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Abstract 
This paper describes the use of machine learning 
to improve the performance of natural language 
question answering systems.  We present a 
model for improving story comprehension 
through inductive generalization and 
reinforcement learning, based on classified 
examples.  In the process, the model selects the 
most relevant and useful pieces of lexical 
information to be used by the inference 
procedure.  We compare our approach to three 
prior non-learning systems, and evaluate the 
conditions under which learning is effective.  
We demonstrate that a learning-based approach 
can improve upon “matching and extraction”-
only techniques. 

1.  Introduction  
This paper presents a model for the automated acquisition 
of behavior policies for tasks that are not readily cloned 
due to the difficulty of gathering explicit traces of 
successful execution.  We apply our model to the task of 
automatically learning strategies for natural language 
question answering from examples composed of textual 
sources, questions, and answers.  Our approach is focused 
on one specific type of text-based question answering 
known as story comprehension.  Most TREC-style QA 
systems are designed to extract an answer from a 
document contained in a fairly large general collection 
[Voorhees, 2003].  Story comprehension requires a similar 
approach, but involves answering questions from a single 
narrative document.  An important challenge in text-based 
question answering in general is posed by the syntactic 
and semantic variability of question and answer forms, 
which makes it difficult to establish a match between the 
question and answer candidate.  This problem is 
particularly acute in the case of story comprehension due 
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to the rarity of information restatement in the single 
document. 

Several recent systems have specifically addressed the 
task of story comprehension.  The Deep Read reading 
comprehension system [Hirschman et al., 1999] uses a 
statistical bag-of-words approach, matching the question 
with the lexically most similar sentence in the story.  
Quarc [Riloff and Thelen, 2000] utilizes manually 
generated rules that select a sentence deemed to contain 
the answer based on a combination of syntactic similarity 
and semantic correspondence (i.e., semantic categories of 
nouns).  The Brown University statistical language 
processing class project systems [Charniak, et al., 2000] 
combine the use of manually generated rules with 
statistical techniques such as bag-of-words and bag-of-
verb matching, as well as deeper semantic analysis of 
nouns.  As a rule, these three systems are effective at 
identifying the sentence containing the correct answer as 
long as the answer is explicit and contained entirely in that 
sentence.  They find it difficult, however, to deal with 
semantic alternations of even moderate complexity.  They 
also do not address situations where answers are split 
across multiple sentences, or those requiring complex 
inference. 

Statistical learning techniques have been applied to the 
task of finding answers to questions.  For example, 
[Berger et al., 2000] induces questions-answer 
correspondence from FAQs and call center data.  These 
techniques perform better in domain-specific applications 
than in general-purpose ones.  Also, they match explicit 
and complete answers from a list to a  given question.  
They do not perform translation of text to generate non-
explicit or composite answers. 

Our framework, called QABLe (Question-Answering 
Behavior Learner), draws on prior work in learning action 
and problem-solving strategies [Tadepalli and Natarajan, 
1996; Khardon, 1999].  We represent textual sources as 
sets of features in a sparse domain, and treat the QA task 
as behavior in a stochastic, partially observable world.  
QA strategies are learned as sequences of transformation 
rules capable of deriving certain types of answers from 
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particular text-question combinations.  Strategies 
determine which transformation rules to apply when.  The 
transformation rules are generated by instantiating 
primitive domain operators in specific feature contexts.  A 
process of reinforcement learning [Kaebling, et al., 1996] 
is used to select and promote effective transformation 
rules.  Representations of the underlying domain features 
are learned in the course of interacting with the domain, 
and encode the features at the levels of abstraction that are 
found to be conducive to successful behavior.  This 
selection effect is achieved by a fusion of abstraction 
space generalization [Knoblock, 1992] and reinforcement 
learning elements.  

Our approach is similar to a technique known as behavior 
cloning, in which control/action rules are induced from 
traces generated by a “teacher” [Sammut, et al., 1992; 
Bratko, et al., 1998].  Behavior cloning has been applied 
successfully in various control and planning applications, 
where traces of explicit actions or solution steps are easily 
obtainable.  Question-answering, however, is not an 
explicitly traceable task.  The exact process by which a 
human analyzes and answers a question, and the internal 
representations used to facilitate that process, are in large 
part hidden and not amenable to explicit modeling 
techniques.  Therefore, our goal for QABLe is not to clone 
human QA behavior, but rather to independently learn 
rules and behavior policies composed of these rules that 
produce results similar to those of the human teacher. 

Conceptually, our approach resembles the learning of 
reactive action models [Benson, 1995], wherein decision 
lists of teleo-operators [Benson and Nilsson, 1995] are 
induced through experimentation in the domain.  Our 

approach is also similar in spirit to the noisy channel-
based translation of strings proposed by [Marcu and 
Popescu, 2005]. 

The rest of this paper is organized as follows.  Section 2 
presents the details of the QABLe framework.  In section 
3 we describe preliminary experimental results which 
indicate promise for our approach.  In section 4 we 
summarize and draw conclusions.    

2.  QABLe – Learning to Answer Questions 
2.1  Overview 

Figure 1 shows a diagram of the QABLe framework.  The 
bottom-most layer is the natural language textual domain.  
It represents raw textual sources, questions, and answers.  
The intermediate layer consists of processing modules that 
translate between the raw textual domain and the top-most 
layer, an abstract representation used to reason and learn. 

This framework is used both for learning to answer 
questions and for the actual QA task.  While learning, the 
system is provided with a set of training instances, each 
consisting of a textual narrative, a question, and a 
corresponding answer.  During the performance phase, 
only the narrative and question are given. 

At the lexical level, an answer to a question is generated 
by applying a series of transformation rules to the text of 
the narrative.  These transformation rules augment the 
original text with one or more additional sentences, such 
that one of these explicitly contains the answer, and 
matches the form of the question. 
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Figure 1.  The QABLe architecture for question answering. 
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On the abstract level, this is essentially a process of 
searching for a path through problem space that 
transforms the world state, as described by the textual 
source and question, into a world state containing an 
appropriate answer.  This process is made efficient by 
learning answer-generation strategies.  These strategies 
store procedural knowledge regarding the way in which 
answers are derived from text, and suggest appropriate 
transformation rules at each step in the answer-generation 
process.  Strategies (and the procedural knowledge stored 
therein) are acquired by explaining (or deducing) correct 
answers from training examples.  The framework’s ability 
to answer questions is tested only with respect to the kinds 
of documents it has seen during training, the kinds of 
questions it has practiced answering, and its interface to 
the world (domain sensors and operators). 

In the next two sections we discuss lexical pre-processing, 
and the representation of features and relations over them 
in the QABLe framework.  In section 2.4 we look at the 
structure of transformation rules and describe how they 
are instantiated.  In section 2.5, we build on this 
information and describe details of how strategies are 
learned and utilized to generate answers.  In section 2.7 
we explain how candidate answers are matched to the 
question, and extracted. 

2.2  Lexical Pre-Processing 
Several levels of syntactic and semantic processing are 
required in order to generate structures that facilitate 
higher order analysis.  We currently use MontyTagger 1.2, 
an off-the-shelf POS tagger based on [Brill, 1995], for 
POS tagging.  At the next tier, we utilize a Named Entity 
(NE) tagger for proper nouns a semantic category 
classifier for nouns and noun phrases, and a co-reference 

resolver (that is limited to pronominal anaphora).  Our 
taxonomy of semantic categories is derived from the list of 
unique beginners for WordNet nouns [Fellbaum, 1998].  
We also have a parallel stage that identifies phrase types, a 
form of structural relation.  Table 1 gives a list of phrase 
types currently in use, together with the categories of 
questions each phrase type can answer.  In the near future, 
we plan to utilize a link parser to boost phrase-type 
tagging accuracy.  We also would like to extract deeper 
semantic relations.  For questions, we have a classifier that 
identifies the semantic category of information requested 
by the question.  Currently, this taxonomy is identical to 
that of semantic categories.  However, in the future, it may 
be expanded to accommodate a wider range of queries.  A 
separate module reformulates questions into statement 
form for later matching with answer-containing phrases. 

2.3  Representing the Question-Answering Domain 

In this section we explain how features are extracted from 
raw textual input and tags which are generated by pre-
processing modules. 

A sentence is represented as a sequence of words  〈w1, 
w2,…, wn〉, where word(wi, word) binds a particular word 
to its position in the sentence.  The kth sentence in a 
passage is given a unique designation sk.  Several simple 
functions capture the syntax of the sentence.  The sentence 
Main (e.g., main verb) is the controlling element of the 
sentence, and is recognized by main(wm, sk).  Parts of 
speech are recognized by the function pos, as in pos(wi, 
NN) and pos(wi, VBD).  The relative syntactic ordering of 
words is captured by the predicate before(wi, wj).  It can be 
applied recursively, as before(wi, before(wj, wk)) to 
generate the entire sentence starting with an arbitrary 
word, usually the sentence Main.  The integrity of the 
sentence is checked by the function inSentence(wi, si) ⇒ 
main(wm, sk) ∧ (before(wi, wm) ∨ before(wm, wi)) for each 
word wi  in the sentence.  A consecutive sequence of 
words is a phrase entity or simply entity.  It is given the 
designation ex  and declared by a binding function, such as 
entity(ex, NE) for a named entity, and entity(ex, NP) for a 
syntactic group of type noun phrase.  Each phrase entity is 
identified by its head, as head(wh, ex), and we say that the 
phrase head controls the entity.  A phrase entity is defined 
as head(wh, ex) ∧ inPhrase(wi, ex) ∧ … ∧ inPhrase(wj, ex). 

We also wish to represent higher-order relations such 
as functional roles and semantic categories.  Functional 
dependency between pairs of words is encoded as, for 
example, subj(wi, wj) and aux(wj, wk).  Functional groups 
are represented just like phrase entities.  Each is assigned a 
designation rx, declared for example, as func_role(rx, 
SUBJ), and defined in terms of its head and members 
(which may be individual words or composite entities).  
Semantic categories are similarly defined over the set of 
words and syntactic phrase entities – for example, 

Phrase Type Comments 
SUBJ  “Who” and nominal “What”  
VERB event “What”  
DIR-OBJ  “Who” and nominal “What”  
INDIR-OBJ  “Who” and nominal “What”  

ELAB-SUBJ descriptive “What” (eg. what 
kind) 

ELAB-VERB-TIME time 
ELAB-VERB-PLACE place 
ELAB-VERB-MANNER manner 
ELAB-VERB-CAUSE  “Why”  

ELAB-VERB-INTENTION    “Why” as well as “What 
for”  

ELAB-VERB-OTHER smooth handling of 
undefined verb phrase types 

ELAB-DIR-OBJ descriptive “What” (eg. what 
kind) 

ELAB-INDIR-OBJ descriptive “What” (eg. what 
kind) 

VERB-COMPL WHERE/WHEN/HOW 
concerning state or status 

Table 1.  Phrase types used by QABLe framework. 
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sem_cat(cx, PERSON) ∧  head(wh, cx) ∧ pos(wi, NNP) ∧ 
word(wh, “John”). 

Semantically, sentences are treated as events defined by 
their verbs.  A multi-sentential passage is represented by 
tying the member sentences together with relations over 
their verbs.  We declare two such relations – seq and 
cause.  The seq relation between two sentences, seq(si, sj) 
⇒ prior(main(si), main(sj)), is defined as the sequential 
ordering in time of the corresponding events.  The cause 
relation cause(si, sj) ⇒ cdep(main(si), main(sj)) is defined 
such that the second event is causally dependent on the 
first. 

2.4  Primitive Operators and Transformation Rules 
The system, in general, starts out with no procedural 
knowledge of the domain (i.e., no transformation rules).  
However, it is equipped with 9 primitive operators that 
define basic actions in the domain.  Primitive operators are 
existentially quantified.  They have no activation 
condition, but only an existence condition – the minimal 
binding condition for the operator to be applicable in a 
given state.  A primitive operator has the form AC E ˆ→ , 
where EC  is the existence condition and Â  is an action 
implemented in the domain.  An example primitive 
operator is  

primitive-op-1 :     ∃ wx, wy →  add-word-after(wy, wx) 
Other primitive operators delete words or manipulate 
entire phrases.  Note that primitive operators act directly 
on the syntax of the domain.  In particular, they 
manipulate words and phrases.  A primitive operator 
bound to a state in the domain constitutes a transformation 
rule.  The procedure for instantiating transformation rules 
using primitive operators is given in Figure 2.  The result 
of this procedure is a universally quantified rule having 
the form AGC R →∧ .  A  may represent either the name 
of an action in the world or an internal predicate.  C 
represents the necessary condition for rule activation in 
the form of a conjunction over the relevant attributes of 
the world state.  RG  represents the expected effect of the 
action.  For example,  

( ) ( ) ( )( ) →∧∧ 433221 ,,, wwbeforeGwwbeforewwbefore R

( )34, wwafterwordadd −−  

indicates that when the phrase “w1 w2 w3” is found in the 
text, this operator is expected to attach w4 to the end, 
generating the phrase “w1 w2 w3 w4”.    

An instantiated rule is assigned a rank composed of: 

• priority rating (p) 
• level of experience with rule (f) 
• confidence in current parameter bindings (c) 

The first component, priority rating, is an inductively 
acquired measure of the rule’s performance on previous 

instances.  The second component modulates the priority 
rating with respects to a frequency of use measure.  The 
third component captures any uncertainty inherent in the 
underlying features serving as parameters to the rule.  The 
rank of a rule is computed by the following function: 

( )( )fcprank ++××= 1log1  

Each time a new rule is added to the rule base, an attempt 
is made to combine it with similar existing rules to 
produce more general rules having a wider relevance and 
applicability. 

Given a rule 
1Aggcc R

y
R
xba →∧∧∧ covering a set of 

example instances 1E  and another rule 

2Aggcc R
z

R
ycb →∧∧∧ covering a set of examples 2E , we 

add a more general rule 3Agc R
yb →∧  to the strategy.  The 

new rule 3A  is consistent with 1E and 2E .  In addition it 
will bind to any state where the literal bc  is active.  
Therefore the hypothesis represented by the triggering 
condition is likely an overgeneralization of the target 
concept.  This means that rule 3A  may bind in some states 
erroneously.  However, since all rules that can bind in a 
state compete to fire in that state, if there is a better rule, 
then 3A  will be preempted and will not fire. Figure 3 gives 
the rule generalization algorithm. 

2.5  Generating Answers 
Returning to Figure 1, we note that at the abstract level the 
process of answer generation begins with the extraction of 
features active in the current state.  These features 
represent low-level textual attributes and the relations over 
them described in section 2.3. 

Immediately upon reading the current state, the system 
checks to see if this is a goal state.   A goal state is a state 
whose corresponding textual domain representation 
contains an explicit answer in the right form to match the 
questions.  In the abstract representation, we say that in 
this state all of the goal constraints are satisfied.  

Instantiate Rule
Given:  

• set of primitive operators 
• current state specification 
• goal specification 

 

1. select primitive operator to instantiate 
2. bind active state variables & goal spec to existentially 

quantified condition variables   
3. execute action in domain 
4. update expected effect of new rule according to change 

in state variable values 
 
Figure 2.  Procedure for instantiating transformation rules 
using primitive operators. 
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If the current state is indeed a goal state, no further 
inference is required.  The inference process terminates 
and the actual answer is identified by the matching 
technique described in section 2.6 and extracted.   

If the current state is not a goal state and more processing 
time is available, QABLe passes the state to the Inference 
Engine (IE).  This module stores strategies in the form of 
decision lists of rules.  For a given state, each strategy may 
recommend at most one rule to execute.  For each strategy 
this is the first rule in its decision list to fire.  The IE 
selects the rule among these with the highest relative rank, 
and recommends it as the next transformation rule to be 
applied to the current state.  

If a valid rule exists it is executed in the domain.  This 
modifies the concrete textual layer.  At this point, the pre-
processing and feature extraction stages are invoked, a 
new current state is produced, and the inference cycle 
begins anew. 

If a valid rule cannot be recommend by the IE, QABLe 
passes the current state to the Search Engine (SE).  The SE 
uses the current state and its set of primitive operators to 
instantiate a new rule, as described in section 2.4. This 
rule is then executed in the domain, and another iteration 
of the process begins.   

If no more primitive operators remain to be applied to the 
current state, the SE cannot instantiate a new rule.  At this 
point, search for the goal state cannot proceed, processing 
terminates, and QABLe returns failure. 

When the system is in the training phase and the SE 
instantiates a new rule, that rule is generalized against the 
existing rule base.  This procedure attempts to create more 
general rules that can be applied to unseen example 
instances.   

Once the inference/search process terminates (successfully 
or not), a reinforcement learning algorithm is applied to all 
rules that were active in that session.  This reinforcement 

affects the priority rating (p) (see sect. 2.4) of each rule 
that fired in the current run.  Specifically, rules on the 
solution path receive positive reward, and rules that fired, 
but are not on the solution path receive negative 
reinforcement.   

A new rule is initially given a nominal priority rating, 0p .  
In generalizing, a newly created abstract rule is assigned a 
priority rating slightly higher than those of its more 
specific precursor rules.  This guarantees that the abstract 
rule will have an opportunity to be tested.   

Reinforcement is applied as Rpp +=′ .  The reward R is 
a constant value, and 0pR < .  Once a rule’s priority 
rating drops below a threshold t, the rule is effectively 
dropped and never used again.  In this way, rules that 
consistently perform poorly are quickly discarded. 

2.7  Candidate Answer Matching and Extraction 
As discussed in the previous section, when a goal state is 
generated in the abstract representation, this corresponds 
to a textual domain representation that contains an explicit 
answer in the right form to match the questions.  Such a 
candidate answer may be present in the original text, or 
may be generated by the inference/search process.  In 
either case, the answer-containing sentence must be found, 
and the actual answer extracted.  This is accomplished by 
the Answer Matching and Extraction procedure. 

The first step in this procedure is to reformulate the 
question into a statement form.  This results in a sentence 
containing an empty slot for the information being 
queried.  For example, “How far is the drive to Chicago?” 
becomes “The distance of the drive to Chicago is 
______.”  Recall further that QABLe’s pre-processing 
stage analyzes text with respect to various syntactic and 
semantic types.  In addition to supporting abstract feature 
generation, these tags can be used to analyze text on a 
lexical level.  Thus, the question above is marked up as  
[ELAB-VERB <quantity-distance> (WRB How) (RB 
far)] [VERB (VBZ is)] [SUBJ <action> (DT the) 
(NN drive)] [VERB-COMPL (TO to) (NNP <place> 
Chicago)].   

Once reformulated into statement form, this becomes  
[ELAB-VERB <quantity-distance> ______ ] [VERB 
(VBZ is)] [SUBJ <action> (DT the) (NN drive)] 
[VERB-COMPL (TO to) (NNP <place> Chicago)]. 

The goal now is to find a sentence who’s syntactic and 
semantic analysis matches that of the reformulated 
question’s as closely as possible.  Thus, for example the 
text may contain the sentence “The drive to Chicago is 2 
hours” with the corresponding analysis  
[SUBJ <action> (DT the) (NN drive)] [VERB-
COMPL (TO to) (NNP <place> Chicago)] [VERB 
(VBZ is)] [VERB-COMPL <quantity-time> (CD 2) 
(NNS hours)].   

Generalize 
Given:  
1. rule RGCR 111 ∧← , priority rating ( )1Rpr   

2. rule RGCR 222 ∧← , priority rating ( )2Rpr  
 
Generate a new rule R′ , such that RRR ′⊆21, . 
 
if 

21 RR ⊆  then 

2RR =′ , and ( ) ( ) ( )( )21 ,max RprRprRpr =′  
 

else if ∅≠∩∅≠∩ R
2

R
121 G G and  CC  then 

 ( ) ( )R
2

R
121 G G ∩∧∩←′ CCR , and 

( ) ( ) ( )( )21 ,max RprRprRpr =′  
 
Figure 3. Procedure for generalizing a pair of rules.
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Notice that all of the elements of this candidate answer 
match the corresponding elements of the question, with 
the exception of the semantic category of the ELAB-VERB 
phrase.  This is likely not the answer we are seeking.  The 
text may contain a second sentence “The drive to Chicago 
is 130 miles”, that analyses as  
[SUBJ <action> (DT the) (NN drive)] [VERB-
COMPL (TO to) (NNP <place> Chicago)] [VERB 
(VBZ is)] [VERB-COMPL <quantity-distance> (CD 

130) (NNS miles)].   

In this case, all of the elements match their counterparts in 
the reformulated question.  Thus, the second sentence can 
be matched as the correct answer with high confidence. 

2.8  Examples 
In this section illustrate the application of two general 
phrase-based rules learned during training on the Remedia 
corpus.  In these examples the rules are applied to 
previously unseen instances from the same corpus. 

Example 1 

Rule #112: 

( )
))(),(()(
)(()(),(

)()()(

xphrasezphrasecausexphrase
yphraseyphrasezphrasecause

zphraseyphrasexphrase

⇒
→∧

∧∧∧
 

The (rm4-2) Remedia story contains the question 
Why did Dr. Barry keep the secret? 

Rule #112 was used to generate an answer from the 
sentence 
It seems Dr. Barry hid the truth so she 
could practice her love of medicine. 

The phrase-level tagged representations are  
Q:  [SUBJ Dr. Barry] [VERB kept the secret] <---
CAUSE---- [PHRASE __________] 
                                         
S:  [SUBJ Dr. Barry] [VERB hid the truth]  
<---CAUSE--- [ELAB-VERB she could practice her 
love of medicine] 
 

Based on the verbal implication  
"keep secret" ----> "hide"    

the transformation rule 
[VERB hid the truth] ----> [VERB kept the 
secret](conf. 0.68) 

is activated.  Combined with the sentence above through 
rule #112 it generates the answer: 
A:  [SUBJ Dr. Barry] [VERB kept the secret] <---
CAUSE--- [ELAB-VERB she could practice her love 
of medicine] 
 

Example 2 

Rule #39: 

( ) ( )
( )]e TIME-VERB-ELAB][f VERB][d SUBJ[3

2,1]f VERB][d SUBJ[2
]e TIME-VERB-ELAB[

]d OBJ-INDIR][c OBJ-DIR][b VERB][a SUBJ[
1

s
ssseqs

s

⇒∧

∧








 

The (rm3-42) Remedia story contains the question 
When did the circus almost close? 

Rule #39 was used to generate an answer from two 
sentences: 
In 1938, not many people had money to go 
to the circus.  So most of them closed.   

The phrase-level tagged representations are  
Q:  [SUBJ The circus] [VERB almost closed] [ELAB-
VERB-TIME _________] 

 
S:  [SUBJ Not many people] [VERB had] [DIR-OBJ 
money to go to] [INDIR-OBJ the circus] [ELAB-
VERB-TIME in 1938] 
---SEQ---> [SUBJ Most of them] [VERB closed] 

The state represented by S activates rule #39 and the 
answer is generated:  
A:  [SUBJ The circus] [VERB almost closed] [ELAB-
VERB-TIME in 1938] 

3.  Experimental Evaluation 
3.1  Experimental Setup 

We evaluate our approach to open-domain natural 
language question answering on the Remedia corpus.  This 
is a collection of 115 children’s stories provided by 
Remedia Publications for reading comprehension.  The 
comprehension of each story is tested by answering five 
who, what, where, and why questions.   

The Remedia Corpus was initially used to evaluate the 
Deep Read reading comprehension system, and later also 
other systems, including Quarc and the Brown University 
statistical language processing class project. 

The corpus includes two answer keys.  The first answer 
key contains annotations indicating the story sentence that 
is lexically closest to the answer found in the published 
answer key (AutSent).  The second answer key contains 
sentences that a human judged to best answer each 
question (HumSent).  Examination of the two keys shows 
the latter to be more reliable.  We trained and tested using 
the HumSent answers.  We also compare our results to the 
HumSent results of prior systems.  In the Remedia corpus, 
approximately 10% of the questions lack an answer.  
Following prior work, only questions with annotated 
answers were considered.     
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We divided the Remedia corpus into a set of 55 tests used 
for development, and 60 tests used to evaluate our model, 
employing the same partition scheme as followed by the 
prior work mentioned above.  With five questions being 
supplied with each test, this breakdown provided 275 
example instances for training, and 300 example instances 
to test with.  However, due to the heavy reliance of our 
model on learning, many more training examples were 
necessary.  We widened the training set by adding story-
question-answer sets obtained from several online sources.  
With the extended corpus, QABLe was trained on 262 
stories with 3-5 questions each, corresponding to 1000 
example instances.   

3.2  Discussion of Results 
Table 2 compares the performance of different versions 
of QABLe with those reported by the three prior systems 
described above.  We wish to evaluate three aspects of the 
QABLe framework:  
 

• the particular contribution of transformation rule learning 
in the QABLe model 

• the value of expanding the training set 
• the value of abstracting the feature space through use of 

higher-order relational representations.   
 
To this end, we compare the respective accuracies of 
answers returned by six versions of QABLe, characterized 
by two key parameters.  One parameter varies the amount 
of learning – none: QA matching and extraction algorithm 
described in section 2.6 only  (-N/L), learning with the 
Remedia training corpus only (-L), and learning with the 
expanded training corpus described above (-L+).  The 
second parameter selects the presence  (-PR) or absence (-
N/PR) of phrase role tags.  These correspond to the phrase 

types in Table 1, and represent higher-order 
structural/semantic relations over the raw text. 

As expected, the accuracies of the no-learning versions are 
comparable to those of the earlier systems.  The Remedia-
only training set versions show a noticeable improvement 
over the no-learning (baseline) QABLe, and most of the 
prior system results.  This is mostly due to an expanded 
ability to deal with semantic alternations in the narrative 
by learning transformation rules that reformulate the 
alternations into lexical form matching that of the 
question.   

Table 3 gives a break-down of rule learning and use for 
the learning versions of QABLe during the course of an 
entire training/test cycle.   The first column is the total 
number of rules learned by each system version.  The 
second column is the total number of distinct rules that 
ended up being successfully used in generating all correct 
answers.  The last column gives the average number of 
rules each system needed to produce an answer (where a 
correct answer was generated).  As expected, versions 
augmented with phrase role tags executed far fewer rules 
than those without.  This is because phrase role tags 
permit entire phrases to be treated as semantic entities, and 
to be used as arguments to transformations.  More 
importantly, note that the QABLe-L+ versions used fewer 
rules on average to generate more correct answers than the 
QABLe-L versions.   This is because QABLe-L+ versions 
had more opportunities to refine their policies controlling 
rule firing through reinforcement and generalization. 

Notice, however, that the QABLe-L+ versions were 
trained on a corpus more than three time the size of that 
for QABLe-L.  The overall improvement in accuracy 
bought by the substantial effort of generating the extra 

System who what when where why Overall 
Deep Read 48% 38% 37% 39% 21% 36% 
Quarc 41% 28% 55% 47% 28% 40% 
Brown 57% 32% 32% 50% 22% 41% 
QABLe-N/L-N/PR 48% 35% 51% 42% 28% 41% 
QABLe-N/L-PR 48% 35% 52% 43% 28% 41% 
QABLe-L-N/PR 55% 41% 55% 44% 29% 45% 
QABLe-L-PR 56% 41% 56% 45% 35% 47% 
QABLe-L+-N/PR 55% 41% 56% 45% 30% 45% 
QABLe-L+-PR 59% 43% 56% 46% 36% 48% 

Table 2.  Comparison of QA accuracy by question type. 

 
 

System tot. # rules learned tot. # rules on all solution paths avrg. # rules on solution path per correct answer 
QABLe-L-N/PR 11,082 1193 9.36 
QABLe-L-PR 3,463 426 3.02 
QABLe-L+-N/PR 60,058 1274 9.23 
QABLe-L+-PR 16,681 411 2.85 

Table 3.  Analysis of transformation rule learning and use. 
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training instances was negligible - 1% for QABLe-L+-PR, 
and practically no improvement at all for QABLe-L+-
N/PR.  Training on more examples certainly leads to 
wider domain coverage through the acquisition of more 
transformation rules.  However, the variation among 
examples is so large as to make good domain coverage 
through training corpus expansion impractical. 

At the same time, note that the use of phrase role tagging 
lead to improved accuracy with the standard Remedia 
training corpus alone, and even better results with the 
expanded training corpus.  The reason for this is that 
phrase role entities support a more expressive 
representation, and thus permit better rule generalization 
from fewer training examples. 

In summary then, a QA approach based on strategies 
consisting of learned transformation rules is clearly 
superior to “matching and extraction”-only techniques.  
Furthermore, the results of Table 3 indicate that an 
expanded training corpus offers more opportunities to 
refine the policy controlling rule firing through 
reinforcement and generalization. However, as can be seen 
from Table 2, this leads to only marginal improvement in 
coverage across the domain.  Furthermore, expansion of 
the training corpus boosts accuracy only in combination 
with a sufficiently expressive representation of the 
domain.  This is because an expressive representation 
supports more effective rule generalization.   

We anticipate that a gradual improvement in the depth and 
accuracy of semantic and pragmatic pre-processing will 
permit a vastly richer and more compact representation of 
narrative text and questions, which will lead to dramatic 
boost in the accuracy of answers generated by the QABLe 
framework. 

4.  Conclusion  
We apply our model to the NLP task of story 
comprehension and describe QABLe, a framework for 
learning strategies for question answering from examples 
composed of textual narratives, questions, and answers.  
These strategies are composed of ranked lists of 
transformation rules that when applied to an initial state 
consisting of an unseen text and question, can derive the 
required answer.  The strategies are acquired through 
inductive generalization and reinforcement learning.  In 
the process, the most relevant pieces of lexical information 
are selected.  This approach was evaluated on the Remedia 
corpus and compared with three non-learning systems.  
QABLe was found to significantly improve upon non-
learning techniques. 
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