Learning Approximate Preconditions for Methods in Hierarchical Plans

Okhtay Ilghami

OKHTAYQCS.UMD.EDU

Department of Computer Science, University of Maryland, College Park, MD 20742-3255, USA

Héctor Munoz-Avila

MUNOZQCSE.LEHIGH.EDU

Department of Computer Science and Engineering, Lehigh University, Bethlehem, PA 18015, USA

Dana S. Nau

NAU@CS.UMD.EDU

Dept. of Computer Science & Institute for Systems Research, Univ. of Maryland, College Park, MD 20742, USA

David W. Aha

AHAQAIC.NRL.NAVY.MIL

Navy Center for Applied Research in AI, Naval Research Laboratory (Code 5515), Washington, DC 20375, USA

Abstract

A significant challenge in developing plan-
ning systems for practical applications is the
difficulty of acquiring the domain knowledge
needed by such systems. One method for
acquiring this knowledge is to learn it from
plan traces, but this method typically re-
quires a huge number of plan traces to con-
verge. In this paper, we show that the prob-
lem with slow convergence can be circum-
vented by having the learner generate solu-
tion plans even before the planning domain
is completely learned. Our empirical results
show that these improvements reduce the size
of the training set that is needed to find cor-
rect answers to a large percentage of planning
problems in the test set.

1. Introduction

One of the biggest obstacles to the development of Al
planning systems that can be used in practical appli-
cations has been the difficulty of obtaining domain-
specific problem-solving knowledge for the planning
algorithm to use. Such information is essential to
achieve satisfactory performance, but human domain
experts often do not have enough time to provide in-
formation that is sufficiently detailed and accurate.

Consequently, it is important to develop algorithms
that learn the necessary domain-specific information

Appearing in Proceedings of the 22™% International Confer-
ence on Machine Learning, Bonn, Germany, 2005. Copy-
right 2005 by the author(s)/owner(s).

automatically (or semi-automaically) from some user-
provided training data. However, finding such data
can be difficult. Therefore, such algorithms should ex-
tract as much information as possible from the training
data. In this paper, we describe CaMeL++, a domain-
learning algorithm that can generate plans even be-
fore it has processed enough training data to learn the
domain completely. Our empirical results show that
these improvements reduce the size of the training set
needed to find correct answers to a large percentage of
planning problems in the test set.

2. HTN Planning

In Hierarchical Task Network (HTN) planning, the
planning system formulates a plan by decomposing
tasks (symbolic representations of activities to be per-
formed) into smaller and smaller subtasks until prim-
itive tasks are reached that can be performed directly.
The basic idea was developed in the mid-70s (Sac-
erdoti, 1975; Tate, 1977). The development of the
formal underpinnings came much later (Erol et al.,
1996). Research on HTN planning has been much
more application-oriented than on most other planning
approaches, and most HTN planning systems have
been used in one or more application domains

An HTN planning problem consists of the following:
the initial state (a symbolic representation of the state
of the world at the time that the plan executor will be-
gin executing its plan), the initial task network (a set
of tasks to be performed, along with some constraints
that must be satisfied), and a domain description that
contains, at least, a set of planning operators that de-
scribe the actions the plan executor can perform di-



Learning Approximate Preconditions for Methods in Hierarchical Plans

rectly, and a set of methods that describe various pos-
sible ways of decomposing tasks into subtasks. Each
method may have a precondition that must be satisfied
in the world state exactly before the application of the
method so that it can be applied.

Planning is done by applying methods to nonprimitive
tasks to decompose them into subtasks, and applying
operators to primitive tasks to produce actions. If this
is done in such a way that all of the constraints are
satisfied, then the planner has found a solution plan;
otherwise the planner will need to backtrack and try
other methods and actions.

3. An HTN Precondition Learner
Based on Candidate Elimination

The performance criterion that interests us is plan-
ning precision, which is the percentage of the plan-
ning problems on which the planner gives a correct
answer (i.e., a correct plan if one exists, or “no plan”
if no correct plan exists). Ilghami et al. (2002) de-
scribe an algorithm called CaMeL, which learns pre-
conditions of HTN methods from training data. While
CaMeL can in theory achieve 100% precision, it re-
quires a large number of training samples to do so. In
Section 4 we describe CaMeL++, an algorithm that
overcomes CaMel’s problem with slow convergence.
In order to describe CaMeL++ intelligibly, we must
first talk about CaMeL.

CaMelL is designed for domains in which the planner
is given multiple methods per task, but not their pre-
conditions. In other words, it is known in advance how
to decompose tasks, but it is not known under what
preconditions each of the several methods to decom-
pose a task is applicable and should be chosen. This
can happen for instance in a military operation, where
the overall strategy of dividing tasks into subtasks is
usually dictated by the military doctrine and there-
fore known, but the tactical decision of which of the
available methods should be used is made based on the
current situation.

CaMeL uses an extended version of Candidate Elim-
ination (Mitchell, 1977). Candidate Elimination re-
quires significant extension for use in an HTN planning
context to handle issues like what the representational
bias of the version spaces should be, or how the version
spaces that represent preconditions of methods in dif-
ferent layers of the task hierarchy should interact with
each other. Due to lack of space, we do not describe
these extensions, and instead refer interested readers
to (Ilghami et al., 2002).

CaMeL’s training set consists of plan traces. Each plan

trace contains a correct solution for a planning prob-
lem. Plan traces also include, at each given point in the
planning process, a list of (potentially more than one)
methods applicable to decompose the current task, in
addition to the one applicable method that was actu-
ally selected in that particular solution to decompose
the current task. These plan traces act as both pos-
itive and negative training samples: The absence of
a method from the list of applicable methods at any
point means that the absent method was mnot appli-
cable given the state of the world at that particular
point, hence a negative example. Note that each plan
trace might be translated to more than one and po-
tentially many positive or negative training samples
for each of the methods in the domain being learned
because there can be several task decompositions and
examples of applications of methods in each plan trace.

4. Planning Before Full Convergence

One of CaMel’s drawbacks was that in many cases
it required a huge number of plan traces to converge.
Convergence occurs when the preconditions of all the
task decomposition methods in a planning domain
have been learned completely; i.e., when each of the
version spaces representing each of those preconditions
has converged to a single node. It can take a huge num-
ber of plan traces in the training set for this to happen,
mainly because some methods can occur in plan traces
less frequently, and certain related facts in the world
state can be true (false) most of the time which makes
it harder to observe what happens when those facts
are false (true). For example, if the weather is good
most of the time in a domain, it is harder to learn how
the methods should react when it is bad; or if most
of the cities in a transportation domain have airports,
many plan traces are needed before even seeing what
happens when a city does not have an airport.

CaMeL++ is based on the hypothesis that a high level
of precision can be achieved even before full conver-
gence has occurred. This is because if certain facts
are rare in the training data, the chances are they will
also be rare in the test data (i.e., planning problems
that the domain learner tries to solve after the learn-
ing phase). Thus a planning system may do well on
the test data even without having learned the facts
that are rare. In this paper, we describe ways to ex-
tend CaMeL so that it uses this observation to start
solving plans before all the methods have converged.

CaMeL++ replaces the all-or-nothing approach in
CaMeL with a voting scheme. More specifically, meth-
ods can be used even if their preconditions are not fully
learned (i.e., their corresponding version spaces con-



Learning Approximate Preconditions for Methods in Hierarchical Plans

TRUE

1

(weather good)
Or
(temperature hot)
Or
(close ?x ?y)

SN

(weather good) (weather good)
Or Or
(temperature hot) (close ?x ?y)

NS

(weather good)
Or
((temperature hot) And (close ?x ?y))

1

(weather good)

Most General Border

Most Specific Border

Figure 1. The version space for mo’s precondition after see-
ing 4 possible training samples where the weather is good.

tain more than one node). To verify if the precondition
of such a method holds in a given world state, every
node in the version space gets the chance to accept or
reject the current state. If more than a certain thresh-
old of nodes accept the current state (in other words,
if the method’s acceptance ratio is higher than the ac-
ceptance threshold), it is assumed that the method is
applicable in the current state and therefore can be
used to decompose the current task into its subtasks.

Imagine a domain d with a method mg that decom-
poses the task (go ?x ?y) to (walk ?x ?y) with precon-
dition ((weather good) V (close ?x ?y)) (Symbols with
names starting with a question mark represent vari-
ables). In other words, one can go from a location to
another one by walking between the two if either the
weather is good or the two locations are close. Also,
assume that there are three possible predicates in d:
(weather good), (temperature hot), and (close ?x ?y).
There are 8 different possible ways to combine these
three predicates, with 6 making the application of mg
possible and the other two making it impossible. Also,
assume that in the planning problems in this domain,
the weather happens to be good most of the time.
This means that the four possible combinations of the
above three predicates where the weather is good are
the most likely to happen in a training set. Figure 1
shows the version space for the precondition of mg af-

ter the above four combinations (all of which happen
to be positive examples) are given to CaMeL++ in
a training set. Here the representational bias is that
the preconditions can have at most three literals con-
nected by logical ORs and ANDs. As can be seen,
there are 6 elements in the version space, and a lot of
training samples might be needed before this version
space can converge to one element simply because we
expect to see training samples where weather is not
good infrequently. However, with the version space in
Figure 1, if the acceptance threshold is set to anything
above % and below %, the version space will be able to
correctly classify all the possible 8 combinations of the
above three predicates as positive (i.e., mg can be ap-
plied) or negative (i.e., mg can not be applied) except
one case: When (close 7x ?y) is true but the other two
predicates are false, mq is applicable, but the version
space in Figure 1 classifies it as negative since only 3
out of 6 elements in the Version Space accept this case.
However, even this one case of misclassification is ex-
pected to happen rarely since the condition (weather
good) is false in this situation.

In order for our voting scheme to work, the accep-
tance threshold should be set to a value lower than
1 (Setting it to 1 will result in the all-or-nothing ap-
proach of CaMeL). However, if it is set too low, and
the training set is small (i.e., the Candidate Elimi-
nation frontier is large), this might yield too many
applicable task decomposition methods for any point
in the planning process. This might have two unde-
sirable effects: First, this might slow down the plan-
ning process by increasing the branching factor of the
planner’s search. Second, and more importantly, this
might cause the planner to produce many wrong plans
when no plans exist for solving planning problems. To
address this issue, we add a beam-size parameter to
CaMeL++, which is a constant provided by the user.
At any given point in the planning process, if there
are more than beam-size available methods to decom-
pose a task where the acceptance ratios of those meth-
ods is higher than the acceptance threshold, only the
first beam-size methods with the highest acceptance
ratios will be considered applicable. This limits the
number of applicable methods at each given point in
the planning process and should improve the planning
precision. It should also improve the speed of plan
generation in the starting phases of learning if the ac-
ceptance threshold is set too low (in which case more
methods than necessary are applicable at each given
point in the planning process). However, as more and
more training data come in, the number of applica-
ble methods eventually drops below the beam-size at
some point. After this happens in the later stages of



Learning Approximate Preconditions for Methods in Hierarchical Plans

learning, the effect of beam-size disappears.

There are two ways that a planner’s precision can suf-
fer: false positives and false negatives. A false positive
happens when the planner returns a wrong plan for
a given problem, or when the planner returns a plan
when none exists that solves that problem. A false
negative happens when there exist plan(s) that can
solve a given problem, but the planner fails to find
one. CaMeL never produces false positives (i.e., it is
a sound planner)! since it uses a method only if it
has provably learned its precondition, but this results
in slow convergence and therefore higher number of
false negatives before convergence. CaMeL++'s vot-
ing scheme reduces the number of false negatives (the
lower the acceptance threshold, the lower the number
of false negatives) but makes CaMeL++ prone to false
positives. The beam-size then reduces the number of
false positives (the lower the beam size, the lower the
number of false positives).

5. Empirical Evaluation

As shown in (Ilghami et al., 2002), CaMeL some-
times needs a high number of plan traces to achieve
full convergence. In this section, we show that the
CaMeL++ algorithm requires fewer training examples
than CaMeL to solve a similar percentage of plan-
ning problems in the test set. To accomplish this,
CaMeL++ tries to solve problems before full conver-
gence is achieved.

We used two different domains in our experiments:
an HTN implementation of the well-known blocks
world domain, and a simplified and abstracted ver-
sion for planning a Noncombatant Evacuation Oper-
ation (NEO). NEOs are conducted to assist the U.S.
Department of State with evacuating noncombatants,
nonessential military personnel, selected host-nation
citizens, and third country nationals whose lives are in
danger from locations in a host foreign nation to an
appropriate safe haven. The HTN implementation of
blocks world we used has 6 operators and 11 methods
and the NEO domain has 4 operators and 20 methods.

5.1. Simulating a Human Expert

NEO domains are usually complicated, requiring many
samples to learn each method. It is difficult to obtain
training samples for these kinds of domains. Even if
we had access to real world NEO training samples,
they would need to be classified by human experts and
the concepts learned by CaMeL++ would need to be

! Assuming that training data is noise-free and each
method’s precondition is present in the Version Space.

tested by human experts to assess their correctness.
This would be expensive and time-consuming.

To overcome this problem, we used the same approach
that was used in (Ilghami et al., 2002): To simulate
a human expert. We used a correct hierarchical plan-
ner to generate planning traces for random planning
problems on an HTN domain. Then we gave these plan
traces to CaMeL++ as its training set and observed
its behavior on the test set, another set of randomly
generated problems.

The hierarchical planner we used is a slightly modi-
fied version of SHOP (Nau et al., 1999). In SHOP, if
more than one method is applicable in some situation,
the method that appears first in the SHOP knowledge
base is always chosen. Since in our framework there
is no ordering on the set of methods, we changed this
behavior so that SHOP chooses one of the applicable
methods randomly at each point. We also changed the
output of SHOP from a simple plan to a plan trace.

5.2. Generating the Random Problems

For the blocks world, we generated sets of random
problems with 300 blocks. We generated planning
problems block by block, putting each new block ran-
domly and uniformly onto an existing clear block or
the table. All of the blocks in each problem have a
known initial state and an associated goal statement.

For problem generation in the NEO domain, every
possible state atom was assigned a random variable,
indicating whether it should be present in the initial
world state (e.g., should there be an airport in a spe-
cific city), or what value its corresponding state atom
should have (e.g., should hostility level be hostile, neu-
tral, or permissive). For all of these random variables
we used a uniform distribution. There are a total of 7
such variables in this domain.

5.3. Results

In all the experiments reported in this Subsection, the
size of the test set is 1000 for each domain for each run,
and each reported result is the average of the results
of 20 different runs. We have not used error bars in
our graphs because each graph represents results for
several different settings and therefore using error bars
in the graphs makes them unreadable. However, the
readers should know that in all of the reported results
in this Subsection (which include planner precisions,
running times, and percentages of correct plans and
false negatives and positives) the result of each of the
20 different runs has been less than 10% different from
the reported average.



Learning Approximate Preconditions for Methods in Hierarchical Plans

~5/8
-3/4
0.2 - /8

O T T T T T T T T T

10 30 50 70 90
Size of Training Set

100% -+
90% -
80% -
70% -
60% -
50% -
40% 1
30% -
20% -
10% A

0% -

10 20 30 40 50 60 70 80 90 100
Size of Training Set faise Negatives
M Correct Plans

0 T T T T
10 30 50 70 90
Size of Training Set
Figure 2. Planner precision given the training set size for different values of acceptance threshold in Blocks World (left)
and NEO Domain (right).

100% -
90% -
80% -
70% 1
60% -
50% -
40% -
30% -
20% -
10% -

0% -

10 20 30 40 50 60 70 80 S0 100
Size of Training Set DEa:se geg_a»t\'ves
B Correct Plane.

Figure 3. Error analysis for NEO Domain with acceptance thresholds of 5/8 (left) and 7/8 (right).

[y
N
|

[ay
w
|

—beam size=1
-=beam size=2

[y
N
|

-+ beam size=infinity

= -
o (=
L L

Planning Time (Seconds)
(s}

(o]

50% 60% 70% 80% 90% 100%

Threshold

w
N
I

—+beam size=1
-= beam size=2
—+ beam size=infinity

w
N
I

N
N
I

Planning Time (Seconds)
= N
~N ~N

—
N

50% 60% 70% 80% 90% 100%

Threshold

Figure 4. Planning time given acceptance threshold for different values of beam size in Blocks World (left) and NEO

Domain (right).

Figure 2 shows CaMeL++’s precision with different
values for the acceptance threshold given different
training set sizes. As expected, in both domains, pre-
cision increases with training set size. However, the
effects of choosing different acceptance thresholds in
these domains are very different.

In blocks world, lowering the threshold from 1 (i.e.,
ordinary CaMeL) to g greatly increases the speed of
learning for precision. This is because all blocks world
planning problems have solutions, and therefore there
are fewer false positives compared to other domains in
general. Because of this, it pays to relax the accep-
tance threshold in this domain; even without full evi-



Learning Approximate Preconditions for Methods in Hierarchical Plans

0.96 -
S 0.92 1
o
3]
2 0.88 A —~beam size = 1
o
-= beam size = 2
0.84 - . o
-+ beam size=infinity
0-8 T T T T T 1
50% 60% 70% 80% 90% 100%
Threshold

1 —
0.92 A
S 0.84 -
o
%) .
9 476 - beam size=1
-} .
- beam size=2
0.68 - - beam
size=infinity
0.6 T T T T T 1
50% 60% 70% 80% 90% 100%
Threshold

Figure 5. Planner precision given acceptance threshold for different values of beam size in Blocks World (left) and NEO

Domain (right).

dence that a method is applicable, it helps to assume
that it is indeed applicable and use it to find and re-
turn a plan. This explains why, in the blocks world,
learning speed lags when the acceptance threshold is 1.
It is simply too harsh an assumption for this domain.
However, as can be seen, the lowest acceptance thresh-
old is not necessarily the best one when the training
set is small. Although every planning problem in the
blocks world has a solution, every plan returned by
CaMeL++ is not necessarily correct. That is, when
the acceptance threshold is set too low, the planner
might incorrectly assume that a method is applicable
and use that method to construct and return an in-
correct plan. This happens in the blocks world when
the acceptance threshold is just %, and the number of
training examples is small. Thus, CaMeL++ performs
better when the acceptance threshold is set to % or %
in the early phases of learning.

The situation is quite different in the NEO domain.
The results when the acceptance threshold is set to
either % or 1 are worse than when it is set to values
between them. The reason for this is that in NEO do-
main many of the randomly generated planning prob-
lems do not have any solutions, which causes a high
number of false positives when the acceptance thresh-
old is too low. On the other hand, there is a huge num-
ber of false negatives when the acceptance threshold is
too high, especially for small training sets. When the
acceptance threshold is % or %, increasing the training
set size beyond 30 and 40 greatly increases precision.
This is mainly because, as more negative examples are
seen, the percentage of false positives rapidly drops.
At this point these values for the acceptance thresh-
old start to outperform the other two (more extreme)
values of g and 1. This phenomenon is depicted in Fig-
ure 3. This Figure represents the proportion of correct

plans (including “no plan” when there is none), false

positives, and false negatives for acceptance thresholds
of % and % respectively for different training set sizes in
the NEO domain. As can be seen, in the former case,
the majority of errors are false positives (because the
threshold is too low and lax) while in the latter case
the rate of false positives drops rapidly and is soon
overtaken by the number of false negatives (which is
higher than when the threshold is %)

This last observation led us to the hypothesis that the
use of a beam size should have a positive effect on
CaMeL++'s precision in the NEO domain where there
are many false positives (especially when the accep-
tance threshold is set too low) and a slightly negative
effect on its precision for the blocks world domain (be-
cause some of the methods that would have resulted
in a correct plan will be discarded, which increases the
number of false negatives). Using a beam size should
also decrease the average time required by the planner
to derive solutions for test problems because of the re-
duced branching factor in the planner’s search space.

Figures 4 and 5 show our experimental tests of the
above hypotheses. In these experiments, the size of
the training set was 79 for the blocks world and 60
for the NEO domain. These were the sizes for which
ordinary CaMeL (i.e., acceptance threshold of 1 and
infinite beam size) achieved an 80% precision.

Figure 4 shows the average running time (taken on
our set of 1000 planning problems in the test data)
on a planning problem in the blocks and NEO do-
mains for beam sizes of 1, 2, and infinite. (These ex-
periments were conducted on a Sun Ultra 10 machine
with a 440 MHz SUNW UltraSPARC-IIi CPU and 128
megabytes of RAM.) As can be seen, limiting the beam
size modestly decreases the planning time, suggesting
a decrease in the number of methods considered on
average with lower beam sizes.



Learning Approximate Preconditions for Methods in Hierarchical Plans

Figure 5 shows the precision of CaMeL++ with dif-
ferent beam sizes in the two domains. As expected,
setting a beam size decreases CaMeL++’s precision
for blocks world problems independently of the accep-
tance threshold setting. On the other hand, setting a
beam size for the NEO domain increases CaMeL++"s
precision in cases where the acceptance threshold is
lower. The highest precision is achieved with a mod-
erate acceptance threshold of 70% and a beam size of
2. This suggests that, for some domains, combining
our voting scheme with an appropriate beam size can
increase a planner’s precision when there has not been
enough training data for CaMeL++ to fully converge.

6. Related Work

CaMeL++ improves CaMeL, which utilizes version
spaces to learn method preconditions. There are,
however, other learning techniques, such as Induc-
tive Logic Programming (ILP) and Explanation-Based
Learning (EBL) that have been used before to learn
control and/or domain knowledge. Reddy and Tade-
palli (1997) introduce X-Learn, a system that uses a
generalize-and-test algorithm based on ILP to learn
goal-decomposition rules. These (potentially recur-
sive) rules are 3-tuples that tell the planner how to
decompose a goal into a sequence of subgoals in a given
world state, and therefore are functionally very similar
to methods in our HTN domains. X-learn’s training
data consists of solutions to the planning problems or-
dered in an increasing order of difficulty (authors refer
to this training set as an exercise set, as opposed to
an example set which is a set of random training sam-
ples without any particular order). The simple-to-hard
order of samples in the training set is based on the
observation that simple planning problems are often
subproblems of harder problems and therefore learning
how to solve simpler problems will potentially be useful
in solving more difficult ones. Ruby and Kibler (1993)
introduce another system that utilizes the above obser-
vation to learn recurring subplans. ILP techniques are
also used to learn control rules for BlackBox, a plan-
ner that formulates planning problems as constraint
satisfaction problems (Huang et al., 2000). The main
difference between the above systems and CaMeL++
is that these systems learn control knowledge as op-
posed to CaMeL++ that learns domain knowledge.
Another difference is that these systems use learning
algorithms other than Candidate Elimination.

Garland et al. (2001) use programming by demonstra-
tion to build a system in which a domain expert per-
forms a task by executing actions and then reviews
and annotates a log of these actions. This informa-

tion is then used to learn hierarchical task models.
KnoMic (van Lent & Laird, 1999) is a learning-by-
observation system that extracts knowledge from ob-
servations of an expert performing a task and general-
izes this knowledge to a hierarchy of rules. An agent
uses these rules to perform the same task. Langley
and Rogers (2004) describes how ICARUS, a cognitive
architecture that stores its knowledge of the world in
two hierarchical categories of concept memory and skill
memory, can learn these hierarchies by observing prob-
lem solving in sample domains. Although CaMeL++
and these systems both involve hierarchies, they dif-
fer in the expected input and the learning task. In
CaMeL++, the structure of the hierarchy is known in
advance and the learning task is to identify under what
conditions different hierarchies are applicable, while
these systems learn the hierarchies themselves.

Another way to formulate the problem of learning how
to plan is to learn a function, called a generalized pol-
icy, that operates over all instances in the domain
and maps states and goals into actions. The plan-
ner then uses this function to solve planning problems.
Khardon (1999) and Martin and Geffner (2000) use
this formulation and utilize ILP techniques to learn
this function given solution plans to planning problems
in the training set. This approach is similar to that of
CaMeL++ in that it learns domain knowledge rather
than control knowledge. The difference between these
approaches and that of CaMeL++ is the input avail-
able to them. CaMeL++ has access to the hierarchy
structure in the beginning and builds upon this avail-
able information by learning the method preconditions
from the training data, while the only information that
these systems have access to is the training data (i.e.,
they have no domain knowledge to begin with).

7. Conclusion and Future Work

In this paper, we described CaMelL++, an algorithm
for learning preconditions for HTN methods that en-
ables the planner to start planning before the method
preconditions are fully learned. Our empirical results
show that, by doing so, the planner can start solving
planning problems with a smaller number of training
examples than is required to learn the preconditions
completely. These results also suggest that this speed-
up comes at an insignificant cost of few incorrect plans.
We also described how the characteristics of different
planning domains might affect the usefulness of our
suggested extensions.

For future work, we will explore more sophisticated
voting schemes, and observe the effect such schemes
might have on CaMeL++’s precision, learning rate,



Learning Approximate Preconditions for Methods in Hierarchical Plans

and planning time. Furthermore, we want to observe
the correlation between the beam size and the required
size of the training set more closely in more general
cases. We hope that our observation will result in ways
to automatically infer, given the domain definition and
also by observing the planning process, what the best
values are for the parameters of our extensions (i.e.,
the acceptance threshold and the beam size).

Two of the biggest potential drawbacks of Candidate
Elimination are its high sensitivity to noise, and some-
times the difficulty of representing the most general
and most specific borders of the version space. Hirsh
et al. have worked on extending the original Candidate
Elimination algorithm to address these issues (1997;
2004). We intend to incorporate these extensions into
our system and evaluate their effects on the perfor-
mance of CaMeL++.

We also want to consider learning paradigms other
than version spaces as replacements for Candidate
Elimination currently used in CaMeL and CaMeL++
and compare the performance of different learning al-
gorithms in the context of HTN domain learning.

Another topic for further investigation is active learn-
ing, i.e., enabling the learner to intelligently choose
the next training sample it will be given, rather than
just providing it with a randomly-generated training
set. This way, the learner can ask for training samples
that will help it gain more information more quickly
and therefore it might be possible to converge with
fewer training samples.

Acknowledgments

This work was supported in part by the follow-
ing grants/contracts: NRL N00173-04-1-G033, NSF
1150412812, AFOSR FA9550-05-1-0298, and DARPA’s
REAL initiative. The opinions expressed in this paper
are those of authors and do not necessarily reflect the
opinions of the funders.

References

Erol, K., Hendler, J., & Nau, D. S. (1996). Complexity
results for hierarchical task-network planning. An-
nals of Mathematics and Artificial Intelligence, 18,
69-93.

Garland, A., Ryall, K., & Rich, C. (2001). Learning
hierarchical task models by defining and refining ex-
amples. Proceedings of the 1st Int’l Conference on
Knowledge Capture (pp. 44-51).

Hirsh, H., Mishra, N., & Pitt, L. (1997). Version spaces

without boundary sets. Proceedings of the 14th Nat’l
Conference on Artificial Intelligence (pp. 491-496).

Hirsh, H., Mishra, N., & Pitt, L. (2004). Version spaces
and the consistency problem. Artificial Intelligence,
156, 115-138.

Huang, Y.-C., Selman, B., & Kautz, H. A. (2000).
Learning declarative control rules for constraint-
based planning. Proceedings of the 17th Int’l Con-
ference on Machine Learning (pp. 415-422).

Tlghami, O., Nau, D., Munioz-Avila, H., & Aha, D.
(2002). CaMeL: Learning method preconditions for
HTN planning. Proceedings of the 6th Int’l Confer-
ence on Al Planning and Scheduling (pp. 168-178).

Khardon, R. (1999). Learning action strategies for
planning domains. Artificial Intelligence, 113, 125—
148.

Langley, P., & Rogers, S. (2004). Cumulative learning
of hierarchical skills. Proceedings of the Third Inter-
national Conference on Development and Learning.

Martin, M., & Geffner, H. (2000). Learning generalized
policies in planning using concept languages. Pro-
ceedings of the 7th Int’l Conference on Knowledge
Representation and Reasoning (pp. 667—-677).

Mitchell, T. M. (1977). Version spaces: A candidate
elimination approach to rule learning. Proceedings
of the 5th Int’l Joint Conference on Artificial Intel-
ligence (pp. 305-310).

Nau, D. S., Cao, Y., Lotem, A., & Munoz-Avila, H.
(1999). SHOP: Simple hierarchical ordered plan-
ner. Proceedings of the Sixteenth International Joint
Conference on Artificial Intelligence (pp. 968-973).

Reddy, C., & Tadepalli, P. (1997). Learning goal-
decomposition rules using exercises. 14th Int’l Con-
ference on Machine Learning (pp. 278-286).

Ruby, D., & Kibler, D. (1993). Learning recurring sub-
plans. In S. Minton (Ed.), Machine learning methods
for planning, 467-497. San Mateo, CA: Kaufmann.

Sacerdoti, E. (1975). The nonlinear nature of plans.
Proceedings of the Fourth International Joint Con-
ference on Artificial Intelligence (pp. 206—214).

Tate, A. (1977). Generating project networks. Pro-
ceedings of the Fifth International Joint Conference
on Artificial Intelligence (pp. 888-893).

van Lent, M., & Laird, J. (1999). Learning hierarchical
performance knowledge by observation. Proceedings
of the Sixteenth International Conference on Ma-
chine Learning (pp. 229-238).



