right form to match the questions. Such a
candidate answer may be present in the original text, or
may be generated by the inference/search process. In
either case, the answer-containing sentence must be found,
and the actual answer extracted. This is accomplished by
the Answer Matching and Extraction procedure.

The first step in this procedure is to reformulate the
question into a statement form. This results in a sentence
containing an empty slot for the information being
queried. For example, “How far is the drive to Chicago?”
becomes “The distance of the drive to Chicago is
______.” Recall further that QABLe’s pre-processing
stage analyzes text with respect to various syntactic and
semantic types. In addition to supporting abstract feature
generation, these tags can be used to analyze text on a
lexical level. Thus, the question above is marked up as
[ELAB-VERB <quantity-distance> (WRB How) (RB
far)] [VERB (VBZ is)] [SUBJ <action> (DT the)
(NN drive)] [VERB-COMPL (TO to) (NNP <place>
Chicago)].

Once reformulated into statement form, this becomes
[ELAB-VERB <quantity-distance> ______] [VERB
(VBZ is)] [SUBJ <action> (DT the) (NN drive)]
[VERB-COMPL (TO to) (NNP <place> Chicago)].

The goal now is to find a sentence who’s syntactic and
semantic analysis matches that of the reformulated
question’s as closely as possible. Thus, for example the
text may contain the sentence “The drive to Chicago is 2
hours” with the corresponding analysis
[SUBJ <action> (DT the) (NN drive)] [VERB-
COMPL (TO to) (NNP <place> Chicago)] [VERB
(VBZ is)] [VERB-COMPL <quantity-time> (CD 2)
(NNS hours)].

Generalize
Given:
1. rule RGCR 111 ∧← , priority rating ()1Rpr

2. rule RGCR 222 ∧← , priority rating ()2Rpr

Generate a new rule R′ , such that RRR ′⊆21, .

if

21 RR ⊆ then

2RR =′ , and () () ()()21 ,max RprRprRpr =′

else if ∅≠∩∅≠∩ R
2

R
121 G G and CC then

 () ()R
2

R
121 G G ∩∧∩←′ CCR , and

() () ()()21 ,max RprRprRpr =′

Figure 3. Procedure for generalizing a pair of rules.

Learning Strategies for Story Comprehension: A Reinforcement Learning Approach

Notice that all of the elements of this candidate answer
match the corresponding elements of the question, with
the exception of the semantic category of the ELAB-VERB
phrase. This is likely not the answer we are seeking. The
text may contain a second sentence “The drive to Chicago
is 130 miles”, that analyses as
[SUBJ <action> (DT the) (NN drive)] [VERB-
COMPL (TO to) (NNP <place> Chicago)] [VERB
(VBZ is)] [VERB-COMPL <quantity-distance> (CD

130) (NNS miles)].

In this case, all of the elements match their counterparts in
the reformulated question. Thus, the second sentence can
be matched as the correct answer with high confidence.

2.8 Examples
In this section illustrate the application of two general
phrase-based rules learned during training on the Remedia
corpus. In these examples the rules are applied to
previously unseen instances from the same corpus.

Example 1

Rule #112:

()
))(),(()(
)(()(),(

)()()(

xphrasezphrasecausexphrase
yphraseyphrasezphrasecause

zphraseyphrasexphrase

⇒
→∧

∧∧∧

The (rm4-2) Remedia story contains the question
Why did Dr. Barry keep the secret?

Rule #112 was used to generate an answer from the
sentence
It seems Dr. Barry hid the truth so she
could practice her love of medicine.

The phrase-level tagged representations are
Q: [SUBJ Dr. Barry] [VERB kept the secret] <---
CAUSE---- [PHRASE __________]

S: [SUBJ Dr. Barry] [VERB hid the truth]
<---CAUSE--- [ELAB-VERB she could practice her
love of medicine]

Based on the verbal implication
"keep secret" ----> "hide"

the transformation rule
[VERB hid the truth] ----> [VERB kept the
secret](conf. 0.68)

is activated. Combined with the sentence above through
rule #112 it generates the answer:
A: [SUBJ Dr. Barry] [VERB kept the secret] <---
CAUSE--- [ELAB-VERB she could practice her love
of medicine]

Example 2

Rule #39:

() ()
()]e TIME-VERB-ELAB][f VERB][d SUBJ[3

2,1]f VERB][d SUBJ[2
]e TIME-VERB-ELAB[

]d OBJ-INDIR][c OBJ-DIR][b VERB][a SUBJ[
1

s
ssseqs

s

⇒∧

∧








The (rm3-42) Remedia story contains the question
When did the circus almost close?

Rule #39 was used to generate an answer from two
sentences:
In 1938, not many people had money to go
to the circus. So most of them closed.

The phrase-level tagged representations are
Q: [SUBJ The circus] [VERB almost closed] [ELAB-
VERB-TIME _________]

S: [SUBJ Not many people] [VERB had] [DIR-OBJ
money to go to] [INDIR-OBJ the circus] [ELAB-
VERB-TIME in 1938]
---SEQ---> [SUBJ Most of them] [VERB closed]

The state represented by S activates rule #39 and the
answer is generated:
A: [SUBJ The circus] [VERB almost closed] [ELAB-
VERB-TIME in 1938]

3. Experimental Evaluation
3.1 Experimental Setup

We evaluate our approach to open-domain natural
language question answering on the Remedia corpus. This
is a collection of 115 children’s stories provided by
Remedia Publications for reading comprehension. The
comprehension of each story is tested by answering five
who, what, where, and why questions.

The Remedia Corpus was initially used to evaluate the
Deep Read reading comprehension system, and later also
other systems, including Quarc and the Brown University
statistical language processing class project.

The corpus includes two answer keys. The first answer
key contains annotations indicating the story sentence that
is lexically closest to the answer found in the published
answer key (AutSent). The second answer key contains
sentences that a human judged to best answer each
question (HumSent). Examination of the two keys shows
the latter to be more reliable. We trained and tested using
the HumSent answers. We also compare our results to the
HumSent results of prior systems. In the Remedia corpus,
approximately 10% of the questions lack an answer.
Following prior work, only questions with annotated
answers were considered.

Learning Strategies for Story Comprehension: A Reinforcement Learning Approach

We divided the Remedia corpus into a set of 55 tests used
for development, and 60 tests used to evaluate our model,
employing the same partition scheme as followed by the
prior work mentioned above. With five questions being
supplied with each test, this breakdown provided 275
example instances for training, and 300 example instances
to test with. However, due to the heavy reliance of our
model on learning, many more training examples were
necessary. We widened the training set by adding story-
question-answer sets obtained from several online sources.
With the extended corpus, QABLe was trained on 262
stories with 3-5 questions each, corresponding to 1000
example instances.

3.2 Discussion of Results
Table 2 compares the performance of different versions
of QABLe with those reported by the three prior systems
described above. We wish to evaluate three aspects of the
QABLe framework:

• the particular contribution of transformation rule learning
in the QABLe model

• the value of expanding the training set
• the value of abstracting the feature space through use of

higher-order relational representations.

To this end, we compare the respective accuracies of
answers returned by six versions of QABLe, characterized
by two key parameters. One parameter varies the amount
of learning – none: QA matching and extraction algorithm
described in section 2.6 only (-N/L), learning with the
Remedia training corpus only (-L), and learning with the
expanded training corpus described above (-L+). The
second parameter selects the presence (-PR) or absence (-
N/PR) of phrase role tags. These correspond to the phrase

types in Table 1, and represent higher-order
structural/semantic relations over the raw text.

As expected, the accuracies of the no-learning versions are
comparable to those of the earlier systems. The Remedia-
only training set versions show a noticeable improvement
over the no-learning (baseline) QABLe, and most of the
prior system results. This is mostly due to an expanded
ability to deal with semantic alternations in the narrative
by learning transformation rules that reformulate the
alternations into lexical form matching that of the
question.

Table 3 gives a break-down of rule learning and use for
the learning versions of QABLe during the course of an
entire training/test cycle. The first column is the total
number of rules learned by each system version. The
second column is the total number of distinct rules that
ended up being successfully used in generating all correct
answers. The last column gives the average number of
rules each system needed to produce an answer (where a
correct answer was generated). As expected, versions
augmented with phrase role tags executed far fewer rules
than those without. This is because phrase role tags
permit entire phrases to be treated as semantic entities, and
to be used as arguments to transformations. More
importantly, note that the QABLe-L+ versions used fewer
rules on average to generate more correct answers than the
QABLe-L versions. This is because QABLe-L+ versions
had more opportunities to refine their policies controlling
rule firing through reinforcement and generalization.

Notice, however, that the QABLe-L+ versions were
trained on a corpus more than three time the size of that
for QABLe-L. The overall improvement in accuracy
bought by the substantial effort of generating the extra

System who what when where why Overall
Deep Read 48% 38% 37% 39% 21% 36%
Quarc 41% 28% 55% 47% 28% 40%
Brown 57% 32% 32% 50% 22% 41%
QABLe-N/L-N/PR 48% 35% 51% 42% 28% 41%
QABLe-N/L-PR 48% 35% 52% 43% 28% 41%
QABLe-L-N/PR 55% 41% 55% 44% 29% 45%
QABLe-L-PR 56% 41% 56% 45% 35% 47%
QABLe-L+-N/PR 55% 41% 56% 45% 30% 45%
QABLe-L+-PR 59% 43% 56% 46% 36% 48%

Table 2. Comparison of QA accuracy by question type.

System tot. # rules learned tot. # rules on all solution paths avrg. # rules on solution path per correct answer
QABLe-L-N/PR 11,082 1193 9.36
QABLe-L-PR 3,463 426 3.02
QABLe-L+-N/PR 60,058 1274 9.23
QABLe-L+-PR 16,681 411 2.85

Table 3. Analysis of transformation rule learning and use.

Learning Strategies for Story Comprehension: A Reinforcement Learning Approach

training instances was negligible - 1% for QABLe-L+-PR,
and practically no improvement at all for QABLe-L+-
N/PR. Training on more examples certainly leads to
wider domain coverage through the acquisition of more
transformation rules. However, the variation among
examples is so large as to make good domain coverage
through training corpus expansion impractical.

At the same time, note that the use of phrase role tagging
lead to improved accuracy with the standard Remedia
training corpus alone, and even better results with the
expanded training corpus. The reason for this is that
phrase role entities support a more expressive
representation, and thus permit better rule generalization
from fewer training examples.

In summary then, a QA approach based on strategies
consisting of learned transformation rules is clearly
superior to “matching and extraction”-only techniques.
Furthermore, the results of Table 3 indicate that an
expanded training corpus offers more opportunities to
refine the policy controlling rule firing through
reinforcement and generalization. However, as can be seen
from Table 2, this leads to only marginal improvement in
coverage across the domain. Furthermore, expansion of
the training corpus boosts accuracy only in combination
with a sufficiently expressive representation of the
domain. This is because an expressive representation
supports more effective rule generalization.

We anticipate that a gradual improvement in the depth and
accuracy of semantic and pragmatic pre-processing will
permit a vastly richer and more compact representation of
narrative text and questions, which will lead to dramatic
boost in the accuracy of answers generated by the QABLe
framework.

4. Conclusion
We apply our model to the NLP task of story
comprehension and describe QABLe, a framework for
learning strategies for question answering from examples
composed of textual narratives, questions, and answers.
These strategies are composed of ranked lists of
transformation rules that when applied to an initial state
consisting of an unseen text and question, can derive the
required answer. The strategies are acquired through
inductive generalization and reinforcement learning. In
the process, the most relevant pieces of lexical information
are selected. This approach was evaluated on the Remedia
corpus and compared with three non-learning systems.
QABLe was found to significantly improve upon non-
learning techniques.

Acknowledgements
We gratefully acknowledge the helpful feedback provided
by Dan Roth. This research was supported, in part, by
ONR MURI grant N00014-00-1-0660.

References
[Benson, 1995] S. Benson. Inductive learning of reactive

action models. ICML-95, 1995.
[Benson and Nilsson, 1995] S. Benson and N. Nilsson.

Reacting, planning, and learning in an autonomous agent.
In K. Furukawa, D. Michie, and S. Muggleton, eds.
Machine Intelligence 14, The Claredon Press.

[Berger et al., 2000] A. Berger, R. Caruana, D. Cohn, D.
Freitag, and V. Mittal. Bridging the lexical chasm:
Statistical approaches to answer-finding. ACM SIGIR-00,
2000.

[Bratko, et al., 1998] I. Bratko, T. Urbancic, and C. Sammut.
Behavior cloning: phenomena, results and problems:
Automated systems based on human skill. IFAC
Symposium. Berlin.

[Brill, 1995] E. Brill. Transformation-based error driven
learning and natural language processing: A case study in
part of speech tagging. In Computational Linguistics,
21(4):543-565, 1995.

[Charniak, et al., 2000] E. Charniak, Y. Altun, R. de Salvo
Braz, B. Garrett, M. Kosmala, T. Moscovich, L. Pang, C.
Pyo, Y. Sun, W. Wy, Z. Yang, S. Zeller, and L. Zorn.
Reading comprehension programs in a statistical-
language-processing class. ANLP/NAACL-00, 2000.

[Fellbaum, 1998] C. Fellbaum (ed.) WordNet: An Electronic
Lexical Database. The MIT Press, 1998.

[Hirschman et al., 1999] L. Hirschman, M. Light, and J.
Burger. Deep Read: A reading comprehension system.
ACL-99, 1999.

[Kaebling, et al., 1996] L. P. Kaebling, M. L. Littman, and
A. W. Moore. Reinforcement learning: A survey. J.
Artif. Intel. Research, 4:237-285, 1996.

[Khardon, 1999] R. Khardon. Learning to take action.
Machine Learning 35(1), 1999.

[Knoblock, 1992] C. Knoblock. Automatic generation of
abstraction for planning. Artificial Intelligence,
68(2):243-302, 1992.

[Marcu and Popescu, 2005] D. Marcu and A.M. Popescu.
Towards developing probabilistic generative models for
reasoning with natural language representations.
ICCLTP-05, 2005.

[Riloff and Thelen, 2000] E. Riloff and M. Thelen. A rule-
based question answering system for reading
comprehension tests. ANLP/NAACL-2000, 2000.

[Sammut, et al., 1992] C. Sammut, S. Hurst, D. Kedzier, and
D. Michie. Learning to fly. ICML-98, 1998.

[Tadepalli and Natarajan, 1996] P. Tadepalli and B.
Natarajan. A formal framework for speedup learning
from problems and solutions. J. Artif. Intel. Research,
4:445-475, 1996.

[Voorhees, 2003] E. M. Voorhees Overview of the TREC
2003 question answering track. TREC-12, 2003.

