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Abstract

Properties of ensemble classification can be
studied using the framework of Monte Carlo
stochastic algorithms. Within this frame-
work it is also possible to define a new en-
semble classifier, whose accuracy probability
distribution can be computed exactly. This
paper has two goals: first, an experimen-
tal comparison between the theoretical pre-
dictions and experimental results; second, a
systematic comparison between bagging and
Monte Carlo ensemble classification.

1. Introduction

Recently, the theory of Monte Carlo algorithms has
been proposed as a framework to investigate proper-
ties of ensemble classification and learning (Esposito &
Saitta, 2004). A new ensemble classifier, AmpMC, was
introduced as a by-product of the analysis. Starting
from that work, the first goal of this paper is to exper-
imentally verify the validity of the theoretical predic-
tions about classification accuracy. Another goal is to
assess the explicative power of the Monte Carlo frame-
work; as it was shown by Esposito and Saitta (2004),
this framework allowed some interesting properties
of ensemble classification to be discovered/explained.
Then, a pertinent question would be: is the framework
only suitabe to study AmpMC’s properties or is it use-
ful to also assess features of other ensemble learners?
If this question could be answered positively, then we
would have at our disposal a powerful and well as-
sessed tool for studying ensemble learners in general.
In this paper we actually provide a positive answer to
the question with respect to Bagging (Breiman, 1996).
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Starting from the above perspective, the comparison
between AmpMC and Bagging is not oriented toward
providing evidence of any supposed “superiority” of
one of the two algorithms over the other, but it simply
tries to establish conditions under which transfer of
properties is sound. Obviously, both algorithms have
advantages and drawbacks, which we also try to assess.

In order to make this paper self-consistent, we recall
in Section 2 some definitions about Monte Carlo algo-
rithms and summarize some previous results. In Sec-
tion 3 a theoretical comparison between AmpMC and
Bagging is provided. Section 4 describes the exper-
imental environment, while Section 5 reports results
on natural datasets. Section 6 describes experiments
performed on artificial datasets and some conclusions
are reported in Section 7.

2. Background

In this section we briefy recall some definitions about
Monte Carlo algorithms, and a summary of Espos-
ito and Saitta (2004)’s results, for the sake of self-
consistency.

2.1. Monte Carlo stochastic algorithms

According to Brassard and Bratley (1988), a stochastic
algorithm MC is Monte Carlo when, applied to any
instance = of a class X of problems, it always returns
an answer (belonging to a predefined discrete set Y),
but this answer may occasionally be incorrect.

A Monte Carlo algorithm is consistent if it never re-
turns two different, both correct, answers to the same
problem. Finally, if the probability that MC returns
a correct answer for any problem instance x is at least
p, MC is said to be p-correct.

In the context of classification tasks, the set X of ex-
amples corresponds to the set of problems, the answers
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to the problems to the class labels to be assigned, and
the classifier to MC. If a classification problem has a
Bayes error equal to zero, then MC is certainly con-
sistent.

Let w(x) be the correct class of . As MC has no mem-
ory, not only each problem z is to be handled indepen-
dently from the others, but also multiple occurrences
of the same problem z are to be handled independently
as well. As a consequence, one occurrence of x may
receive an answer, and another occurrence of x may
receive a different one.

The great interest of Monte Carlo algorithms resides
in their amplification ability: let X be a class of prob-
lems, and let MC be a Monte Carlo algorithm both
consistent and p-correct over X. By running MC T
times on a fixed instance z € X and taking the major-
ity answer as the result, the probability that = is cor-
rectly classified approaches 1 exponentially fast with
T, provided that p is greater than 1/2.

In this paper we only consider binary classification
problems, i.e., Y = {+1,—1}. Let, in the following,
|X| = N, and let D = {dg|]1 < k < N} be a fixed
probability distribution over X. As we are not in-
terested in the description language used to represent
hypotheses, these last are only considered from an ex-
tensional point of view, i.e., we only take notice of the
way they partition examples into positive and nega-
tives ones. Hence, for a discrete example space, there
are only finitely many different hypotheses, each one
corresponding to a different subset of X (positive ex-
amples).

2.2. Problem setting

Given the above premises, let us define the Monte
Carlo matrix M reported in Table 1. The matrix
has a number of rows equal to N, and a number R
of columns equal to the number of available hypothe-
ses, each one with a probability associated to it: these
hypotheses may have been provided by an oracle, or
have been previously learned from a given set of learn-
ing sets. Let ® be the set of the hypotheses, and ¢ the
associated probability distribution. Then, we abstract
away from the working of the learner, and learning can
be simulated by extracting hypotheses from ® accord-
ing to q.

Given a hypothesis ¢; and an example zy, the classifi-
cation ¢;(zg) € Y assigned by ¢; to zx may be either
correct or incorrect. Let p;(zx) € {1,0} be the prob-
ability that hypothesis ¢; correctly classifies example
xy, i.e., that ¢;(zy) = w(zg). The value p;(zy) is the
entry in row k and column j of matrix M.

Table 1. Theoretical setting: Matrix M
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Let p(zx) be the average of the entries of row k in
matrix M:

p(og) = Z ajpj(zK)

Moreover, let us take the average of the p;(zx)’s over
each column; we obtain, for each ¢;, its “true” accu-
racy, r;:

N
rj =Y dipj(wx)
k=1

The lowest, right most element of the matrix M is the
average taken on all matrix elements:

N R N R
"= Z Z drq;p; (k) = dep(xk) = qurj (1)
k=1 i=1

k=1 j=1

The r; and p(zy) values are not totally independent,
as they are related by (1).

2.3. Summary of previous results

In order to exploit the amplification ability, the fol-
lowing Monte Carlo algorithm MC(z|®, ¢) can be ap-
plied to a problem zj, extracted from X according to
D:

MC(%]J(I), Q)
Extract ¢; from @ according to ¢
Classify x with ¢;
Return ¢;(z)

As p(xy) is the probability of extracting a hypothesis
@, that correctly classifies xj, MC is p(xy)-correct on
xg. If we make T calls to MC and accept the majority
answer, we can let the probability of success of MC
become as close to 1 as desired, provided that MC is
consistent, p(x) > 1/2, and that the calls to MC are
independent.

Repeating MC T times on the same z; and taking
the majority answer amounts to apply the algorithm
AmpMC.
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By analysing AmpMC, Esposito and Saitta (2004)
have reported a number of results; some of them, rel-
evant to this work, are the following ones:

e In the limit of combining all available hypotheses,
the classification accuracy p is given by the sums
of the probabilities djy of the examples that have

p(xg) > 1/2.

e The probability m(xg) of classifying correctly
example k using T hypotheses extracted ran-
domly from & accordingly to ¢ is m(zk) =

S 2] (Dpan) (1= plae) .

e Let pr denote the accuracy when T hypotheses
are combined. The exact probability distribution
of pr can be computed.

3. Monte Carlo amplification vs.
Bagging

A theoretical analysis of Bagging was provided by
Breiman (1996) in a setting analogous to the one con-
sidered by Esposito and Saitta (2004), i.e., the example
set X is known (together with a continuous probabil-
ity distribution Px(x) over the examples), as well as
the set of all hypotheses generated by a weak learner
from bootstrap replicates of a given dataset.

Let us first establish the correspondence between the
notations in the two approaches. Esposito and Saitta
(2003a; 2003b; 2004) consider a discrete set X =
{zk|]l < k < N} of examples, with an associated
probability distribution D = {di|1 < k < N}; then,
Breiman’s integration over x corresponds to summa-
tion over k. Moreover, Breiman allows the Bayes error
to be different from zero, as the probability P(j|z)
that an example x is a-priori labelled as class j may
be different from 0 and 1. We only consider Bayes
error zero, i.e.:

)1 ifw() =3
Pljle) = {0 if w(z) #j

In (2), w(z) denotes the correct class of z. In an analo-
gous way, we can rewrite Breiman’s probability Q(j|x)
that a random hypothesis assigns class j to example x
in our terms as follows:

) — p(x) ifw(z)=7j
k) {1—p<x> i w(r) #

Breiman introduces the notion of order-correctness of
a hypothesis w.r.t an example, i.e., a hypothesis ¢ is
order-correct w.r.t. x, if:

(2)

arg max Q(j|z) = arg max P(j|) (3)
J J

In our framework, relation (3) is satisfied for xy, iff the
Monte Carlo probability of p(zy) is greater than 0.5.
In other words, Breiman’s notion of order-correctness
coincides with Monte Carlo’s amplifiability.

Afterwards, Breiman computes the accuracy 74 of the
aggregated classifier ¢4, as the sum of two terms, one
over the examples for which ¢4 is order-correct, and
one over the remaining examples. Applying the Monte
Carlo framework, the first term is equal to the asymp-
totic accuracy poo, whereas the second one is zero. As
a conclusion, Breiman’s formulas can be derived as
special cases from Monte Carlo theory.

It is worth noticing that Breiman’s experimental obser-
vation that ”poor predictors can be transformed into
worse ones” has a double justification in the Monte
Carlo theory: first, when the Bayes error is different
from zero, Bagging is inconsistent (according to Monte
Carlo theory), and, second, low hypothesis accuracies
may let the number of order-correct examples go to
zero (Esposito & Saitta, 2004).

Since Bagging has its own hypothesis extraction mech-
anism (learning strategy) and its own way of classify-
ing the examples, we shall model, first of all, how Bag-
ging relates to the matrix M. All the parameters in-
troduced so far are still valid. As explained in Section
3, the Monte Carlo ensemble classifier AmpMC works
by extracting from @, according to ¢, T" hypotheses for
each occurrence of each example x;. Hence, the sets
of hypotheses used for each example x; are normally
different. Then, we could say that AmpMC works by
rows. On the contrary, Bagging only uses 7" hypothe-
ses, and applies them to all the examples. We could
say that Bagging works by columns.

The relevant question now is how these two ways of
working impact classification results. An answer to
this question is provided by the following theorem:

Theorem. The ezxpected error of the Bagging algo-
rithm with T hypotheses is equal to the expected error
of the Monte Carlo classifier with T hypotheses.

Proof. Let us consider the Monte Carlo matrix M, and
let Hr = (Qcys Peqy - - - s Pep ) be a selection (repetitions
are allowed) of cardinality T of its columns. The ac-
curacy of selection Hp, which corresponds to a bagged
hypothesis, is given by the total weight of the rows in
M for which the sum of the 1’s corresponding to the
columns in Hr is larger than |T/2]. In formulae:

B
pTag(HT) = ;dkl ’;‘:1 (Pc]- (zk)>|_%J

The expectation of p?ag can be evaluated by consider-
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ing all possible selections of 1" columns:
E [p?ag] By [DT (HT)} =

ZPI‘{HT} del T ¢ (@r)>| T

We need to prove that the above formula corresponds
to the expected accuracy of the Monte Carlo classifier.
Let us start by rearranging a little bit the summations:

;(pr{HT} DI IPE >>L€J> -
ZZPr{HT}de ]T:lapcj(zk)>l_%J -

Hr k

deZPr{HT}I T e, (a)>| L]

By noticing that the inner summation is the probabil-
ity of classifying correctly example k using T hypothe-
ses extracted randomly and accordingly to ¢ from the
Monte Carlo matrix, we obtain:

15%8) deZPr{HT}I T e @)>| %] T
deTFT (xk)
k

Which completes the proof. O

= E[py]

On the contrary, nothing can be said, a priori, about
the error variances in the two approaches: either one
can, in fact, be lower. In Figure 1 two examples of M
matrices, in which the variances differ, are reported.
Based on the above findings, it seems plausible to claim
Bagging to be a cheaper approximation of AmpMC: in
fact, Bagging only learn T hypotheses for classifying
N examples, whereas AmpMC learn N -T hypotheses
for the same task. The expected error is the same, and
Bagging’s variance may be either higher or lower then
AmpMC’s. Actually, we can say a little more about
the variance; in (Esposito & Saitta, 2004) it was shown
that by using AmpMC and considering independently
each occurrence of the same example x, a provably
lower variance is obtained w.r.t. the case in which the
same instance is always classified in the same way. As
Bagging always classifies in the same way any occur-
rence of the same example, it is reasonable to expect
that its variance be often greater than AmpMC’ vari-
ance.

4. Empirical Settings

As mentioned in Section 1, the aim of the experi-
mentation is twofold: on the one hand we want to

[
A aaaaaan
Aaaaaaa
JE
[N
[N
coooooo
coooooo
coooooo
coooooo
oO—-o0o—s0=20
~— 02020 =
o—_-o0o—20-=0
—o0o—20=20 =
o—_-o0o—20=o0
“— 02020 =
o—_o0o—-0=o0
— o202 0 =
o—-o0o—s0=0
—~— 02020 =
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matrix for which matrix for which the
the error variance error variance of Bag-
of AmpMC is lower ging is lower than
than Bagging’s AmpMC’s

Figure 1.

check the correctness of the theoretical predictions of
Monte Carlo theory about the classification accuracy
of AmpMC, and about the relations between AmpMC
and Bagging. In order to explore this issue, we have
used twelve datasets from Irvine’s repository (Blake &
Merz, 1998). On the other hand, in order to investi-
gate more closely the relations between the variances,
we have designed an artificial suite of problems, whose
characteristics vary with continuity in such a way that,
according to the theory, the two variances are bound
to differ.

In all experiments the number T of component hy-
potheses vary in {0,...,101}. Only odd values of T
have been considered, as the accuracy graph versus T’
presents strong oscillations, due to the parity. For each
T, classification has been repeated 60 times in order to
estimate the statistics of interest. Then, the statistics
about the two algorithms have been compared with
the theoretical predictions and between each other.

4.1. Natural Datasets Description

In the first set of experiments, we considered 12 binary
classification tasks from Irvine’s repository (Blake &
Merz, 1998). For the sake of simplicity, we selected
tasks involving numerical attributes only. The selected
datasets are described in Table 2. No tuning of the
learning algorithm’s parameters has been done.

The Monte Carlo matrices used in the experiments
have been built starting from a learning set £ and a
test set 7 in the following way. Five thousand classi-
fiers have been acquired using a CART-like algorithm
run on bootstrap replicates (Efron & Tibshirani, 1993)
of £. Then, the classifiers have been used to fill the
entries in the Monte Carlo matrix M. More precisely,
for each k € {1,...,|£|+|7|} and j € {1,...,5000}
M (k, 7) has been set to 1 if the j-th hypothesis classi-
fied correctly example number k, and to 0 otherwise.



Experimental Comparison between Bagging and Monte Carlo Ensemble Classification

Table 2. Description of natural datasets. Nick is the ab-
breviate name we use in reporting the results, |A| is the
number of attributes. |£| and |7| are the cardinalities of
the training and test sets, respectively.

Dataset Nick  |A4| |L] |7

Echocardiogram echo 9 63 56

Heart Desease hdc 13 144 120
Cleveland

Heart Desease hdh 13 138 119
Hungarian

Heart Desease hds 13 60 54
Switzerland

Heart Desease VA hdv 13 90 74

Hepatitis hepa 19 72 62
Tonosphere iono 34 184 167
Pima pima 8 408 360
Waveform wav 21 2505 2495
Waveform (noisy) wns 40 2505 2495

Wisconsin Diagnostic wdbc 30 303 266

Breast Cancer

Wine wine 13 92 86

4.2. Artificial Monte Carlo Matrices

The theory points out that differences should become
apparent when the ”shape” of the Monte Carlo ma-
trix varies. For instance, Figure 1 offers an example.
Interesting enough, the two ma-
trices can be rewritten as par-
ticular instantiations of the ma-
trix template reported on the
left. The picture represents a
family of matrices M, x,, which
show four distinct regions ar-
ranged in a xor-like pattern.
The 1’s denote regions of the
matrix containing mostly 1’s, whereas the 0’s denote
regions of the matrix containing mostly 0’s, Each ma-
trix in the family contains 100 rows and 100 columns.
F1 and X, represents respectively the number of hy-
potheses which stand on the left side of the matrix
and the number of examples which occupy its upper
part. As it is easy to see M1 100 corresponds to a situ-
ation similar to the one reported in Figure 1(a), while
the matrix Msg 50 corresponds to Figure 1(b) (we no-
tice that rows and columns of the matrix reported in
the figure should be reordered properly for the corre-
spondence to become apparent; this only amounts to
renaming both examples and hypotheses).

5. Experiments on Natural Datasets

In this section we describe the experiments aimed at
comparing theoretical predictions, experimental obser-
vations and links between Bagging and AmpMC.

For each dataset, classification experiments with
AmpMC and Bagging have been performed for 51 val-
ues of T', from 1 to 101. For each T value the entire
process has been repeated 60 times. The results for
pima dataset are presented in Figure 2, and consist of
two parts: the left one reports the results for Bagging,
i.e., the average (over the 60 repetitions) experimental
error and the experimental error + one standard devi-
ation, for both the learning and the test set. The right
part reports the same for AmpMC. Moreover, the the-
oretical values for the error and its variance, predicted
by the Monte Carlo model, are reported as well. The
figures corresponding to the other 11 datasets show a
similar structure.

In order to quantitatively evaluate the results, a num-
ber of statistical tests have been performed. First of
all, the empirical values of the error have been com-
pared, via a t-Test, to the theoretical ones, for each
T value, for the learning and test sets, for Bagging
and AmpMC (in all, 2448 tests). These tests have
supported “equality” between theory and experiments
with p > 0.99 in all cases. Then, the experimental
variance has been compared to the theoretical one via
an F-Test (with degree of freadom v; = 59), again for
each T value, for the learning and test sets, for Bagging
and AmpMC. Whereas the tests referring to AmpMC
almost always support “equality” between theory and
experiments, with p > 0.99, the same does not occur
for Bagging, providing so a first indication of the dif-
ference between the two methods. As there is no space
to report all the results in details, we concentrate on
the most interesting question, namely the difference in
variance between Bagging and AmpMC.

In order to compare the two variances, we have per-
formed two series of tests. First of all, we have per-
formed an F-Test for each T wvalue, for the learn-
ing and test sets. We have used the statistic F' =
var(p228) /var(pa™MC) with degrees of freedom vy =
59 and v = 59. We have used as null hypothesis
Hy = var(p58) > var(p2™MC) and performed a one-
tail test. The results are summarized in the fourth
and fifth column of Table 3. Each column shows (sep-
arately for the learning and the test sets) the num-

ber of times the test succeeded (indeed, var(p>°€) >
Val’(p?mpMC
Actually, the above F-Test is too local to convey really
significant information, because, for the same graphs

)) with a significance level p > 0.95.
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(for instance, Learning set of Pima with Bagging vs.
Learning set of Pima with AmpMC), the test is some-
times positive an sometimes negative. Moreover, the
test is unable to capture global features; for instance,
it is possible that var(p;°%) is always greater than
var(,oi;mp MEY but not sufficiently to let the point-
wise test succeed. What we need, then, is a more
global test, which is able to capture the overall rela-
tionship between the two variances over the entire T
span. To this purpose, we can use the non-parametric
Wilcoxon rank test. We test again the null hypothesis
Hy = var(p38) > var(pp™MC) and perform a one-
tail test with a stricter significance level, p > 0.99.
In this case, when the test fails, we tested also the
null hypothesis Hj = var(p5°8) < var(pa™MC). The
results are reported in the second and third column
of Table 3. In these columns, an entry ”"Bag” de-
notes that var(p>°€) > var(pa™M¢), an entry MC de-
notes that var(p5°€) < var(p2™M¢) whereas an entry
"NO” denotes that the two variances are statistically
equal. For the Hepatitis and Wine datasets, only the
Wilcoxon test result is reported, because the variances
of both AmpMC and Bagging become identically zero

for T'> 13 and T > 15, respectively.

From Table 3, we notice that the variance of Bagging is
greater in 15 out of 24 cases, the variance of AmpMC is
greater in 4 out of 24 cases, whereas in the remaining
5 cases there is no statistically significant difference
between the two variances.

Two considerations are in order here. First of all,
we may notice that in some cases the results of the
Wilcoxon and F tests are clearly in agreement; for ex-
ample, in the HD (Cleveland), the F test gives a clear
predominance of successes. In other cases, such as
Waveform, the results from the Wilcoxon and F tests
seem to be contradictory: The Wilcoxon test says that
for the learning set Bagging has the greater variance,
but the F test says that only in 4 cases out of 51 (T
values) this is the case. The reason is that Bagging
has almost for all T" values a greater variance, but
not sufficient to let the F test be positive (remember
that the ratio between the two variances must be at
least 1.54 in order to reach the 0.95 significance level).
The Wilcoxon test is able to take into account this
situation, which, globally, corresponds to a Bagging’s
greater variance.

The second observation is that the considered datasets
do not contain duplicate examples. According to the
theory, Bagging’s variance is predicted to increase in
datasets with many duplications. Then, the experi-
mentation is favorably biased toward Bagging.

Table 3. Results of Wilcoxon and F tests on natural
datasets.

Dataset Wilcoxon Test F
Learn Test Learn Test
echo Bag Bag 40 27
hdc Bag Bag 42 37
hdh NO MC 11 4
hds Bag MC 11 2
hdv NO Bag 3 15
hepa Bag NO / /
iono Bag Bag 29 46
pima NO Bag 16 32
wav Bag MC 4 1
wns Bag Bag 24 36
wdbc Bag Bag 51 51
wine MC NO / /

6. Experiments on the Artificial
Datasets

In this section we report a second set of experiments
which aim to investigate how the behavior of the two
algorithms changes with different problem settings,
corresponding to different structures of the Monte
Carlo matrices. In particular, the matrices we pro-
duced were different instantiations of the Mg, x, matrix
template.

The results are reported in Figure 3. The figure con-
sists of a matrix of six rows and two columns. The left
column contains experiments where F; has been set to
53 and X, assumes values in {55,70,95}. Similarly, the
right column contains experiments having X, = 53 and
Fy in {55,70,95}. In each plot, we reported with solid
lines the theoretical predictions, with dotted lines the
observations about AmpMC, and with dotted-dashed
lines the observations about Bagging (as in the other
figures, E[pr| and E[pr]+o(pr) have been plotted for
each classifier and for the theoretical predictions).

From the results, we can observe that the variance of
Bagging tends to increase as X, increase and F; is low,
but tends to be better than Monte Carlo’s one when
the opposite happens. Interestingly, we can also no-
tice that the experiments suggest that, being free to
choose, one should adopt the AmpMC way of combin-
ing hypotheses. In fact, we can observe that while the
variance of Bagging can become very large, this does
not happen in the case of AmpMC. The results re-
ported in the second column, in fact, show that even
if the variance of AmpMC is larger than the one of
Bagging, this happens because Bagging’s variance is
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Dataset:pima EL:Bagging
0.45 :

Dataset:pima EL:Monte Carlo
0.4 T

Figure 2. Experiments on Pima dataset. All pictures report the expected error + one standard deviation for the given
ensemble algorithm and increasing values of 7. Both theoretical predictions (solid lines) and observed errors (dashed-
dotted and dotted lines) are reported. The statistics are separately measured on the training set (dotted lines) and on

the test set (dashed-dotted lines).

very small. In other words, even when Bagging has a
better error variance, AmpMC one is “not too bad”.

Unfortunately, in practical situations the choice is not
so easy. In fact, the Monte Carlo classification strat-
egy is a costly one since one have no choice but to
learn T different hypotheses from scratch each time a
novel example is presented. This is clearly unfeasible
in contexts where speed is important and data abound.

7. Discussion

In this paper, we extended Esposito and Saitta (2004)
work with an investigation of the links between Monte
Carlo theory and Bagging, and performed an experi-
mentation, with both natural and artificial datasets,
to empirically validate the theory prediction.

A first conclusion that can be drawn is that the experi-
ments show an amazing match with the theory predic-
tions about the error and error variance in all analysed
cases.

For what concerns the relation between AmpMC and
Bagging, we have shown, both theoretically and empir-
ically, that the two procedures have the same average
error. This result allows some of the found properties
from Monte Carlo theory to be applied to Bagging; for
instance, the fact that the behaviour of the average er-
ror may be non monotone with 7', property that was
unknown before the introduction of the Monte Carlo
framework.

The relationship between the variances is more com-
plex, but we think it is safe to say that Bagging tends
to have a larger variance than AmpMC. On the other
hand, Bagging can be seen as a ”low cost” AmpMC

algorithm, useful when resources are scarce.

From the experiments of the artificial datasets, we can
conclude that AmpMC is favoured w.r.t. the variance
when X, is large and F; is low. On the other hand
Bagging is favoured w.r.t. the variance, when X, is
low and F; is large.
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Figure 3. Experiments on artificial datasets. All pictures report the expected error & one standard deviation of AmpMC
and Bagging for increasing values of T. The solid lines reports the theoretical predictions, the dotted lines reports the
statistics for AmpMC, and the dashed-dotted lines report the statistics for Bagging. Notice that, in order to improve
readability, different scales have been used.



