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Abstract

The integration of diverse forms of informa-
tive data by learning an optimal combina-
tion of base kernels in classification or re-
gression problems can provide enhanced per-
formance when compared to that obtained
from any single data source. We present
a Bayesian hierarchical model which en-
ables kernel learning and present effective
variational Bayes estimators for regression
and classification. Illustrative experiments
demonstrate the utility of the proposed
method. Matlab code replicating results re-
ported is available at http://www.dcs.gla.
ac.uk/~srogers/kernel _comb.html.

1. Introduction

Kernel methods have grown in prominence primar-
ily due to their ability to represent nonlinear prob-
lems by models linear in their parameters given a
specific kernel function (Shawe-Taylor & Cristianini,
2004). This linearity means that the model parame-
ters, in for example the case of Support Vector Ma-
chines (SVM), can be identified by solving a convex
optimisation problem conditioned on the chosen kernel
function. The overall kernel function chosen is criti-
cal to the performance capability of the kernel based
machine and in the case of kernels with a parametric
form (such as Gaussian kernels) careful selection of the
associated parameters defining the kernel is essential.
Typically frequentist approaches such as leave-one-out
cross-validation are employed in identifying the asso-
ciated kernel parameters (Shawe-Taylor & Cristianini,
2004).

The Bayesian approaches to inducing kernel machines
such as Gaussian Processes (GP)(MacKay, 2003) and
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the Relevance Vector Machine (RVM) (Tipping, 2001)
require the solution of linear regularised least-squares
problems to obtain the posterior mean and covariance
of the model parameters. However a further nonlinear
optimisation to obtain point estimates of the kernel
parameters is required in fully identifying the overall
model. A very recent focus of research has been to
explore more fully the important problem of learning
the kernel from the data available and we now review
the main work devoted to this problem.

2. Kernel Learning

Kernel learning can range from the estimation of the
width parameters of an homogenous Gaussian kernel
to obtaining the optimal linear combination of a set of
candidate kernels. Employing a candidate set of ker-
nels or kernel matrices provides an elegant way of in-
tegrating heterogenous data within a single kernel ma-
chine and the practical utility of this has been demon-
strated in for example (Lanckriet et al., 2004).

One of the first publications to propose a kernel
machine based on a composite kernel of the form
K(CU, y) = Zj ﬂjKj(xvy)a 6j > 0, was (Gunn & Kan-
dola, 2002). Kernel alignment was proposed in (Cris-
tianini et al., 2002) where it was demonstrated that
a re-weighted combination of the rank-1 eigenvector
based approximations of the kernel matrix could be
obtained in a transductive setting, thus providing a
potential means of learning the kernel matrix. More
recently (Lanckriet et al., 2004) have provided a gen-
eral framework for learning the kernel matrix based
on semidefinite programming. In that work, composite
kernels with a bounded trace are obtained by weighted
combinations of positive-semidefinite candidate matri-
ces subject to the constraint that the resulting com-
posite kernel is positive-semidefinite. Restricting the
class of possible composite matrices to such conic
combinations and then employing SVM’s requires the
solution of quadratically constrained quadratic pro-
grammes (QCQP). More recently (Bach et al., 2004)
have focused on providing faster algorithms to solve



Hierarchic Bayesian Models for Kernel Learning

the required QCQP within the SDP framework.

In (Ong et al., 2003) the composite kernel function, in
an inductive setting, is learned using what is termed
hyperkernels. By defining a hyper reproducing kernel
Hilbert space and optimising a regularized cost func-
tion the composite kernel function can be obtained.
Computationally efficient methods based on second-
order cone programming are developed by (Tsang &
Kwok, 2004) for hyperkernel learning. Other ap-
proaches to kernel learning which have been proposed
include Boosting (Crammer et al., 2003), computation
of the regularisation path (Bach et al., 2005), a gradi-
ent descent based algorithm (Bousquet & Herrmann,
2003), and in (Fung et al., 2004) the solution of a bi-
convex problem defines a multiple kernel based Fisher
discriminant. Finally, in (Zhang et al., 2004) the kernel
matrix, in a transductive setting and specifically for
the classification problem, is learned using a Bayesian
hierarchical model of the matrix which consists of an
efficient formulation of the Tanner-Wong algorithm for
data augmentation. Once the kernel has been learnt
it is then employed within a standard classification al-
gorithm, the parameters of which are separately esti-
mated independently of the kernel learning procedure.

What has not been considered in the literature on ker-
nel learning is the definition of a general probabilistic
representation of a composite kernel based machine for
regression or classification. In the following sections a
Bayesian hierarchical model for composite kernel based
regression and classification is presented.

3. Hierarchic Probabilistic Model

For data where the target and input samples are
t = [t;---ty]T and X = [x;---xn]T we consider a
kernel-based regression model which employs a com-
posite kernel. Each target value t,, is represented by
the model response y,, as

N N K
Z amKﬂ(Xm,Xn) = Z Qi ZﬁkKk(XmaXn) (1)
m=0 m=0 k=1

Defining the N x (N + 1) composite kernel matrix,
which includes a bias term, as Kg and the N x K
dimensional matrix Z, whose elements are defined as
Dk = vanzo 0 K (X, Xp,) then the N x 1 vector of
model responses follows as y = Zo3 = Kga where 3
and a are K x 1 and (N + 1) x 1 vectors respectively.

The form of the priors to be placed on the model para-
meters now has to be considered. A naive assumption
on the priors for 8 would be to consider a series of in-
dependent sparsity inducing hierarchic priors on each
Bir. However, if there is no natural constraint on the

norm of 3 then unconstrained growth or reduction in
the norm of a will follow due to the inherent cou-
pling of the two coefficient sets in (1). In (Lanckriet
et al., 2004) the set of feasible composite kernel ma-
trices is restricted to the set of positive-semidefinite
matrices with bounded trace which are a linear and
non-negative combination of candidate kernel matri-
ces. Therefore to ensure that trace(Kg) is maintained
at a constant value then provided each candidate ker-
nel matrix Ky, is normalised (Shawe-Taylor & Cris-
tianini, 2004) such that for example, trace(Ky) = N,
then the non-negative components of 3 require to be
constrained such that Y, fr = 1 and 8 > 0 Vk.
So each 3 is a point on a K — 1-dimensional simplex
and this suggests that the prior can be defined by a
Dirichlet density.

The overall graphical representation of the probabilis-
tic model for regression is given in Figure (1). For the
kernel weighting coefficients (3), right-hand plate, a
hierarchical Dirichlet prior is employed where a prod-
uct of K Gamma distributions with shared parame-
ters define the distribution over the parameters of the
Dirichlet. The distributions of the regression weights
a are defined as a Scale Mixture of Gaussians (An-
drews & Mallows, 1974) as employed in the Relevance
Vector Machine (RVM) (Tipping, 2001) and the error
distribution is defined as an isotropic Gaussian with
precision . The conditional dependency structure of
distributions over the model parameters can be read
directly from the graphical representation (Figure 1).
Thus the corresponding model parameter distributions
are

tla, 3,7, X ~ Ng(Kga, Iy 1) 5 v[p, 0 ~ T4 (p, 0)
alp ~ Na(0,87') s Blo,s ~ [T _o T, (0,<)

Ble ~ Dple) ; @lr.v ~ [z, Do (,v)

where ® = diag(¢o, - ,dn), Na(b,c) defines a
Gaussian distribution computed at a with parame-
ters b and ¢, I'4(b,c) is a Gamma distribution over
a with shape and inverse scale parameters b and c.

The Dirichlet distribution for a with mean value b is
denoted as Dy(b).

4. Variational Bayes

From the definition of the model, a Gibbs sam-
pler can be developed in a straightforward manner
with Metropolis sampling interleaved to obtain sam-
ples of the Dirichlet variables and associated para-
meters. However in this paper we develop a vari-
ational Bayes method to obtain an estimate of the
required posterior distribution over the model para-
meters, see for example (Beal, 2003; Jordan et al.,
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Figure 1. Plates diagram showing the hierarchic Bayesian
regression model for combining kernels. For classification
the nodes representing v and its parents are removed and
replaced by the node representing the variational parame-
ter £ shown dashed.
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1999; Bishop & Tipping, 2000). By defining the sets
of model parameters and associated hyper-parameters
as 0 = {«a,3,7,¢,¢} and ¥ = {p,0,0,¢,7,v} the
posterior over all parameters is P(0,v|t,X). We as-
sume point estimates for the set of hyper-parameters
1 which can be obtained by type-II Maximum Like-
lihood estimation and so seek an approximation for
the posterior P(0|1, t, X). The required posterior can
be approximated by a factorable ensemble such that
P(81,t.X) ~ Q(6) = Q(a)QB)QQD)Q(p).
Dropping the explicit conditioning on the input data X
and denoting E,{a} as the expectation of the random
variable a with respect to the distribution or density
p then the well known bound on the model evidence
log P(t) > Eg) {log P(t,0|¢)} — Ege){log Q(6)}
is minimised by distributions of the form Q(0;)
exp (Ego_;){log P(t,0|v)}) where Q(0_;) denotes
the ensemble with the i*" component of @ removed.

4.1. Regression

The optimal distribution associated with the a para-
meters in Figure (1) are Q(a) = Ny (mg, Xa). Using
the following notation for the posterior expectations
ie. a = Eg(g{a} and k;, denotes the (N +41) x 1 vec-
tor of kernel values from the i*" kernel for data point
n, then the associated parameters are defined as

-1

K K N N
%ZZ ka;-fn+<1>

N K
mey = %zcx Z tn Z ﬁkkkn
n=1 k=1

from which the corresponding posterior moments can
be obtained. The posterior distribution over ¢ and the

required posterior moments are

H Ty, (

The posterior for the precision is also Gamma with the
required moment given as

1 ~ 1+ 20
+Oé?n+§)5 Om = =——
272 a? +2

N 1 — _ N +2p
Q) =1, (5 +pglel o) 7= 2
le[|* + 20
where
HellLZt"’ 2Zt Zﬂka mmZZ% i
n=1 i=1 j=1
and Q;; = Zn 1 kT aa kjn When considering the

posterior for the kernel combination weights (right-
hand plate of Figure (1) note that the Gaussian and
Dirichlet do not form a conjugate-exponential pair and
as such there are no closed form representations for
Q(B) or for the required moments of the distribution.
However, estimates of the required moments can be
obtained using importance sampling. Estimating pos-
terior moments by importance sampling within a vari-
ational Bayes setting has been previously employed in
(Lawrence et al., 2004). The unnormalised posterior
takes the form of

H B exp {—Z(ﬁTnﬁ - me)}

where € is the K x K matrix whose elements are
defined above and the K-dimensional vector b has
elements b, = Z tnaTkkn By drawing S sam-
ples from the prior Dlrlchlet distribution 3, ~ Dg(®)
then the required posterior moments can be estimated

as f?ﬁ) R~ Zle f(Bs)w(B,) where the importance
weights are

exp {~3(8708, —287b) |
D01 exp {—%(ﬁST,QBS, - Qﬁ;rfb)}

w(B) =

and f(B) = B, 88T and log{B3}. The correspond-
ing moments with respect to the posterior distribution
over the Dirichlet parameters also require importance
sampling. The unnormalised posterior Q*(¢) follows
as

Ek%pk T—1 {K -y }
@y exp (or — 1)log B — v
el N s — vy

the required expectation can be obtained by draw-
ing samples ¢, ~ Hi;l I'y, (7,v) and employing these
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in the following estimator m ~ Zss:l flp)w(p,)
)

such that J?(\g_o/) = @ and log{yp} where now w(p,
M(‘Ps)/ ZS’ZI ,U/(QOSI) and

r i K
= ]m exp {;(%k - 1)10g5k}

1(ps)

4.2. Type IT ML Hyperparameter Estimation

Point estimates for the set of hyperparameters 1 defin-
ing each of the Gamma distributions can be obtained
via type II maximum likelihood estimation as defined
below.

N
G,¢ = argmax Eog) {Z log P(¢m|o, c)}

m=0

K
7,0 = argmax Eg, {Zlogp(%ﬂ V)}
k=1

p,0 = argmax Eq . {log P(y|p, 0)}

As the distributions are all Gamma the required type-
IT ML solutions for the inverse scale (s, v, 0) and shape
(0,7, p) parameters can be obtained using a Newton
method (Beal, 2003).

4.3. Predictive Distributions

The predictive distribution for a new data point
P(tnew|Xnew, t, X) can be approximated under the fac-
torised posterior as

/ P(tew|Xnew. £, X, 0, ,7)Q()Q(8)Q(7) daxd Bl

and this can be further approximated by taking the
posterior mean values for each of 3 and ~ and, due to
the conjugate form of the likelihood and posterior for
a, we obtain the following approximation

/ PltnewlXnew: £, X, o B,7)Q(a)dex
which is Gaussian with associated moments
— ~T /—\-/ ~

where the (N 4 1) x K matrix K(x) defines the kernel
values between the test point X, and the training
set (including a bias term) for all K candidate kernels.

4.4. Classification

For classification where the likelihood term is for ex-
ample a Bernoulli distribution quadratic approxima-
tions based on either the Laplace method (Tipping,

2001), Expectation Propagation (EP) (Minka, 2001)
or defining a further lower-bound on the likelihood can
be employed. In this paper we lower-bound the likeli-
hood term employing the quadratic lower-bound pro-
posed in (Jaakkola, 1997) and adopted in for example
(MacKay, 2003; Bishop & Tipping, 2000)

Zloga &)+ Zt a’

where each ¢, = £1, o(-) represents the logistic func-
tion, A(§) = tanh(£/2)/4¢ (Jaakkola, 1997) and k.,
represents the composite kernel values for the n'”
data point. Employing this bound will introduce N
additional variational parameters into the model as
shown dashed in Figure 1'. We lower-bound the likeli-
hood term and the required distributions are Q(a) =
No(mg, ¥y) where

log P(t|ax, 3)

-1

Y, = &n)kink], +d

ﬁ: iﬁkklm

The other approximate posterior component which is
required is the unnormalised posterior for @3, which
now takes the form of

H B exp {—;(ﬁTQB - ﬁTb)}

m, =

where Q;; = ij:l 2X(&n)kE aa kjn and b is de-
fined as before. As in the case of regression this can
be employed in an importance sampler to obtain the
required posterior moments. All other components
of the ensemble, with the exception of Q(v) which
drops out, remain the same as in the case of regres-
sion. The variational parameters are obtained using
£ = kB(xn)T&ETkE(xn) where kéﬁxn) is the com-
posite kernel defined by the current 3 values for data
point x,,.

5. Maximum a Posteriori Estimators

The variational Bayes approach detailed in the previ-
ous section provides an approximate posterior distrib-
ution over the parameters of the model which can be

'In comparison, employing EP would introduce an ad-
ditional 3N parameters associated with the o parameters.
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employed in making subsequent predictions. The Max-
imum a Posteriori (MAP) estimators provide point es-
timates of the most probable a posteriori set of para-
meters. MAP estimators have a number of significant
weaknesses such as basis dependence and the potential
of overfitting (MacKay, 2003). Despite these short-
comings it is interesting to consider a MAP estimator
in addition to the variational Bayes solution for this
problem. The MAP estimator will require a nonlin-
ear optimisation in the general case, however, if we
restrict the prior on B to uniform sampling from the
K — 1 dimensional simplex (¢x = 1 V k), as would
be the case if a priori we have no preference over the
number of kernels to enter the model, then we obtain
a straightforward constrained quadratic optimisation
problem.

&.b. 8.7 = argmax log P(t.X =1
@, ¢,8,7 = agMAx log (t, X, 0, 0,87, =1)
where the hat notation represents the MAP estimate.
Denoting the K x N matrix whose i, element is
> 0 Ki(x,,%;) by Zg then iterating over the fol-
lowing will yield the required MAP solution.

N\ —1
~ (kT o a—1 T
a_(KaKﬁ+7 <1>) KTt

-~ o1
B8 = arggun gﬁTZ};Za,@—ﬁTth
K
st Y O=1& B=0Vk
5\ _ 1+20 N+2p—2

= ;7= =
a2, +2¢ [t — Kzal|? + 20

For classification the MAP estimators follow where A
is a diagonal matrix whose elements are 2A(&,,).

A_l T ~\~1_ 1
a—§<K@AK3+<I>) KLt

The lower bound is optimised using ¢2

ki (xn)Taa kg (xn).

~

1 1
B = argénin §ﬂTZEAZaﬂ—§ﬂTZ§t

K
s.t Zkzlﬂkzl & B3>0V k

The remaining hyperparameter MAP estimators are
identical to those obtained above for regression.

6. Experiments

Some illustrative experiments are now provided to
demonstrate the potential of the proposed hierarchic
Bayesian models.

6.1. Kernel Target Alignment

In (Cristianini et al., 2002) it is shown that a re-
weighting of the eigenvector decomposition of a ker-
nel matrix Ky = > Anupul obtains a new kernel
Kg =Y, Bau,ur which has a greater alignment with
a set, of target values. Consider the toy data set shown
in Figure (2.a) and the associated Gaussian kernel ma-
trix (normalised such that )~ A, = 1) in Figure (2.b),
note that the points are ordered to aid visualisation.
The cluster structure in this data is well characterised
by the original kernel matrix (Figure 2.b). However,
the kernel is obviously not optimally aligned to the
class labels and as such does not fully capture the cor-
responding class structure. By obtaining a MAP

120!
20 40 60 80 100 120

(b) Kernel Ky

20 40 60 80 100 120

(c) Kernel Kg

Figure 2. Scatter plot of two class data sample and associ-
ated kernel matrices.

0.2

12345678910 12345678910

Figure 3. The original kernel matrix eigenvalues A, (left)
and corresponding MAP kernel weights (right).

estimated classifier it is clearly seen, from the right
chart of Figure (3), that the MAP estimates of the ker-
nel matrix weightings ﬁ is predominantly concentrated
on one particular value. The corresponding composite
kernel (Figure (2.c)) is now much more aligned with
the class labels.

6.2. Multimedia Web Page Classification

The problem of web page classification based on text
and image 2 content is considered in (Kolenda et al.,
2002). Here we consider the problem of classify-
ing webpages that have been labelled as being re-
lated to Sport and Paintball. From the 800 Sport
and Paintball webpages available 50 random 160/640

train/test splits were used to obtain estimates of pre-

2Gabor wavelet texture and colour histogram features
were extracted
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Gabor Colour Gabor

(a) Hyper-parameter estimation.

Posterior (Q*(5))

(b) Prior & Posterior

Text

Prior (D(¢))

Colour Gabor Colour

(c) Hyper-parameters fixed.

Figure 4. Error isocontours and associated posterior means ,5 when hyperparameters 7 and v are estimated (a), the
corresponding prior and posterior (b), and when the hyper-parameters are fixed (c).

dictive power. A multinomial diffusion kernel (Laf-
ferty & Lebanon, 2005) was used for the text with
two cosine kernels employed for the image texture and
colour features. Figure 4 a & ¢ show the isocontours
of numbers of correct predictions on the kernel combi-
nation simplex obtained by enumerating each feasible
weight combination 8 = [Brezt, BGabor, Bcolor]. From
the contours it is clear that a maximum number of
correct predictions can be achieved when an appropri-
ate combination of the three kernels is employed as
denoted by the star. The challenge of course is to find
this combination without resorting to extensive enu-
meration and testing of the possible combinations.

Figure 4 a & c also show the estimated posterior mean
values for the combination weights 3, for each of the
50 random splits of the data, as points on the simplex
superimposed on the classification performance con-
tours. On this example we see that hyper-parameter
estimation from the data tends to, on average, align
the posteriors along the region of lowest error. Fig-
ure 4 b gives an example of the prior and associated
posterior distribution and its mean value obtained for
one of the data splits obtained when estimating the
hyper-parameters. It is interesting to note that the
prior obtained is giving more weight to regions of the
simplex associated with Text although the skew is not
so extreme. However, if we fix the hyper-parameters
such that 7 = 0.1 and v = 1.0 this has the a pri-
ori effect of giving higher weight to single kernels. In
other words we believe that only a subset of kernels
will contribute to achieving a low classification error
as the prior Dirichlet will be peaked at the nodes cor-
responding to either Text, Gabor or Color induced ker-
nels. Figure 4 c¢ shows this effect where the posterior
mean values are now strongly concentrated along the
edge corresponding to the near optimal mixtures of

Text and Gabor kernels with Color having essentially
zero weighting. Figure 5 gives the corresponding dis-
tributions for one data split along the Text & Gabor
edge. We observe that the prior places most mass on
a unit weighting of the Text kernel whilst the poste-
rior has two modes with the estimated mean 3 being
a combination of both kernels. This is a nice example
of the dangers of MAP estimators as the maximum
of the posterior is achieved when only the Text based
kernel is employed.

The performance (in terms of the number of errors
made on the test set) for the individual kernels Text,
Gabor, Colour are 2.7000 £ 0.0298, 50.0200 £ 0.1194,
60.5400 £ 0.1075, whilst the combination achieves
2.1400 £ 0.0271. This improvement, whilst not dra-
matic (due to the particular dataset employed) is sta-
tistically significant with a p-value of 4.5222 x 10~*
under a paired t-test. The VB method we have pro-
posed has been able to learn a combination of ker-
nels which provide improved performance over that
achieved by any of the individual kernels induced from
the different forms of data available. Other appli-
cations which have genuinely heterogeneous forms of
data such as those in Bioinformatics will benefit from
the adoption of this Bayesian approach to learning ker-
nels.

6.3. Comparison of Classification Performance

The final illustrative example compares the perfor-
mance of the VB classification algorithm (using type-
IT ML estimation of the hyper-parameters) with the
Heterogenous Kernel Fisher Discriminant (HKFD) al-
gorithm recently introduced in (Fung et al., 2004) on
four datasets employed in (Lanckriet et al., 2004). Fol-
lowing (Lanckriet et al., 2004) three candidate kernels
are used which comprise of a Gaussian kernel with
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Likelihood (w(8))

b -
100% Text
0% Gabor
0% Colour

40% Text
60% Gabor
0% Colour

Figure 5. Distributions for 8 for an example data split
viewed along the simplex edge corresponding to combina-
tions of Text and Gabor based kernels.

width (4 for Heart, 5 for 2-norm, and 1 for Sonar &
Tonosphere) a linear kernel and a second order poly-
nomial kernel, K, Ko & K3 respectively. The moti-
vation behind this experiment is to compare the per-
formance of the VB algorithm with hyper-parameter
estimation and that of the optimum achievable perfor-
mance of the HKFD algorithm (i.e. with the single
hyper-parameter set by extensive cross validation of
the training samples). Thirty (30) random 70% train
& 30% test splits of the data were used to obtain the

fier employing a single kernel and this is consistent
with results reported by (Lanckriet et al., 2004). We
also note similar relative classification performance be-
tween both the VB and HKFD methods across all the
datasets with the exception of Sonar where HKFD is
superior. However we should bear in mind that HKFD
requires an additional level of cross-validation to ob-
tain the associated hyper-parameter for each data split
which of course is not required in VB. It should also
be noted that the composite kernels obtained by both
methods are indeed a combination of the candidate
kernels (Table. (2)) except in the case of 2-Norm where
VB places total weight almost exclusively on the lin-
ear kernel. This is exactly what should be expected
given that the two classes consists of two overlapping
isotropic Gaussians. As the kernels in this example are
derived from the same data representation it is unlikely
that a combination of the kernels will provide any mea-
surable improvement in performance over the base ker-
nels. However, in the previous example the kernels are
derived from independent heterogeneous features (text
& images) which provide differing informative repre-
sentations when combined can, and indeed do, improve
predictive ability.

Table 2. Estimated 3 values for Heart, Sonar, Ionosphere
& 2-Norm.

we observe that the results for both methods in terms
of overall error for the combined kernel classifiers is
comparable with that of the best performing classi-

results reported in Table. (1) & Table. (2). Here HEART B x 10° B2 x 10° Bs x 10°
VB 85.9 £ 6.2 13.0 £ 6.2 0.3 £ 0.1
Table 1. Classificati : 100%) for Heart HKFD 10.6 = 1.1 22.5 £ 0.5 60.4 + 5.9
st ;s eromance (I00%) o et o 5 7 T ux 10 | 0
’ P ) VB 95.5 £ 2.4 23+ 1.1 22+ 1.3
HEART VB HKFD HKFD 314 £ 58.5 | 127 £+ 32.8 429 + 7.1
K 0.8281% 0.0062 | 0.7992+ 0.0237 ToNOS B1 x 10 B2 x 10 Bs x 10
K> 0.8259+ 0.0078 | 0.8313+ 0.0063 VB T 39 1T 15 165 07 519593
K 0.8226+ 0.0068 | 0.7786+ 0.0225 HKFD | 209 + 16.8 | 17.1 + 1.4 | 126 & 10.4
>on K 0.8346 4+ 0.0067 | 0.8292 4+ 0.0068 5 NORM B x 107 B x 107 35 x 107
SONAR VB HKFD VB 0801 | 98.9+£01 | 03E01
K 0.8038+ 0.0089 | 0.8683+ 0.0073 HKFD | 15.8 + 5.1 | 24.5 + 1.0 | 64.8 + 10.0
K> 0.54894 0.0127 0.7172+ 0.0072
K3 0.55164 0.0139 0.8038%+ 0.0093
S K 0.8059 + 0.0080 | 0.8667 + 0.0083 7. Conclusions and Discussion
IONOSPHERE VB HKFD
176 0.9038% 0.0044 | 0.9311% 0.0031 A hierarc'hic Bayesian modelling fram.ework ff)r ker-
K, 0.8298+ 0.0073 | 0.9111+ 0.0072 nel learning has been presented and illustrative ex-
K; 0.93754 0.0042 | 0.93054 0.0041 periments demonstrate the validity of the approach.
S0 Kr 0.9375 £ 0.0043 | 0.9410 £+ 0.0038 In all of the experiments conducted we observe that,
2-NORM VB HKFD at least, the predictive performance of the combined
K, 0.9589+ 0.0074 | 0.9756+ 0.0027 model is comparable to the best individual classifier
Ko 0.9756+ 0.0029 | 0.9778+ 0.0032 and if heterogenous data is available overall improve-
K3 0.97614 0.0026 0.9783+ 0.0028 " hievable. the levels of th . t
COMBINED | 0.9761 % 0.0030 | 0.9783 * 0.0028 THELLs are achievable, the 1evels ol Lhese IInprovements

are, of course, dataset dependent. This accords with
the results of (Lanckriet et al., 2004). Computational
scaling is O(N?) with storage O(KN?) which com-
pares favorably to (Lanckriet et al., 2004; Fung et al.,
2004).
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